This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Name-based Analysis of Equally Typed
Method Arguments
Michael Pradel, Member, IEEE, Thomas R. Gross, Member, IEEE,

Abstract—When calling a method that requires multiple arguments, programmers must pass the arguments in the expected order. For
statically typed languages, the compiler helps programmers by checking that the type of each argument matches the type of the formal
parameter. Unfortunately, types are futile for methods with multiple parameters of the same type. How can a programmer check that
equally typed arguments are passed in the correct order? This paper presents two simple yet effective, static program analyses that
detect problems related to the order of equally typed arguments. The key idea is to leverage identifier names to infer the semantics of
arguments and their intended positions. The analyses reveal problems that affect the correctness, understandability, and maintainability
of a program, such as accidentally reversed arguments and misleading parameter names. Most parts of the analyses are language-
agnostic. We evaluate the approach with 24 real-world programs written in Java and C. Our results show the analyses to be effective
and efficient. One analysis reveals anomalies in the order of equally typed arguments; it finds 54 relevant problems with a precision of
82%. The other analysis warns about misleading parameter names and finds 31 naming bugs with a precision of 39%.

Index Terms—Testing and Debugging, Maintenance, Documentation, Static Program Analysis, Anomaly Detection, Method Arguments

<+

Digital Object Indentifier 10.1109/TSE.2013.7

1 INTRODUCTION

In statically typed programming languages, method
parameters have types to ensure that each argument
passed to a method has the expected type.! Unfortu-
nately, type specifications are useless when a method
has multiple parameters of the same type. For example,
a method setEndPoints (int high, int low) requires
two int arguments. If a programmer accidentally calls
this method with incorrectly ordered arguments, the
compiler has no means to warn her. Can we support
programmers in ordering equally typed arguments cor-
rectly?

There are three kinds of problems related to equally
typed method arguments, which we illustrate with ex-
amples from real-world Java and C programs.

1) A programmer can accidentally reverse arguments
and pass them in the wrong order (Figure 1a). Such
a mistake leads to unexpected program behavior
and affects the program’s correctness.

2) Arguments that are unusually ordered can confuse
a reader of the source code. An unusual argument
order can be necessary, for example, because the
program’s semantics require to do the inverse of
the expected (Figure 1b). Naturally, an unusual ar-
gument order raises the question whether a method
call site is correct. Unless a comment explains the
reason for such an anomaly, it will negatively affect
the program’s maintainability.

1. When saying method, we mean both functions (as in C) and
methods (as in Java). We refer to formal parameters in a method
declaration as parameters and to objects passed to methods at a call
site as arguments.

3) Equally typed method parameters with badly cho-
sen names make using a method unnecessary dif-
ficult (Figure 1c). Identifier names play an impor-
tant role for program understanding [24] and code
quality [7]. Since this is particularly true for equally
typed method parameters, inadequate names affect
the program’s understandability.

Problems related to equally typed arguments are hard
to find. The main reason is that these problems involve
the semantics of the program, which is not explicit
in the source code but only exist in the mind of the
programmer. Traditional compilers are oblivious to the
order of equally typed arguments; as long as the types of
arguments and parameters match, the program compiles
without warnings. The problem is compounded by the
fact that bugs caused by incorrectly ordered arguments
may not raise an exception or other obvious signs of in-
correct behavior, and therefore remain unnoticed during
testing. For instance, reversing the arguments at a call
site of setEndPoints (int high, int low) introduces
a subtle semantic error, which can remain unnoticed
until late in the development process.

Call sites of methods with equally typed arguments
account for a significant part of all method call sites.
Within a corpus of programs comprising 1.6 million
lines of Java code (the DaCapo benchmarks [6]), 11% of
all method call sites (77,610 out of 683,504) have two
or more equally typed arguments. That is, for 77,610
method call sites the type system cannot ensure that the
arguments passed by the programmer are ordered cor-
rectly. The problem is even more severe for C programs.
In a collection of 620 thousand lines of C code (the SPEC
CPU benchmarks [20]), 26% of all call sites (25,219 out of

0098-5589/13/$26.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(a) (b) (©)
Program | Eclipse 3.5.1 Jython 2.5.1 gcc 3.2
Call site createAlignment (name, mode, do_compare_and_jump (exp, _pow (coerce (left), value, null)
Alignment.R_TNNERMOST, rcmp, remp,
count, sourceRestart, if true label,
adjust) ; if false label)

Called Alignment createAlignment (void do_compare_and_jump (PyFloat _pow (

method String name, int mode, tree exp, double value, double iw,

int count, int sourceRestart, enum rtx_code signed_code, PyObject modulo)
int continuationIndent, enum rtx_code unsigned code,
boolean adjust) rtx if false label,

rtx 1f true label)

Comment | Bug caused by incorrect argu- | Noteworthy anomaly: | Badly chosen parameter names:
ment ordering: The highlighted | if_true_label and | The method performs exponen-
arguments are not at the ex- | if_false_label are passed in | tiation of two double parame-
pected position. Triggered by | the inverse order of the method | ters. Renaming the first two pa-
our bug report, the problem | declaration. = A comment | rameters to base and exponent
has been fixed for Eclipse 3.7. | explaining this anomaly makes | would clarify their semantics.

maintaining the code easier.

Fig. 1: Examples of problems related to equally typed method arguments found in Java and C programs.

96,633) have equally typed arguments. On average, these
programs contain a call site with unchecked argument
order every 24 lines of code. As evidenced by various
entries in public issue tracking systems and source code
repositories (for example, see [1]-[4]), programmers are
susceptible to making errors related to equally typed
arguments.

In this paper, we present two automatic, mostly
language-agnostic, static program analyses to detect
problems related to equally typed method parameters.
First, we present an anomaly detection analysis that
searches for anomalies in the order of equally typed
method arguments. Second, we present a naming bug
detection analysis that searches for parameter names that
fail to guide programmers in assigning arguments to
the right position. The key observation that enables our
approach is that programmer-given names of identifiers
convey implicit semantic knowledge about arguments.
Our analyses leverage this knowledge by searching for
inconsistencies in the names given to method arguments
and method parameters. The analyses extract identifier
names from the source code of a program and compare
the names used at different call sites of a method with
each other using string similarity metrics. The anomaly
detection reports a warning if reordering equally typed
arguments at a particular call site fits the names used
at other call sites of this method significantly better. The
naming bug detection warns about methods where many
call sites agree on a naming scheme for arguments but
where the parameter names do not reflect the naming
scheme.

The problems detected by our analyses correspond to
the kinds of problems mentioned earlier. The anomaly
detection finds correctness bugs caused by accidentally
reversed arguments, such as Figure la, because the
names of these arguments often deviate from normal

naming practices. The analysis also detects noteworthy
anomalies, such as Figure 1b, where reordering the ar-
guments seems more in line with other call sites of the
method than the current argument order. Finally, both
analyses reveal badly chosen parameter names, such as
Figure 1c. We have found all examples in Figure 1 with
the automatic analyses.

The main appeal of the proposed techniques is that
they can be applied with very little effort. The analy-
ses require no input except for the source code of the
program to analyze. Instead of relying on additional in-
formation, such as formal specifications, our techniques
infer knowledge about equally typed arguments from
the source code. The output of the analyses are precise
in the sense that most of the reported anomalies are rel-
evant for developers. We consider a warning as relevant
if it corresponds to one of the three kinds of problems
illustrated in Figure 1: correctness bugs, noteworthy
anomalies, and badly chosen parameter names.

To our knowledge, there is no other technique to
automatically find problems related to equally typed
arguments. However, there exist two approaches to pre-
vent argument ordering problems. The first approach are
conventions. For example, the arguments of a method
moving data from a source to a sink are typically ordered
so that the source argument is passed before the sink
argument. Conventions can prevent argument ordering
bugs but require careful and disciplined programming.
Unfortunately, there are cases where no obvious ordering
of arguments exists, and hence, conventions are of no
use. The second approach to prevent argument ordering
problems is better support by the programming lan-
guage. Some languages, such as Smalltalk and Scala,
allow for named arguments, where callers of a method
explicitly assign arguments to method parameters. For
example, one can call setEndPoints(high=myHigh,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

low=myLow). However, named arguments are not avail-
able in all languages, and also introduce additional
boilerplate code, which may not be accepted by pro-
grammers.

We evaluate this work with 12 real-world Java pro-
grams from the DaCapo benchmarks [6] and 12 real-
world C programs from the SPEC CPU benchmarks [20].
The anomaly detection reveals 54 relevant problems,
including eleven correctness bugs; 82% of the reported
warnings are true positives. To measure how many
anomalies the analysis misses, we seed anomalies. The
analysis finds 74% of them. The naming bug detection
identifies 31 naming bugs and has a true positive rate
of 39%. Most results are comparable for Java and C,
which shows that the approach works well for multiple
languages.

This work builds upon a previously presented analy-
sis [32], which we extend, refine, and complement in the
following ways:

o We show that the approach is language agnostic by
devising and evaluating a variant of the analysis
for C, in addition to the previously presented Java
variant. The core analysis techniques are the same
for both languages and turn out to be useful for
both.

o We complement the anomaly detection with an anal-
ysis focused on naming bugs. The existing anomaly
detection also finds some naming bugs because
badly chosen names often do not allow for inferring
the correct argument order. The additional naming
bug detection finds further naming bugs that the
anomaly detection misses.

o We refine the anomaly detection in various ways to
improve both its precision, that is, how many of the
reported warnings are relevant, and its recall, that
is, how many anomalies the analysis detects. As a
result, recall improves from 38% to 74% and preci-
sion improves from 76% to 84%. That is, the refined
approach finds problems missed by the analysis
presented in [32] and reports fewer false positives.

