
Roles and Collaborations in Scala

Michael Pradel

TU Dresden / EPFL Lausanne

Supervised by: Prof. Uwe Aßmann, Prof. Martin Odersky, Jakob Henriksson

June 26, 2008

Michael Pradel Scala Roles 1

Motivation - Why Roles?

I Objects ...
I evolve at runtime
I are used differently depending on the context
I interact in manifold ways

I Roles ...
I dynamically add/remove members to/from objects
I provide views
I are grouped into collaborations

person

boy friend

Michael Pradel Scala Roles 2

Motivation - Why Roles?

I Objects ...
I evolve at runtime
I are used differently depending on the context
I interact in manifold ways

I Roles ...
I dynamically add/remove members to/from objects
I provide views
I are grouped into collaborations

person

husband

Michael Pradel Scala Roles 3

Motivation - Why Roles?

I Objects ...
I evolve at runtime
I are used differently depending on the context
I interact in manifold ways

I Roles ...
I dynamically add/remove members to/from objects
I provide views
I are grouped into collaborations

person

employee

husband

Michael Pradel Scala Roles 4

Motivation - Why Roles?

I Objects ...
I evolve at runtime
I are used differently depending on the context
I interact in manifold ways

I Roles ...
I dynamically add/remove members to/from objects
I provide views
I are grouped into collaborations

person

employee

husband

employer

wife

Michael Pradel Scala Roles 5

Motivation - Why Scala Roles?

I Roles are known for a long time
I More or less accepted in modeling
I But not in programmer’s toolbox
I Existing solutions to role-based programming

I Inconvenient, bulky syntax, or
I Heavyweight language extensions

I Idea: Let’s do it in a Scala library
I Easy, simple syntax
I Lightweight - no change to language

Michael Pradel Scala Roles 6

Goals

I 15 features of roles (Steimann), e.g.
I Roles have state and behavior
I Multiple roles per object
I Dynamically adding and removing roles

I Conserve underlying language
I Type safety
I Collaborations as programming and reuse abstraction

Michael Pradel Scala Roles 7

Representing Roles

Roles as classes?

Supertypes:

Husband Employee

Person

I All instances play the
roles

Subtypes:

Person

Husband Employee

I Roles depend on core
types

Roles as traits? No dynamism.

→ Our approach: Roles as objects

Michael Pradel Scala Roles 8

Compound Objects with Dynamic Proxies

I An object and its roles should appear as one object
→ Compound object

I Idea: Represent them with a dynamic proxy
I Created at runtime on demand
I Proxy delegates using reflection
I Type-safe access to role-playing objects

person
employee

proxyclient

Michael Pradel Scala Roles 9

Compound Objects with Dynamic Proxies

I An object and its roles should appear as one object
→ Compound object

I Idea: Represent them with a dynamic proxy
I Created at runtime on demand
I Proxy delegates using reflection
I Type-safe access to role-playing objects

person: P

employee: E

proxy: P with Eclient

Michael Pradel Scala Roles 10

The as operator

I One simple operator for accessing roles:
object as role

I Returns object and role hidden behind a proxy
I Problem: Roles can be bound to arbitrary objects, i.e. not

having a method as

I Solution: Implicit conversion
object.as(role) → role.playedBy(object)

Michael Pradel Scala Roles 11

Representing Collaborations

I Nesting of traits (or classes)
I Outer trait is collaboration, inner traits are roles

class Employment(hourlyWage: Int) extends TransientCollaboration {
val employee = new Employee{}
val employer = new Employer{}

trait Employee extends Role[Person] {
var hoursWorked = 0
var money = 0
def work = hoursWorked += 8

}

trait Employer extends Role[Person] {
def payOff = {
employee.money += employee.hoursWorked * hourlyWage
employee.hoursWorked = 0

} } }

Michael Pradel Scala Roles 12

.. and how to use it

val jack = new Person{}
val bill = new Person{}
val mary = new Person{}

val company = new Employment(15)
val pub = new Employment(7)

(bill as company.employee).work
(jack as company.employer).payOff

(mary as pub.employee).work
(bill as pub.employer).payOff

Michael Pradel Scala Roles 13

Roles and Role Mappers

I Sometimes useful: Arbitrary many instances of a role
I Role mappers ...

I create new role instances on demand
I manage binding between cores and roles

I Same syntax: object as role

I Example: Multiple employees

bill as company.employee
paul as company.employee
bill as company.employee

→ Two role instances

Michael Pradel Scala Roles 14

Sticky Roles

I Alternative to as: Sticky roles
I Similar to first-class relationships
I Participants of collaboration given in constructor
I Example:

val company = new Employment(jack, bill)
company.employee.work
company.employer.payOff

Michael Pradel Scala Roles 15

Forwarding vs. Delegation (Self Problem)

I Delegation: this always refers to the original receiver of a
method call

I Usual behavior in object-based languages
I Example: Employee overrides greet method

proxy

person employee

1. pickUpPhone()

2. pickupPhone() 3. greet()

Michael Pradel Scala Roles 16

Delegation with Proxies and Traits

How Scala translates traits:

trait T {
def fct = 23

}

→

public interface T {
public int fct();

}
public abstract class T$class {
public static int fct(T $this) {
return 23;

}}

I Idea: Set $this to the proxy
I Method dispatch is done reflectively

1. Delegate to role object, if possible
2. Delegate to core object, otherwise

Michael Pradel Scala Roles 17

Case Study: Design Patterns

I Patterns assign roles to participating objects
I Applying the Scala Roles library to 24 patterns

(23 Gang of Four + Role Object)

Results:
I Reusable collaborations: Composite, Observer
I Enhancements with roles: Decorator, Mediator, Role

Object, Template Method
I Obsolete in Scala: Adapter, Command, Interpreter,

Singleton, Strategy, Visitor
I Invariant: remaining 11

Michael Pradel Scala Roles 18

A Reusable Pattern Collaboration: Observer

I Observer contains two roles: Subject and Observer
I Most code of the subject can be easily reused:

private val observers = new HashSet[Observer]()
def addObserver(o: Observer) = observers += o
def removeObserver(o: Observer) = observers -= o
def notifyObservers = observers.foreach(_.update(this))

I Idea: Dynamically add subject role to objects
I Arbitrary objects become observable without changing

their class

Michael Pradel Scala Roles 19

Example

trait Book {
private var status = "available"
def borrow = { status = "borrowed" }
def returnIt(late: Boolean) = { status = "available" }
def turnPage = { }

}

val b = new Book{}; val l = new Library{}
val o = new ObserverCollab[Book]("status")
// or "borrow()", "returnIt(Boolean)", "returnIt(*)", etc.

val observableBook = b as o.subject
observableBook.addObserver(l)

observableBook.borrow // invokes l.update(observableBook)

Michael Pradel Scala Roles 20

Conclusions

I Roles are a useful programming abstraction
I Programming technique to express roles and

collaborations
I Compound objects with dynamic proxies
I Access to role-playing objects is type-safe
I It’s all just a library: No change of compiler, tools, etc.

See also:

Michael Pradel, Martin Odersky
Scala Roles - A Lightweight Approach towards Reusable Collaborations
ICSOFT 2008

Michael Pradel Scala Roles 21

Thanks! Questions?

Michael Pradel Scala Roles 22