We envision two usage scenarios for our approach.
During the development of a program, the analyses
provides an inexpensive, automated technique to find
problems related to equally typed arguments in an early
stage of development. For example, if a programmer
accidentally reverses two arguments, the anomaly detec-
tion can spot this anomaly and report a warning even
before testing the source code. Another usage scenario is
maintenance of mature and well-tested programs. While
in this scenario, we expect few bugs to be found, prob-
lems related to equally typed arguments are nevertheless
of interest, for example, to add a comment explaining
why an unusual order of arguments is correct in a
particular context or to improve badly chosen parameter
names.

In summary, this work makes the following contribu-
tions:

Ordering

Anomaly anomalies

detection

Name

. Argument
extraction & €

naming
examples

Naming bug
detection Naming

bugs

Fig. 2: Overview.

o We introduce the concept of anomalies of equally typed
arguments, that is, potential programming problems
related to the order of equally typed method argu-
ments and that affect program correctness, program
maintainability, and program understandability.

o« We present two automatic analyses to detect
anomalies of equally typed arguments based on
programmer-given names of identifiers. The anal-
yses can be easily applied to arbitrary programs
because they require no input except for source
code.

o We show that the approach is mostly language-
agnostic by applying it to Java and C programs.

o We improve recall and precision of a previously
presented analysis [32].

o We present the results of evaluating the approach
with 2.2 million lines of Java and C source code. Our
results show that relevant problems can be detected
with high precision and recall, and that relevant
problems exist even in mature programs.

2 OVERVIEW OF THE APPROACH

This paper presents two static analyses to detect ano-
malies involving equally typed method arguments. Such
anomalies often correspond to problems in the source
code that affect the program’s correctness, maintainabil-
ity, or understandability. The presented analyses are fully
automatic and require no input except for source code.

Figure 2 gives an overview of our approach. The first
step, name extraction, gathers identifier names that pro-
grammers have given to method arguments and method
parameters (Section 3). The output of this step is a list of
arqument naming examples for each method with equally
typed parameters.

The anomaly detection analysis searches for anomalies
in the order of arguments by leveraging the observation
that naming examples provide insights into the seman-
tics of arguments (Section 4). The analysis searches for
anomalies in the naming examples by computing the
similarities between names used at different positions.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

An anomaly occurs if the names of arguments deviate
from typically used names in such a way that a differ-
ent argument order than the order in the source code
seems appropriate. The output of the anomaly detection
are warnings about suspicious call sites, each coming
with a proposal how to reorder arguments to avoid the
anomaly.

The naming bug detection analyzes naming examples
to find naming bugs, that is, parameter names that fail
to help developers in ordering equally typed method
arguments correctly (Section 5). The key idea of this
analysis is to search for methods where many call sites
agree on a particular naming scheme but where the
parameter names do not reflect this naming scheme. The
output of the naming bug detection is a list of methods
that are likely to have inappropriate parameter names.

The approach shown in Figure 2 can be viewed as
a front end and two back ends. While the front end,
which extracts naming examples from source code, is
language-dependent, the back ends, which search for
anomalies and naming bugs, are language-independent.
A benefit of this separation is that one can easily adapt
our approach to different programming languages. In
this paper, we present front ends for Java and C.

3 NAME EXTRACTION

The goal of the name extraction step of our approach
is to gather as many examples as possible that show
how programmers name the arguments passed to a
method. We extract these examples from source code by
analyzing method call sites and method declarations. As
this work focuses on problems related to equally typed
arguments, only methods with multiple parameters of
the same type are considered.

The analysis traverses the abstract syntax tree and
extracts from each method call site two kinds of informa-
tion: the signature of the called method and the names
of the arguments passed to the method. The part of the
analysis that extracts names from arguments is language-
specific. In each language, different kinds of expressions
can be passed as arguments. In the following, we present
name extraction techniques for Java and C. We begin
with kinds of argument expressions supported by both
Java and C, and afterwards discuss language-specific
argument expressions.

3.1
3.1.1 Java and C Language

Extracting Names from Source Code

The analysis extracts names from the following expres-
sions:

o Identifiers (for example, local variables): The name
of an identifier is simply the identifier itself.

o Array accesses: The name of an array access is the
name of the array expression, that is, ignoring the
index expression.

o Casts: The name of a cast expression is the name of
the casted expression, ignoring the type to which it
is cast.

3.1.2 Java Language

Our analysis extracts names from the following Java-
specific argument expressions:

o Field accesses: The name of a field access is the
name of the accessed field, ignoring the underly-
ing expression on which the field is accessed. This
includes fields of this and super fields.

e Method call sites (with return value passed as an
argument): The name of a method call site is the
name of the called method, ignoring the underlying
expression that yields the method receiver. In Java,
getter methods are a common naming practice. As
the get prefix does not convey any semantics rele-
vant for our approach, we remove this prefix from
all method names starting with get.

For instance, the following Java method call sites
provide three naming examples:

setEndPoints (x.highEP[i1], lowEP) ; // (highEP, 10WwEP)
setEndPoints (obj.h, getLow()); // (h, Low)
setEndPoints (getHighs() [5], (int) low) // (Highs, low)

The analysis currently does not consider equally typed
arguments passed as Java varargs.

3.1.3 C Language

For C programs, the analysis extracts the following
names in the addition to those described in Section 3.1.1:

o Access to members of structs and unions: The name
of a member access is the name of the accessed
member, ignoring the underlying expression on
which the member is accessed.

o Address-of operators: The name of an expression of
the form &x is the name of x.

o Dereference operators: The name of an expression
of the form «x is the name of x.

o Method call sites: The name of a method call site
is the name of the called method, ignoring the
underlying expression that yields the receiver.

For example, consider the following C method call
sites and the extracted naming examples:

setEndPoints (h, low[3]); // (h,1ow)
setEndPoints(foo->high, &low); // (high, low)
setEndPoints (xhighPtr, £().low()); // (highPtr, low)

3.1.4 Unnamed Arguments

The analysis ignores arguments given via expressions
that have no names, such as literals, or ambiguous
names, such as mathematical expressions. For example,
the analysis ignores the following call site:

int total, current;
m(5, total — current);

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

3.2 Creating Naming Examples

Besides call sites of methods, there is another source
of information about the names of method arguments.
Formal parameter names given in the declaration of a
method are often similar to the names used at call sites.
Therefore, we analyze all method declarations in a pro-
gram and use formal parameter names as an additional
example of how arguments are named. For example, the
following method declaration gives a naming example:

void setEndPoints(int high, int low) {..} // (high, low)

The analysis groups naming examples so that all ex-
amples for the same method signature and for the same
argument type are in one group. Grouping by method
signature is useful because the argument names of one
method are independent of the argument names of other
methods. Overloaded methods are treated as different
methods because one cannot easily map their parameters
to each other. For instance, the following two variants
of m() are treated as two methods because the analysis
cannot map a and b to x, y, and z:

void m(int a, int b) {..}
void m(int x, int y, int z) {..}

Grouping by argument type is required because some
methods expect equally typed parameters of multiple
types. For instance, the following method expects two
int parameters and two String parameters:

void m(int length, int offset,
String name, String msg) {..}

In this case, we analyze naming examples for m()’s
int arguments separately from naming examples for
m()’s String arguments.

In summary, the naming examples extracted by the
first step of our analysis are defined as follows:

Definition: Argument naming examples
The argument naming examples of a method
m() and a type T consist of the set
{N¢;s .-y Nep.s Naeer }, where
e Ne,,..,Ng, are the tuples of names given to
the arguments of type T at call sites ¢; to ¢
of m(), and
o Ngec is the tuple of names given to the
formal parameters of type T in m()’s dec-
laration.

4 ANOMALY DETECTION

The anomaly detection leverages the extracted argument
naming examples to search for anomalies in the or-
der in which arguments are passed to a method. An
anomaly is a call site of a method where arguments
of the same type are named in a way that suggests a
different order than the order in the source code. For
instance, Figure 3a shows a list of naming examples for
setEndPoints ()’s int arguments. We refer to naming
examples with N, Ny etc. Example N5 is an anomaly
because the first argument name, 1ow, is similar to names

used at the second position, while the second argument
name, high, is similar to names used at the first position.
Our analysis detects such anomalies and proposes a
way to avoid them (here, by reversing the arguments
of example Nj).

To avoid overwhelming a user of our analysis with
irrelevant reports, it is important to not report every
unusual argument name as an anomaly. Our analysis
reports an anomaly only if changing the order of argu-
ments makes the arguments significantly more similar to
other arguments used in their respective position then
using the current order. For instance, example N, is not
an anomaly, although the name of the first argument is
dissimilar to the other names of arguments used at the
first position. The reason is that the second argument
name of example N is similar to other names at the
second position; therefore, changing the argument order
would not increase the overall fit of Ny to the other
naming examples.

The key idea of our analysis is that argument names
used at different call sites of a method are often similar
to each other. We exploit this observation to detect
anomalies by comparing argument names using a string
similarity metric. Such a metric returns for each pair of
strings a value in the range between zero (dissimilar) and
one (very similar or equal). For each argument naming
example, we compute the similarity of a name used
at a particular position with other names used at this
position and with other names used at other positions. If
a permutation of the current argument order makes the
names of an example significantly more similar to the
other examples than the current order, then the analysis
reports an anomaly.

An alternative to using string similarity is to check
whether names are equal. However, slight variations of
an argument name, such as high and highkp, would
make two arguments seem different although they
clearly mean the same. A string similarity metric allows
for quantifying the similarity of names, and thus, to also
consider variations of names.

4.1 Algorithm

Algorithm 1 outlines our approach for detecting ano-
malies. The algorithm takes a list of argument naming
examples as input and outputs a set of warnings that
each consist of a proposed permutation and a confidence
value. The algorithm iterates over all examples, and for
each example, goes through all possible permutations
of the example’s names. The core of the algorithm are
lines 6 to 18. Here, it computes a score, permScore,orm,
that indicates how “normal” the argument names are
with a permutation P. That is, the score expresses how
similar the reordered names are to other names found at
their respective positions. If a permutation of the current
argument order has a score that is significantly higher
than the score currentScore of the current argument
order, then the analysis reports an anomaly and proposes
to reorder the arguments according to the permutation.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Algorithm 1 Anomaly detection based on string distance
between argument names.

Input: Argument naming examples N
Output: Warnings WV, each being a pair of a permutation
that resolves an anomaly and a confidence value
1: for all N € NV do

2: currentScore < 0.0

3: bestScore <+ 0.0

4: Pyeg + current permutation

5. for all P € permutations(N) do

6: permScore < 0

7: for all n € N do

8: posScore < 0

9: forallie {1,...,|N|} do

10: if (n,i) € P then

11: posScore < posScore + scoreqssign (N, 1)
12: else

13: posScore < posScore — scoreqssign (N, 1)
14: end if

15: end for

16: posScorenorm < (posScore + |N| —1)/|N]|
17: permScore < permScore + posScore,orm

18: end for

19: permScore,orm < permScore/|N|
20: if isCurrent(P) then

21: currentScore < permScore,orm
22: end if

23: if permScore, orm > bestScore then
24: bestScore < permScore,orm

25: Ppest = P

26: end if

27: end for

28: conf < bestScore — currentScore
29: if conf >t then

30: W = WU {(Prest,conf)}

31: end if

32: end for

Permutations

We represent a permutation as a set of assignments of
argument names to a position:

P C Nx{1,...,|NJ}
= {(n,i) | P assigns name n to position i}

For example, the naming example N5 as shown in Fig-
ure 3a is represented as:

{(low, 1), (high,2)}

Inverting the two arguments is represented as:

{(low,2), (high, 1)}

Permutation score

We compute a score permScore for each permutation.
This score is the sum of scores for each argument po-
sition. For example, the score for a permutation of two

arguments is the sum of a score for the first position
and a score for the second position. Since the permu-
tation score depends on the number of equally typed
arguments, we normalize it into the range [0, 1] (line 19).

Position score

The score posScore for a position depends on a score
scoregssign(n, i) that indicates how well a name n fits
position i. The posScore for a position ¢ is the score
for assigning the name to the position proposed by the
permutation minus the sum of scores for all assignments
of this name to other positions. That is, the assignments
of a permutation influence its score positively (line 11),
while all other possible assignments influence its score
negatively (line 13).

Including positive and negative scores for assignments
into the overall score of a position makes the algorithm
more robust to cases where an argument seems to fit
multiple positions. In this case, our algorithm cannot
choose a single position as the most suitable, and com-
puting a high score for any position would be mislead-
ing. If a permutation includes highly ranked assignments
but also rejects other highly ranked assignments, the
overall score includes high positive and high negative
assignment scores that compensate for each other. Thus,
the overall score expresses the uncertainty resulting from
multiple apparently suitable permutations.

Similar to the permutation score, the position score
depends on the number of equally typed arguments and
therefore is normalized into the range [0,1] (line 16).

Assignment score

The score scoregssign(n,t) for assigning an argument
name n to a position ¢ indicates how well a name n
fits position i. To compute scoreqssign, We combine the
string similarity between n and all other names in the
naming examples of the method. At first, we compute
the average similarity simil} of n to the arguments used
elsewhere at position i

simal? = Avg({simil(n,n’) |
n’ is argument at position i in others examples})

Then, we compute the average similarity simil}),; .,

of n to arguments used in other examples at positions
other than i:

stmillyp e = Avg({simil(n,n’) |

n’ is argument at position j # i in other examples})

Finally, we combine both intermediate values into the
result:

5COT€qssign (N, 1) = max (0, simil}? — simillly,.,..)

Subtracting simill,, ... from simil}? is important to
adjust the result of simil!' to the degree to which all
arguments passed to the method resemble each other.
The argument names of some methods vary a lot and

one cannot infer any useful information from them. To

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

e
o 8 &
® B 0§ : %
Ex. Pos. 1 Pos. 2 s = « 2 2 4
Ni high low high 1 0710 0 O O
Nz h Low highEP|0.71 1 0 0 060 0
N3 high low h 0 01 0 0 O
N4 highEP lowEP low 0 0 0 1 053 1
N5 low high lowEP | 0 060 0 0.53 1 0.53
Low 0 0 0 1 053 1
(a) Arguments. (b) String similarities.
scoreqssign(low, 1) = max(0,0 — 0.85) = 0
scoreqssign(low,2) = max(0,0.85 — 0) = 0.85
sCoT€qassign(high, 1) = maz(0,0.62 — 0) = 0.62
scoreqssign(high,2) = maz(0,0 — 0.62) = 0

permScore,orm of {high — 1,low — 2}
0.85-042-1 | 0.62-0+2-1

2 2
= = 0.87
2

permScorenorm of {low — 1, high — 2}
0-0.85+2-1 | 0-0.6242-1

2 2
2

conf of {high+— 1,low — 2} = 0.87 — 0.13 = 0.74

(c) Score computation for example Ns.

Fig. 3: Examples of anomaly detection.

deal with such cases, we subtract simil’,, ..., which can
be thought of as a measure for noise, from simil}. As
a result, the score for assigning n to i is normalized to
the amount of knowledge we can infer from the given
names, and thus, is higher if we have more confidence
in the result.

Best versus current permutation

The last step of Algorithm 1 is to select permutations for
which the analysis is confident that they make the order
of arguments more “normal” than the current order.
While computing scores for permutations of a naming
example, the algorithm stores the score of the current
permutation into currentScore and the maximum score
over all permutation into bestScore. If the best score is at
least ¢ larger than the current score, then the algorithm
adds a warning to the set WV of reported warning. The
warning proposes the permutation P.s;, which has the
best score among all permutations. We discuss how to
set the threshold ¢ in Section 7.1.4.

The output of the algorithm a set of warnings. Each
warning consists of a permutations that avoids an ano-
maly and a confidence value that indicates how confi-
dent the analysis is that the warning should be reported.

4.2 Example

Figure 3 illustrates the anomaly detection technique with
an example. Figure 3a shows five naming examples

for the method setEndPoints (). Suppose that N; has
been extracted from the declaration of setEndPoints ()
and that Nj,..., N5 are gathered from call sites of the
method. The algorithm traverses these naming examples
and analyzes each permutation of the given argument
names, that is, five permutations that each reverse the
first and second argument of an example.

We compute the string similarities between all in-
volved argument names (Figure 3b). Different string
similarity metrics provide different results here. The
shown numbers are computed with the TFIDF metric.
We discuss and compare several metrics in Section 7.1.4.

The argument names of example N; deviate from
the other naming examples. Their names suggest to
reverse the arguments, that is, to order them according to
the permutation {(high, 1), (low, 2)}. Figure 3c illustrates
how our algorithm computes the scores that indicate
how “normal” this permutation and the current permu-
tation are. The computation combines scores for each
assignment of the permutation. For example, assigning
low to position 2 has a score of scoregssign (low,2) = 0.85,
because simily’” = 0.85 and simil'3¥,, . = 0. The overall
score for the permutation is 0.87, whereas the score for
the current permutation is 0.13. That is, the confidence
for inverting the arguments of Nj is 0.74. Because the
confidence is greater than our default threshold ¢ = 0.4,
the analysis reports a warning about N5 and suggests to
invert the two arguments.

4.3 Refinements

The anomaly detection presented in Algorithm 1 can be
used as described so far and we show in previous work
that it can effectively detect anomalies that point to real
problems [32]. In the following, we describe several re-
finements of the approach that allow for detecting more
anomalies while reporting less false positives. Some of
the refinements depend on configurable parameters; we
evaluate the sensitivity of the analysis to these parame-
ters in Section 7.1.4.

Example families

The anomaly detection described so far analyses all
naming examples of a method together. Often, there are
multiple common naming schemes for arguments of a
method and analyzing them separately exposes more
about the semantics of arguments than analyzing all to-
gether. For example, Figure 4a lists naming examples for
String.substring(int, int). ObViOuSly (for a human),
the last example is an anomaly that the analysis should
report. However, some naming examples use a “start”-
“end” naming scheme, whereas others use a “first”-
“last” naming scheme. If the anomaly detection analyzes
all naming examples together, it may miss the anomaly
because permuting end and start does not have enough
confidence.

We refine the approach presented so far by applying
the anomaly detection to subsets of all naming examples.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

The subsets are chosen in such a way that they contain
examples with similar names, that is, examples that are
likely to use the same naming scheme. We call such
subsets of naming examples example families.

Our algorithm for creating example families depends
on a similarity measure for naming examples. Naming
examples are similar to each other if their sets of ar-
gument names are similar. To compute the similarity
of naming examples, we extend the string similarity
measure to sets of strings as follows. Given two sets
of strings S; and S», we find the pairwise mapping
between strings from &; and S; where the average
similarity between pairs is maximal and then report this
similarity. For example, given S; = {start,end} and
Sy = {startPos,endPos}, we find that start — startPos
and end — endPos gives a similarity of 48%, whereas
start — endPos and end — startPos gives a similarity
of 0%. Thus, the similarity of S; and Sy is 48%.

Based on the similarity measure for naming examples,
we compute example families for each naming example
observed for a method. For a particular naming example
N, we perform two steps. At first, we compute the
similarity of N to the other naming examples of the
method. Then, we create example families that contain
N and that fulfill two conditions. First, all naming ex-
amples in a family must have a similarity to N below
some coherence value. Our implementation considers ten
coherence levels (10%, 20%, ..., 100%), that is, we try to
create families with 10% coherence, 20% coherence, etc.
The rationale for trying different coherence levels is that
there is no level that works best for all programs. Second,
the number of naming examples in the family must be
above a configurable threshold, which we discuss in
Section 7.1.4.

For the naming examples in Table 4a, the algorithm
creates four families for the last call site in the table.
These families are listed in Figure 4b. The first family
contains only naming examples with exactly the same
argument names as the last call site. The other families
gradually add more and more call sites and the fourth
family contains all naming examples.

The refined anomaly detection checks whether a nam-
ing example is an anomaly by analyzing each example
family separately. If the analysis finds an anomaly for
any of the families, then the anomaly is reported. This
refined approach increases the recall of our approach
compared to the approach described in [32] because the
anomaly detection now detects anomalies that are obvi-
ous when analyzing a subset of all naming examples but
that previously have been hidden among other naming
examples.

Subsets of all parameters

The approach described so far considers all parameters
of equal type at once. For methods with many equally
typed parameters, this approach leads to two problems.
First, an anomaly that involves only a subset of all pa-
rameters may be hidden within the other parameters. For

example, consider a method with seven equally typed
parameters and a call site of the method from which
we extract the naming example a, b, c,d, £, e, g, where
f and e should be inverted. If the anomaly detection
considers all seven parameters, the anomaly may remain
unnoticed because the difference between the scores for
a,b,c,d,f,e,gand a, b, c,d, e, £, g is below the thresh-
old. In contrast, analyzing only £, e and e, £ may reveal
the anomaly. Second, the number of permutations of
naming examples of methods with many parameters is
a scalability problem: Each naming example of a method
with k parameters has k! permutations.

To address these two problems, we refine our ap-
proach by considering subsets of all equally typed pa-
rameters of a method. Instead of analyzing all param-
eters at once, the refined analysis considers all subsets
with at least two parameters and at most four parame-
ters.? For each such subset, we run the anomaly detection
separately. If for any of the subsets the analysis detects an
anomaly for a call site, then this anomaly is reported to
the user. If the analysis finds multiple anomalies for the
same call site and argument type, then only the anomaly
with the highest confidence is reported.

Considering subsets of all parameters addresses the
problem described above. First, the refined analysis
discovers anomalies that otherwise would be hidden
among other parameters. For the example above, the
refined analysis may report that £ and e should be
inverted because it analyzes these two arguments with-
out considering the other parameters of the method.
Second, the refined analysis improves the scalability of
the approach for methods with many equally typed
parameters. Instead of considering k! permutations, it
considers only 2! (5) +3!- (5) +4!- (%) permutations. For
example, for k£ = 10, the refinement reduces the number
of permutations to consider from 3,628,800 to 5,850.

Higher weight for parameter names

Parameter names should guide a developer that calls a
method in assigning arguments to the correct position.
To achieve this goal, parameter names often have de-
scriptive names that convey valuable information about
the semantics of the expected arguments. We found that
parameter names often have more meaningful names
than argument names and therefore give naming ex-
amples extracted from parameters a higher weight than
naming examples extracted from arguments. Our default
configuration (discussed in Section 7.1.4) considers pa-
rameters to be five times as important as arguments.

Method filtering

The approach presented so far considers all methods
with equally typed arguments. However, some methods
implement commutative operations, that is, any order of

2. We choose the upper bound four as a pragmatic compromise
between ensuring scalability and detecting anomalies that involve
more than two arguments.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

All examples Coherence: 100%

Coherence: 40%

Coherence: 20% Coherence: 0%

Position 1 Position 2 Position 1 Position 2 Position 1 Position 2 Position 1 Position 2 Position 1 Position 2
start end start end start end start end start end
startindex endIndex start end startindex endIndex startindex endIndex startindex endIndex
first last start end start end start end first last

start end end start start end startPos lastPos start end
startPos lastPos end start start end startPos lastPos
start end end start start end

first last first last

first last first last

end start end start

(a) Naming examples.

(b) Example families for the naming example that is printed in italics in Figure 4a.

Fig. 4: Example families.

arguments gives the same results. Reporting an anomaly
for such a method is certainly a false positive and the
analysis should not consider such methods. We observed
that many methods that implement commutative op-
erations have generic or single character parameters
names, such as op0, op1, op2 or a, b. The refined analysis
heuristically checks for methods with such parameter
names and automatically excludes them from the analy-
sis. Being a heuristic, this refinement may accidentally
remove methods that do not implement commutative
operations. However, we find this risk to be outweighed
by the increase in precision that the analysis achieves by
filtering methods.

Filtering contradicting warnings

Some of the warnings found by Algorithm 1 may con-
tradict each other. For example, consider two call sites
m(a,b) and m(b,a) that refer to the same method m.
When inspecting m (a, b) the analysis finds that changing
the arguments to m (b, a) makes the call site more similar
to all other call sites (only one in this example), and
the other way around for m(b,a). In general, if the
analysis reports a warning for two call sites, where
each warning proposes to invert the arguments, then
at least one of the warnings is a false positive. We call
such warnings contradicting warnings and remove them
from the list of reported warnings. The revised analysis
removes two warnings if there is a naming example N,
with a warning that proposes P; and a naming example
N, with a warning that proposes P», where P; gives N
and P gives Nj.

This refinement is motivated by false positives re-
ported when the analysis runs with a low threshold for
anomalies (threshold ¢ in Algorithm 1). In its default
configuration (discussed in Section 7.1.4), the analysis
does not report any contradicting warnings during our
experiments. That is, filtering contradicting warnings
increases the precision when the analysis is configured
to report many anomalies, but it does not affect its
effectiveness in the default configuration.

5 NAMING BuG DETECTION

Meaningful parameter names for equally typed parame-
ters are crucial for two reasons. First, they help to avoid
correctness problems caused by arguments passed in the
wrong order. Second, they help a programmer that calls
a method to quickly find the order in which to pass
arguments, that is, they help to reduce development
time. Unfortunately, not all methods with equally typed
arguments have meaningful parameter names that allow
programmers to assign arguments to their position. How
can we find parameter names that fail to help program-
mers?

In the following, we present an analysis that takes
argument naming examples and reports warnings about
badly chosen parameter names. The key idea is to
leverage the names of arguments passed to a method
at different call sites and to find methods where many
arguments agree on a particular naming scheme, but
where the parameter names do not reflect it.

Algorithm 2 describes our approach to detect badly
chosen parameter names. The input are a list of pa-
rameter names for parameters of equal type and a set
of naming examples from call sites of the method. The
algorithm produces a set of positions of parameters that
appear to have badly chosen names. This set is either
empty, that is, no badly chosen names are reported, or
it contains at least two positions. The reason for not
reporting a set of size one is that a single badly named
parameter is not a problem because a programmer
should be able to figure out the right order of arguments
from the other names.

At first, the algorithm checks whether there are at least
minCallSites naming examples to analyze. If so, then
the algorithm performs two main steps. First, it searches
for positions Peonerent Where the argument names are
coherent with each other, that is, where programmers
use similar argument names at different call sites. To find
coherent arguments, coherence() computes the average
pairwise similarity of all arguments passed at a partic-
ular position. If the average coherence value is below
a threshold minCoherence, then the algorithm discards
this position. If there are at least two positions with

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Algorithm 2 Naming bug detection.

Input: Argument naming examples N, from call sites
and a naming example Npqrqm from parameters
Output: Positions P of parameter names that appear to

be badly chosen
P10
2: if |Nyrg| > minCallSites then

3 Pcoherent — (Z)

4 forall pe{l,...,|Npgram|} do

5: if coherence(Nyyq,p) > minCoherence then

6: Peonerent < Peonerent U {p}

7: end if

8: end for

9: if |Peonerent| > 2 then

10: Pdissimil < (Z)

11: for all p € P.operent do

12: if avgSimil(Ngrg,p) < maxArgParamSimil
then

13: Paissimit < Pdissimir U {p}

14: end if

15: end for

16: if |,sz'ssimil‘ > 2 then

17: P+ Pdissimil

18: end if

19: end if

20: end if

coherent arguments, the algorithm continues with the
second step. In the second step, the algorithm computes
for each coherent position how similar the argument
names observed at this position are to the position’s
parameter name. If the average similarity, computed by
avgSimil(), is below a threshold maxArgParamSimil,
then the position is added to the set Pgissimi of posi-
tions with parameter names that are dissimilar from the
arguments names. Finally, the algorithm checks whether
there are at least two positions in Pyjssimi and if so,
reports the parameters of these positions as being badly
named.

The key idea of the algorithm is to find methods
where many arguments agree on a particular naming
scheme (first step), but where the parameter names do
not reflect it (second step). Without the first step, the
algorithm finds many methods where the observed ar-
gument names differ from the parameter names. For ex-
ample, this situation often occurs for methods of general-
purpose classes, such as Map.put (Object, Object), be-
cause the arguments given to such methods typically
have domain-specific names. By checking whether the
argument names for a position are coherent in the
first step, the algorithm avoids reporting false positives
caused by methods of general-purpose classes.

6 IMPLEMENTATION

We implement the approach described in Sections 2 to 5
for Java and C. The language-dependent front ends are

10

built upon Eclipse Java Development Tools (JDT) and
Eclipse C/C++ Development Tooling (CDT). The Eclipse
framework provides us with an AST and statically re-
solves the methods at call sites. The two front ends are
independent of the language-agnostic implementation of
the analyses for finding anomalies and naming bugs.
Therefore, extending our implementation to other pro-
gramming languages is straightforward.

We optimize the implementation of Algorithm 1 by
leveraging the fact that different call sites often give the
same naming examples. For example, consider two call
sites m(x,y) and m(x,y) that both pass local variables
with the same names. Instead of running the anomaly
detection twice, we run the anomaly detection once for
each set of equal examples.

To compute the similarity of strings, we build upon
existing implementations of string distance metrics [10].
These metrics are not designed for identifier names in
programs and do not take into account the idiosyncrasies
of these names. Some of the metrics, in particular the
metric that we found to be most successful, rely on a
tokenizer that splits a given string into tokens. The out
of the box tokenizer does not consider camel case, which
is a very common way to concatenate words in identifier
names, in particular, in Java programs. We adapt the
tokenizer to consider camel case.

Our implementation is available for download at:

http:/ /mp.binaervarianz.de/argument_analyzer

7 EVALUATION

The following section reports the results of evaluating
our analyses with real-world Java and C programs. We
address the following main questions:

o How effective is the anomaly detection? The analysis
finds 31 anomalies in the Java programs, out of
which 26 (84%) are relevant problems. For the C
programs, the analysis find 35 anomalies, out of
which 28 (80%) are relevant. To measure recall, we
automatically seed bugs and our analysis finds 74%
of them.

o How sensitive are the results to parameters of our anal-
ysis, such as the threshold for anomalies? We perform
a sensitivity analysis of five parameters and discuss
our default configuration.

o How effective is the naming bug detection? The analysis
finds 31 naming bugs with a precision of 41% for
Java programs and 37% for C programs.

o Do the analyses scale to large programs? Analyzing
2.2 MSLOC of Java and C code takes about seven
minutes. The time required for a program correlates
strongly with the number of method call sites in the
program.

We use the Java and C programs provided by the
DaCapo benchmark suite (version 9.12) [6] and by the
SPEC CPU2006 benchmark suite [20]. There are twelve

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

11

TABLE 1: Programs used for the evaluation and results from the anomaly detection and the naming bug detection
(ETA=equally typed arguments; NETA=named, equally typed arguments; W.=warnings; Corr.=correctness bugs;

Nw.=noteworthy anomalies; Nam.=Naming bugs).

Program SLOC Call sites Anomaly Detection Naming Bug Detection
Total ETA NETA | W. Corr. Nw. Nam. Prec. (%) Recall (%) | W. Nam. Prec. (%)

Java Avrora 69,393 20,276 3,179 878 | 0 0 0 0 - 734 | 2 1 50.0
Batik 186,460 47,655 6,127 2,694 | 7 0 5 2 100.0 734 | 8 5 62.5
DayTrader 12,325 4,613 311 103 0 0 0 0 - 806 | 0 0 -
Eclipse 289,641 280,289 26,097 13,595 | 12 1 9 1 91.7 742 | 6 0 0
FOP 102,909 32,806 2,796 1,266 | 0 0 0 0 - 758 | 4 2 50.0
H2 120,821 53,221 5210 1,607 | 0 0 0 0 - 715 | 4 0 0.0
Jython 245,016 85729 15785 2,480 | 11 1 3 4 727 704 | 2 1 50.0
Lucene 124,105 41,092 5667 1422 | 1 0 0 0 0.0 608 | 8 6 75.0
PMD 60,062 21,394 2,601 507 | 0O 0 0 0 - 537 | 1 0 0.0
Sunflow 21,970 8,139 1,200 537 | O 0 0 0 - 693 | 2 1 50.0
Tomcat 161,131 54462 4974 1482 | 0 0 0 0 - 818 | 1 0 0.0
Xalan 172,300 33,828 3,663 1,650 | O 0 0 0 - 755 | 1 1 33.3
All 1,566,133 683,504 77,610 28,221 | 31 2 17 7 83.9 717 | 41 17 415
C bzip2 5,731 762 110 52| 0 0 0 0 - 863 | 1 0 0.0
gce 235,884 54,343 14,027 9988 | 16 0 10 0 62.5 64.1 | 20 6 30.0
gobmk 157,649 10,146 4,551 1,505 | 17 8 5 4 100.0 803 | 6 3 50.0
h264ref 36,098 3,815 791 319 | 0 0 0 0 - 810 | 1 1 100.0
hmmer 20,658 4,154 758 299 | 0O 0 0 0 - 701 | 0 0 -
Ibm 904 78 9 210 0 0 0 - 100.0 | O 0 -
libquantum 2,606 557 176 781 0 0 0 0 - 62.7 | 2 0 0.0
mcf 1,574 80 20 1] 0 0 0 0 - 846 | 0 0 -
milc 9,575 1,589 524 2711 0 0 0 0 - 774 | 4 2 50.0
perlbench 126,266 16,791 2,672 1,027 | 1 0 0 0 0.0 592 | 2 1 50.0
sjeng 10,544 1,366 374 77| 0 0 0 0 - 766 | 0 0 -
sphinx3 13,128 2,952 1,207 169 | 1 1 0 0 100.0 786 | 2 1 50.0
All 620,617 96,633 25219 13,794 | 35 9 15 4 80.0 76.7 | 38 14 36.8

Java programs and twelve C programs.® Table 1 lists
these programs along with their number of source lines
of code (SLOC). In total, the programs sum up to 2.2
million SLOC. Table 1 shows the total number of call
sites, the number of call sites with equally typed argu-
ments (ETA), and the number of call sites with named,
equally typed arguments (NETA). In total, 102,829 call
sites have equally typed arguments. Our analysis can
extract names from 42,015 of these call sites.

7.1 Anomaly Detection

We evaluate the anomaly detection in three ways. First,
we apply the analysis to the programs from Table 1
as they are shipped with the benchmark suites (Sec-
tion 7.1.1). This experiment allows us to measure the
precision of the analysis and shows what kinds of ano-
malies the analysis detects in mature and well-tested
programs. Second, we automatically seed anomalies into
the programs by changing the order of equally typed
arguments (Section 7.1.2). This experiment allows us to
measure the recall of the analysis (Section 7.1.3). Finally,
we measure the sensitivity of the analysis to configu-
ration parameters and discuss our default configuration
(Section 7.1.4).

3. There are twelve Java programs even though there are 14 DaCapo
benchmarks: DayTrader is part of the tradebeans and the tradesoap
benchmarks; Lucene is part of the luindex and lusearch benchmarks.
We omit the SPEC CPU specrand programs because they have only 49
SLOC each.

7.1.1 Anomalies in Mature Programs

We apply the anomaly detection to the programs listed
in Table 1. As these programs are mature and well-
tested, we do not expect to find any serious errors related
to equally typed arguments. Such errors are likely to
change the behavior of a program, and therefore, are
typically found at some point while using the program.
Nevertheless, our analysis can detect relevant anomalies
that are worth the attention of programmers or main-
tainers, for example, to add a comment explaining an
unusual piece of source code. Table 1 summarizes the
results.

For the Java programs, our analysis reports 31 anoma-
lies. We manually inspect these anomalies and classify
them as follows:

o Contrary to our expectations, two anomalies are
bugs affecting the program’s correctness. Figure la
shows the relevant source code fragments of one
bug. The buggy class contains a set of public, over-
loaded methods that call each other and that pass
multiple int arguments. There is an anomaly be-
cause the programmer passes the arguments in the
wrong order at one call site. We were surprised to
find such a bug and reported it to the Eclipse devel-
opers, who fixed it immediately (see bug 333487 in
the Eclipse bug tracking system). The other Java bug
found by the analysis is in test code of Jython. The
programmer calls assertEquals (), which takes the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

actual and the expected result of some computation,
and reports a warning if they are not equal. The
programmer accidentally passes the expected result
first, which will lead to an incorrect output if the
test fails.

o 17 anomalies can be classified as noteworthy and
should be considered by the developers to im-
prove the program’s maintainability. These anoma-
lies show unusual argument orders that seem in-
correct but are intended in their specific context. For
example, Eclipse has a method resetTo (int begin,
int end) with a call site that passes arguments
called end and length, which raises the question
whether the arguments are ordered correctly. A
closer look at the code reveals that the argument
order is correct at this particular call site because
the variable end is the index to start with. One
can improve the maintainability of such source code
by adding a comment explaining why a seemingly
incorrect argument order is required in a particular
situation, or by renaming the argument.

o Seven anomalies can be classified as naming
bugs [21]. In these cases, the programmers chose
parameter names that do not clarify the expected
order of arguments. As identifier names are crucial
for equally typed arguments, fixing these naming
bugs would improve the understandability of the
program. Figure 1c shows an example of a naming
bug in a method computing exponentiation. The
names of the two double parameters, value and iw,
do not reveal which of the parameters refers to the
base and which to the exponent. Of course, deciding
about the quality of an identifier name is difficult
and to some extent a matter of taste. We therefore
classify only anomalies with obviously misleading
names as naming bugs and count debatable cases
as false positives.

o Finally, five anomalies are false positives. They pro-
vide no insight to a developer and, ideally, would
not be reported. Most of the false positives are due
to names that are similar to each other, such as
two arguments called firstName, name where the
parameter names are name, outerFullName. Since
the analysis is based on heuristics and programmer-
given identifier names, we cannot avoid false posi-
tives entirely.

For the C programs, the analysis reports 35 anomalies,
which we classify as follows:

o Contrary to our expectations, nine of the anomalies
are correctness bugs. Several of them involve a
method gnugo_estimate_score (float =*upper,
float lower) from gobmk. For example, one call
site for which the analysis reports a warning
is gnugo_estimate_score (&lower_bound,
supper_bound). This call site is incorrect and
has been fixed in a later version of the analyzed
program. Another correctness bug is for method

12

1lm_read_ctl in sphinx3. The method takes nine
parameters and three of them have type floaté4.
Two of the float64 parameters are called wip
(“word insertion penalty”) and uw (“unigram
weight”). The method has exactly one call site,
where the arguments for these two parameters
are called uw and inspen, that is, they are clearly
passed in the incorrect order. This bug has been
fixed in a more recent version of sphinx3.

o 15 anomalies are noteworthy. For example, Figure 1b
is a noteworthy anomaly from gcc, where two lo-
cal variables if false_label and if_true_label
are passed as arguments. The arguments are or-
dered in such a way that if_false_label is bound
to the formal parameter if_ true_label, while
if_true_label is bound to the formal parameter
if false_label. Documenting this anomaly would
improve the maintainability of the code, because the
natural question whether the arguments are ordered
correctly does not arise.

o Four anomalies are naming bugs. For example, the
add_attack_move () method of gobmk expects two
int parameters that both represent positions. Un-
fortunately, the parameters are called ww and pos,
making it difficult for a programmer that calls this
method to distinguish the two kinds of positions.

o Seven warnings turn out to be false positives. Simi-
lar to the false positives found in the Java programs,
most of them are caused by argument names that
are similar to each other.

In summary, 54 of 66 reported anomalies (82%) point
to problems that affect the program’s correctness, under-
standability, or maintainability. Given that the analysis
requires no input except for source code, this rate is
quite satisfactory. Existing anomaly detection techniques,
which search for other kinds of anomalies, often ob-
tain lower true positive rates, for example, 29% [37],
37.5% [29], 38% [35], and 70% [21]. For a fair comparison,
we use the same procedure to obtain these numbers for
each work: at first, accumulate results from all programs
analyzed in the respective work, and then, compute the
overall true positive rate.

7.1.2 Automated Evaluation Technique

Measuring the recall of the anomaly detection is chal-
lenging because the set of all relevant anomalies in real-
world programs is unknown. To estimate the recall, we
seed anomalies in programs that are assumed to be free
of problems related to equally typed arguments. By seed-
ing anomalies, we know by construction where relevant
anomalies reside, so that the evaluation is not biased
by a human deciding whether a reported anomaly is
relevant. This automated technique allows us to evaluate
our analysis on a large scale and in an objective way.
To seed an anomaly, we take a method call site with
equally typed arguments and change the order of these
arguments. We then assess whether the analysis detects
the seeded anomaly. We seed one anomaly after the other

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

and run the analysis each time on the entire program.
That is, we analyze a program having a single relevant
anomaly and assess whether our analysis finds it. The
recall for a single seeded anomaly is:

if the seeded anomaly is found

recall = 4
ecall = 0 otherwise

The overall recall for the program is the mean value over
all seeded anomalies. A similar evaluation technique has
been used by others [28].

To make the results of the automated evaluation tech-
nique more meaningful and to ensure the technique’s
feasibility, we refine the described approach. First, we
adapt the assumption that all analyzed programs are
free of relevant anomalies by taking into account the
known true positives described in Section 7.1.1. Since we
know that these call sites expose relevant anomalies, we
ignore them during the automated evaluation. Second,
we ignore call sites of methods with five or more equally
typed arguments for performance reasons. For a method
with n equally typed arguments, we run the analysis
n! — 1 times; thus, call sites with many arguments im-
pose a significant performance problem. However, only
around 1% of all call sites with equally typed arguments
have five or more arguments, so this restriction does
not affect the generality of the evaluation. Third, we
apply the automated evaluation only to call sites with
named arguments. For other call sites, our technique
does not apply and we know without experimenting
that the analysis does not report any anomalies. With
these refinements, we seed 48,543 anomalies in the Java
programs and 24,989 anomalies in the C programs, and
run the analysis for each seeded anomaly.

7.1.3 Recall

Table 1 shows the recall of the analysis for each program.
For example, the analysis finds 74.2% of all anomalies
that we seed in Eclipse. On average, the analysis re-
veals 72% and 77% of all anomalies for Java and C,
respectively. Although automatically seeded anomalies
may not be representative for real-world anomalies,
these results give us some confidence that the analysis
finds most real anomalies. The refinements described
in Section 4.3 significantly improve recall compared to
our previously presented approach, which has only 38%
recall.

There are two main reasons why the analysis misses
seeded anomalies. First, there are false negatives for
methods that are called in many different contexts, such
as assertEquals () from the JUnit framework. For such
methods, the naming examples from one call site may
have no similarity to naming examples from other call
sites and therefore, the analysis cannot infer the correct
order of arguments. Example families (Section 4.3) ad-
dress this problem to some degree but cannot solve it
entirely. Second, the analysis misses seeded anomalies
for methods that implement commutative operations.

13

Ideally, these missed anomalies should not count as
false negatives because the analysis should not report
any warnings about those methods. Unfortunately, we
have not automatic way to exclude all commutative
operations from the seeding process.

7.1.4 Parameter Calibration

The presented analysis has several parameters that have
a strong influence on the overall results. We evaluate
different configurations by measuring recall with the
automated evaluation technique from Section 7.1.2 and
by estimating precision. To precisely measure precision
we would have to inspect for each configuration all
warnings that the analysis reports. Instead, we compute
a lower bound of the real precision by considering
warnings to be false positives unless we know them
to be true positives. In the following, we discuss the
parameters and analyze the sensitivity of the analysis
to each of them. We report results from varying each
parameter individually while using default values for
the others.

Threshold for Anomalies: The threshold for ano-
malies determines how deviant from other examples
a call site must be to be considered an anomaly. In
Algorithm 1, we call this threshold ¢. We experiment
with values in the range between 0.1 (little deviance
from other examples) and 0.9 (large deviance from other
examples).

Figures 5a and 5b show precision and recall with
different thresholds for Java and C programs, respec-
tively. The results illustrate the typical tradeoff between
optimizing an analysis for precision and for recall. A
higher threshold leads to less reported anomalies, and
hence, increases precision while decreasing recall. In
contrast, one can obtain a higher recall with a lower
threshold for the price of losing precision. We choose
a threshold of 0.4 as the default configuration, because
it provides the best F-measure for both Java and C.

Minimum Number of Examples: The minimum
number of examples determines how many naming ex-
amples for a method we require to draw any conclusions
about the method at all. If we have fewer examples than
this minimum number, our analysis ignores all call sites
of the method. Note that the names of formal parameters
serve as an additional naming example. We experiment
with values in the range between 2 and 10.

Figures 5c and 5d show the influence of this param-
eter. Similarly to the threshold for anomalies, one must
choose it considering the tradeoff between precision and
recall. The default configuration is to require at least
two naming examples. This value allows for analyzing
methods with a single call site because the call site and
the formal parameter names give two naming examples.

Parameter Weight: The parameter weight deter-
mines how influential parameter names are compared
to argument names. If the parameter weight is one,
naming examples from parameters are considered as

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

14

Precision + Java programs: C programs:
Recall x
F-Measure __ x (a) Threshold for anomalies (b) Threshold for anomalies
100% S 100%
80% B 80%
60% ey . 60%
T *-x
40% X 40%
=X
20% 1 20%
O% T T T T T T T T 00/0 T T T T T T T T
0,0505040506050500 0,0505040505050500
(c) Minimum number of examples (d) Minimum number of examples
100% 1 100% B
.................... +++
80% [f Ty - 80% |-
60% || WX, . 60% |-
40° X *
I N 40%
20% - T e] 20% [
0% T T T L 0%
28 9 5 6 28 9 p
(e) Parameter weight
100% [1 100% [
80% B 80%
60% B 60% [

40% | . 40% | .
20% 1 20% B
O% T T T T T T T 00/0 T T T T T T

72 8 ¥ 85 p & X 72 8 9 5 790
(g9) Minimum family size (h) Minimum family size
100% B 100% B
80% - — 80%
60% B 60% [R
40% |- E 40% |- -
20% | 1 20% B
0% T T T T 0% T T T
2 s 70 A So 2 5 70 3
(i) String similarity metric (j) String similarity metric
100% B 100% B
+
80% |- 1 80% |- B
* * A j
60% | x % B 60% [X % R
X
40% |- x - 40% |- x 7 .
* + *
20% [+ B 20% ¥ + B
O% T T T T 00/0 T T T
Y
o W, 481/6,/18 Mo,;geso,y 7;(\/ ’(\/O e o h/,-ze‘/@%\ /WOOQ@é\ O 7%
OA'/G/_ /7/@/}) /4’9/7 O O/r/@/_ /)f@/}) /4—9/7

Fig. 5: Parameters of the anomaly detection and their influence on precision and recall. The vertical lines indicate
the default configuration we use for the evaluation.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

important as all other naming examples. We experiment
with values in the range between 1 and 30.

Figures 5e and 5f show how the parameter weight
influences precision and recall (note the non-linear x-
axis). Giving parameters a higher weight than argu-
ment names improves precision, which is not surpris-
ing because parameter names should guide callers of
method in assigning arguments to positions. A very
large parameter weight decreases precision and recall,
showing that considering only parameter names (and
ignoring argument names altogether) does not work
well. Our default configuration is a parameter weight
of five, which gives the best F-measure for both Java
and C.

Minimum Family Size: The minimum family size
determines how many naming examples with similar
names we need to analyze them for anomalies. We
experiment with values in the range between 2 and 50.

Figures 5g and 5h show the results (again, note the
non-linear x-axis). Compared to the other parameters,
the minimum family size has a small influence on
the overall results. Increasing the parameter slightly
increases precision and decreases recall.

String Similarity Metric: There are various metrics
to measure the similarity or distance of two strings. We
experiment with five metrics, which have been found to
be useful for comparing names [10].

Figures 5i and 5j compare the results obtained with the
five metrics. Interestingly, choosing the string similarity
metric significantly influences the overall results. Two
metrics, TFIDF and SoftTFIDEF, that tokenize strings be-
fore comparing them give the best F-measure. The classi-
cal Levenshtein distance, which is the minimum number
of edits needed to transform a string into another, leads
to a higher precision but a lower recall. Our default is
to use TFIDE

7.2 Naming Bug Detection

We apply the naming bug detection to the Java and C
programs listed in Table 1. The approach is configured
with three parameters that determine thresholds for
reporting parameters names as badly chosen. Based on
initial experiments, we have chosen minCallSites = 10,
minCoherence = 0.3, maxArgParamSimil = 0.1. Other
configurations allow users to trade precision of warnings
for the ability to find more naming bugs.

We inspect warnings reported by the analysis and
classify each to be either a naming bug or a false positive.
A warning is a naming bug if (i) the order in which
arguments are passed to the method matters, and (ii)
the names of the parameters are insufficient to order
arguments correctly. Many naming bugs are due to
cryptic names, such as s1 and s2. However, not all short
names are naming bugs. For example, a method taking
two float parameters that describe a point in a two-
dimensional space may be called x and y, and we do not
classify them as naming bugs because these short names
are sufficient to map arguments to their positions.

15

void noise2 (final double[] noise,
double vec(O, double vecl) { .. }

Naming examples for double parameters:

Position 1 Position 2
pointX pointY
pointX pointY
pointX pointY
pointX pointY
pointX pointY

Fig. 6: Example of a naming bug found in Batik.

Table 1 summarizes the results of the naming bug
detection. In total, the analysis finds 31 naming bugs
with a precision of 39%. The precision for C programs
is 41%, whereas the analysis has 37% precision for Java
programs. Inspecting a false warning takes very short
time and we therefore consider the precision of the
default configuration to be acceptable. Inspecting and
classifying all naming bug warnings reported in Table 1
took us about one person-hour.

Figure 6 shows a naming bug that the analysis found
in Batik. The two parameters of type double are called
vecO and vecl and represent, according to the method’s
documentation “the X coordinate to generate noise for”
and “the Y coordinate to generate noise for”. Unfor-
tunately, the parameter names do not convey this se-
mantics of the parameters. Instead, they use generic
names that do not help programmers in figuring out the
expected argument order. The naming examples for this
method, shown in the table in Figure 6, indicate which
names callers of the method would prefer and thereby
guide our analysis to reporting this naming bug.

The false positives reported by the analysis have var-
ious reasons. For some methods, the parameter names
follow a different naming scheme than many argument
names. For example, drawLine () takes four float pa-
rameters called startx, starty, endx, and endy, but
many arguments are called =1, y1, x2, and y2. Another
reason for false positives are parameter names that de-
scribe a class of values, such as fruit, combined with
argument names that describe instances of this class,
such as apple and banana. Enhancing our approach with
sophisticated natural language processing techniques
may help to address these two reasons for false positives.
Finally, several false positives are due to methods that
implement commutative operations. Since any order of
arguments is correct for such methods, we reject all
warnings for these methods as false positives.

7.2.1 Comparison to Anomaly Detection

Since the anomaly detection evaluated in Section 7.1 also
finds naming bugs, one may ask how the sets of naming
bugs detected by the two analyses compare to each other.
For the Java programs, two of the seven naming bugs
detected by the anomaly detection are also found by the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

naming bug detection. For the C programs, the naming
bugs found by the two analyses do not overlap. This
result is not surprising because the two analyses use
different techniques to find anomalies. We conclude that
developers interested in naming bugs should run both
analyses.

7.3 Performance and Scalability

On a standard PC (3.16 GHz Intel Core 2 Duo with
2 GB RAM for the Java virtual machine), our prototype
implementation requires seven minutes to run both the
anomaly detection and the naming bug detection for all
programs in Table 1. Most of the time is spent parsing
source code; in contrast, the actual analyses, in particular
the naming bug detection, terminate quickly. The largest
Java program, Eclipse, requires 39 seconds. The largest
C programs, gcc, requires 51 seconds. The running time
strongly correlates with the number of call sites in a
program (Pearson correlation coefficient: 93% for Java
and 90% for C).

8 RELATED WORK

Identifier names are the subject of several studies, which
generally agree on the importance of well chosen names.
A study involving 100 human participants shows that
expressive names are important for program under-
standing [24]. In particular, the study shows that single
letter names impede program understanding compared
to appropriate full word names. Another study [7] shows
that instances of bad naming practices correlate with
poor code quality (measured in terms of FindBugs [22]
warnings and other code quality metrics). Our analysis
detects poor names of multiple equally typed method
parameters, that is, in a situation where meaningful
names are crucial for programmers.

Hest and Ustvold [21] propose an analysis to detect
naming bugs. They combine two analyses to check whe-
ther the implementation of a method is consistent with
its name. Their approach is based on implicit knowledge
about method names that has been extracted from a large
corpus of programs. Some of the anomalies detected by
our approach are also caused by inappropriate identi-
fier names. However, our analysis addresses argument
names and the order in which arguments are passed,
while Host and Ostvold analyze names of methods.

Butler et al. [8] propose techniques for tokenizing
identifier names in Java programs. These techniques can
be combined with string similarity metrics that tokenize
strings before comparing them, and therefore, can fur-
ther improve the effectiveness of our analysis. Similar,
integrating a synonym database into our approach, such
as in [34], may further improve our analysis.

There are several approaches that address the inability
of type systems to discern different usages of variables
having the same type. Guo et al. [16] dynamically infer
abstract types for variables of primitive types by analyz-
ing how these variables interact, for example, through

16

an assignment. Similarly, Hangal and Lam [18] propose
a static analysis to infer dimensions that refine the type
information of primitive type variables and string vari-
ables. Our analysis differs by analyzing programmer-
given identifier names instead of the interactions of
values or variables. Furthermore, we use the inferred
knowledge for finding anomalies in a program. In [18],
dimensions inferred from a program version that is
assumed to contain no errors are used to report inconsis-
tencies introduced by later revisions of the program. In
contrast, our analysis can detect problems within a single
version of a program. One could combine the techniques
in [16], [18] with ours by using inferred type refinements
for finding problems related to equally typed arguments.

Lawall and Lo [23] propose an analysis that infers
type-like groups for int constants by analyzing the vari-
ables with which these constants are combined. Based on
these groups, the analysis detects anomalies of variable-
constant pairs, such as the incorrect use of a constant.
Similar to us, Lawall and Lo address a weakness of type
checkers by extracting implicit knowledge from source
code. However, instead of analyzing similarities between
identifier names, their approach leverages common pro-
gramming idioms.

There are several approaches to explicitly refine stan-
dard types through additional information. For example,
Greenfieldboyce and Foster [15] propose adding type
qualifiers to Java to express properties, such as that a
variable is read-only. Such approaches require program-
mers to annotate variables with additional information,
and hence, are orthogonal to automatic analyses like
ours.

Erwig et al. [13] define a unit system for spreadsheet
languages, which derives type-like information from
headers of spreadsheet tables. Similarly to our approach,
their work leverages user-provided natural language
terms to search for errors caused by inconsistencies.
While Erwig et al. deal with an otherwise untyped lan-
guage, our approach addresses problems caused by a too
coarse-grained existing type system. Another difference
is that our analysis is robust against similar but different
names, whereas the analysis in [13] requires header
names to match precisely.

Our work belongs to a class of techniques that search
anomalies in a program based on the assumption that
most parts of the program are correct. Engler et al. [11]
statically search for violations of system-specific rules by
inferring “beliefs” of programmers. Hangal and Lam [17]
dynamically infer invariants and report violations of
these invariants as potential bugs. A static analysis by Lu
et al. [27] extracts correlations between variable accesses
to find unusual pieces of code that can cause inconsistent
updates and concurrency bugs. While these approaches
share with our work the general idea of anomaly detec-
tion, the analysis presented here is unique in searching
for problems related to equally typed arguments.

Another group of anomaly detection techniques fo-
cuses on method calls and the order in which methods

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

are called. PR-Miner [25] statically mines rules saying
that calling a set of functions within some context im-
plies calling another function. Chang et al. [9] detect
missing condition checks by inferring graph-based rules
from source code. Thummalapenta and Xie [36] target
exception handling rules and how to find their violations
automatically. Wasylkowski et al. [37], [38] present anal-
yses to statically detect missing method calls. Similarly,
Nguyen et al. [29] and Monperrus et al. [28] learn usage
patterns to find code locations where a particular call
seems to be missing. All these anomaly detection ap-
proaches differ from our work in the kind of anomalies
they search.

Our analysis extracts implicit knowledge from source
code, instead of relying on formal specifications or other
special input that may not be available for a particu-
lar program. Work on mining specifications follows a
similar idea by inferring finite state machines describing
method call sequences [5], [14], [26], [30], [31], [33],
[39], algebraic specifications [19], or invariants [12] from
source code or program executions. In contrast to these
approaches, we do not attempt to formalize specifica-
tions in this work, but instead leverage the inferred
knowledge to find anomalies.

Zhang et al. propose an IDE-integrated system for
recommending method arguments to developers [40].
Their approach is to build a database of usage examples
of API methods from existing clients of this API and
to use this database to recommend arguments at call
sites similar to previous usages. In contrast to their work,
our analysis addresses existing programs and specifically
addresses problems related to equally typed arguments.
A major motivation for their work is that state of the
art code recommendation techniques (in the Eclipse JDT)
fail to recommend the correct method argument for 53%
of all arguments [40]. This result underlines the risk of
passing wrong arguments, even in a sophisticated IDE.

9 CONCLUSIONS

Equally typed method arguments slip through checks of
the type system that ensure that arguments are ordered
as expected by a method. Unfortunately, such arguments
can be responsible for problems concerning the correct-
ness, maintainability, and understandability of a pro-
gram. In this work, we present two automatic program
analyses to detect problems related to equally typed
arguments. The analyses leverage similarities between
programmer-given identifier names. Experiments with a
large corpus of Java programs show that the analyses
find relevant problems with high precision.

The presented approach can serve as a low-cost tool
for programmers and maintainers. During development,
programmers can use the analyses to find problems re-
lated to equally typed arguments early. For example, one
can think of an IDE extension that highlights unusually
ordered arguments just as a programmer types a method
call site. During maintenance of programs, our approach

17

can find noteworthy pieces of source code that should be
enhanced, for example, by adding a comment explaining
an anomaly.

Our work is part of a stream of research on extracting
implicit knowledge from source code, program execu-
tions, or other software engineering artifacts. With few
exceptions, identifier names have not yet been used in
this context. Our work contributes by leveraging implicit
knowledge from identifier names for detecting anoma-
lies.

ACKNOWLEDGMENTS

The work presented in this paper was partially supported by
the Swiss National Science Foundation under grant number
200021-134453. Thanks to Zoltan Majo, Christine Zeller, Peter
Arrenbrecht, and the anonymous reviewers for their insightful
comments and suggestions.

REFERENCES

[1] https://issues.apache.org/jira/browse/ HADOOP-4732.

[2] http://issues.liferay.com/browse/LPS-3890.

[3] JBoss SVN repository. Revisions 58536, 58764, and 60357.

[4] JikesRVM SVN repository. Revisions 10263 and 13935.

[5] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In
Symposium on Principles of Programming Languages (POPL), pages
4-16. ACM, 2002.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 169-190. ACM, 2006.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Exploring the
influence of identifier names on code quality: An empirical study.
In European Conference on Software Maintenance and Reengineering
(CSMR), pages 156-165. IEEE, 2010.

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving the
tokenisation of identifier names. In European Conference on Object-
Oriented Programming (ECOOP), pages 130-154. Springer, 2011.

[9] R.-Y.Chang, A. Podgurski, and]. Yang. Finding what’s not there:
a new approach to revealing neglected conditions in software. In
International Symposium on Software Testing and Analysis (ISSTA),
pages 163-173. ACM, 2007.

[10] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison
of string distance metrics for name-matching tasks. In Workshop
on Information Integration on the Web (IT'Web), pages 73-78, 2003.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in
systems code. In Symposium on Operating Systems Principles
(SOSP), pages 57-72. ACM, 2001.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynam-
ically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering, 27(2):213-224,
2001.

[13] M. Erwig and M. M. Burnett. Adding apples and oranges. In
Symposium on Practical Aspects of Declarative Languages (PADL),
pages 173-191. Springer, 2002.

[14] M. Gabel and Z. Su. Javert: Fully automatic mining of general
temporal properties from dynamic traces. In Symposium on
Foundations of Software Engineering (FSE), pages 339-349. ACM,
2008.

[15] D. Greenfieldboyce and J. S. Foster. Type qualifier inference
for Java. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 321-336. ACM, 2007.

[16] P.]J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic
inference of abstract types. In International Symposium on Software
Testing and Analysis (ISSTA), pages 255-265. ACM, 2006.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

18

[17] S. Hangal and M. S. Lam. Tracking down software bugs using au- [34] K. Taneja, D. Dig, and T. Xie. Automated detection of api
tomatic anomaly detection. In International Conference on Software refactorings in libraries. In Conference on Automated Software
Engineering (ICSE), pages 291-301. ACM, 2002. Engineering (ASE), pages 377-380. ACM, 2007.

[18] S. Hangal and M. S. Lam. Automatic dimension inference and [35] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns
checking for object-oriented programs. In International Conference for detecting neglected conditions. In International Conference on
on Software Engineering (ICSE), pages 155-165. IEEE, 2009. Automated Software Engineering (ASE), pages 283-294. IEEE, 2009.

[19] J. Henkel, C. Reichenbach, and A. Diwan. Discovering documen- [36] S. Thummalapenta and T. Xie. Mining exception-handling rules as
tation for Java container classes. IEEE Transactions on Software sequence association rules. In International Conference on Software
Engineering, 33(8):526-543, 2007. Engineering (ICSE), pages 496-506. IEEE, 2009.

[20] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH [37] A. Wasylkowski and A. Zeller. Mining temporal specifications
Computer Architecture News, 34(4):1-17, 2006. from object usage. In International Conference on Automated Software

[21] E. W. Hest and B. M. Ostvold. Debugging method names. Engineering (ASE), pages 295-306. IEEE, 2009.

In European Conference on Object-Oriented Programming (ECOOP), [38] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
pages 294-317. Springer, 2009. usage anomalies. In European Software Engineering Conference

[22] D.Hovemeyer and W. Pugh. Finding bugs is easy. In Companion to and Symposium on Foundations of Software Engineering (ESEC/FSE),
the Conference on Object-Oriented Programming, Systems, Languages, })a es 35-44. ACM, 2007. .)
and Applications (OOPSLA), pages 132-136. ACM, 2004. [39] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of

[23] J. L. Lawall and D. Lo. An automated approach for finding ob]ept—orlented component interfaces. In Symposium on Software
variable-constant pairing bugs. In International Conference on Testing and Analysis (ISSTA), pages 218-228. ACM, 2002.
Automated Software Engineering (ASE), pages 103-112. ACM, 2010. [40] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, . Zhao, and P. Ou.

[24] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What's in a Automatic parameter recommendation for‘ pra;tlcal API usage.
name? A study of identifiers. In International Conference on Program In International Conference on Software Engineering (ICSE), pages
Comprehension (ICPC), pages 3-12. IEEE, 2006. 826-836. IEEE, 2012.

[25] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software
code. In European Software Engineering Conference and Symposium
on Foundations of Software Engineering (ESEC/FSE), pages 306-315.

ACM, 2005. ; ;

[26] D. Lo and S.-C. Khoo. SMArTIC: Towards buildir}g an accurate, glltltl:zljra: IZE:i?:ﬂ?IwII:elia %ZStred C%?f,%'gllhl{se SSI'?.rIgh?r:
robust and scalable ‘spec1‘f1cat10n miner. In Symposium on Founda- 2012. Michael graduated in computer science at
tions of Software Engineering (FSE), pages 265-275. ACM, 2006. Technical University in Dresden. G H

: - y in Dresden, Germany. He

[27] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and .
Y. Zhou. MUVI: Automatically inferring multi-variable access also spent two years at Ecole Centrale Paris,
correlations and detectin relateg semanticg and concurrency bugs where he became a graduate engineer, and
In Symposium on O emti% Systems Principles (SOSP), pa g’s 10g3; visited EPFL 1o pursue his master thesis. His
16 A 00y Fes 2y P » Pag research |nteéests arein the area of softw?re en-

’ ! ’ - . - ineering and programming languages. In par-

[28] M. Monperrug, M._ Bruch, and M. Mezini. Detecting missing gcular, P?e is igtergested ing aut(?ma?ic prog?am
method calls in object-oriented software. In European Conference analyses for finding programming errors
on Object-Oriented Programming (ECOOP), pages 2-25. Springer, '

2010.

[29] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based mining of multiple object
usage patterns. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), Thomas R. Gross is a Professor of Computer
pages 383-392. ACM, 2009. Science at ETH Zurich. He is the head of

[30] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the the Computer Systems Institute and was, from
evaluation of specification miners based on finite state machines. 1999-2004, the deputy director of the NCCR
In International Conference on Software Maintenance (ICSM), pages on “Mobile Information and Communication Sys-
1-10. IEEE, 2010. tems”, a research center funded by the Swiss

[31] M. Pradel and T. R. Gross. Automatic generation of object usage National Science Foundation. Thomas Gross
specifications from large method traces. In International Conference joined Carnegie Mellon University in 1984 after
on Automated Software Engineering (ASE), pages 371-382. IEEE, receiving a Ph.D. in Electrical Engineering from
2009. Stanford University. In 2000, he became a Full

[32] M. Pradel and T. R. Gross. Detecting anomalies in the order of Professor at ETH Zurich. He is interested in
equally-typed method arguments. In International Symposium on tools, techniques, and abstractions for software construction and has
Software Testing and Analysis (ISSTA), pages 232-242. ACM, 2011. worked on many aspects of the design and implementation of software

[33] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification ~and computer systems. His current work concentrates on low-cost

networks (in collaboration with Disney Research, Zurich), compilers, and

mining using automata-based abstractions. In International Sym-
programming parallel systems.

posium on Software Testing and Analysis (ISSTA), pages 174-184.
ACM, 2007.

