
Ontology Design and Reuse with Conceptual Roles

Jakob Henriksson1, Michael Pradel1, Steffen Zschaler1, and Jeff Z. Pan2

1 Lehrstuhl Softwaretechnologie, Fakultät Informatik,
Technische Universität Dresden, Germany

{jakob.henriksson|steffen.zschaler}@tu-dresden.de,
michael@binaervarianz.de

2 Department of Computing Science, University of Aberdeen, UK
jpan@csd.abdn.ac.uk

Abstract. Ontologies are already used in the life sciences and the Semantic Web,
but are expected to be deployed in many other areas in the near future—for exam-
ple, in software development. As the use of ontologies becomes commonplace,
they will be constructed more frequently and also become more complex. To cope
with this issue, modularization paradigms and reuse techniques must be defined
for ontologies and supported by ontology languages. In this paper, we propose the
use of roles from conceptual modeling for this purpose, and show how they can
be used to define ontological reuse units and enable modularization. We present
role-based ontologies as an extension of standard ontologies and define their se-
mantics through a reduction to standard Description Logics, such that existing
reasoners can be used.

1 Introduction

In conceptual modeling it has long been known that there is a fundamental distinction
between different kinds of concepts: some stand on their own (e.g. Person), while oth-
ers depend on the existence of some other concept (e.g. Borrower, who must be related
to the borrowed item). Making this distinction explicit is favored in the role modeling
community (see e.g. [17,18] and references therein), with successful applications—for
example, in object-oriented programming [6]. In role modeling, concepts that can stand
on their own are called natural types, while dependent concepts are called role types.
Even though considered an important and fundamental conceptual differentiation, cur-
rent ontology languages, such as OWL DL [11], do not support it (nor does the OWL
2 working draft [2]). The Description Logics (DLs) community—providing much of
the foundations for OWL DL—is however aware of the differentiation and refers to
role types as relationship-roles [1].3 The DL handbook even supports the idea for the
ontology development process by encouraging its readers to “distinguish independent
concepts from relationship-roles” [1, p. 379].

This research has been co-funded by the European Commission within the 7th Framework
Programme project MOST number 216691 (cf. http://most-project.eu).

3 The DL community uses the term ‘role’ for binary properties. To avoid confusion with con-
ceptual roles (relationship-roles) we will use the term dl-role to describe the former construct.

http://most-project.eu

Distinguishing different kinds of concepts is not only important for a better under-
standing of the modeled domain, but also for ontology reuse. This second application
of role types has—to the best of our knowledge—never been investigated by the ontol-
ogy community. Related role types and their relationships form abstraction units that
can be studied and defined on their own. Such abstraction units are traditionally called
role models. As role models often transcend domains, they can be reused in different
ontologies.

Consider, for example, the simple role model in Figure 1. It describes the role types
Producer, Product, and Consumer, and their relationships.

Professor Student

advises

Professor Student

father

Advisor AdviseeLegend: = class (concept)

(a) (b)

can play role can play role

= role concept

Child Parent

advises

father
Child ParentPerson !

(a) (b)

appoints
Appointer Advisor Advisee

advises

father
Child Parent

father
Child ParentPerson !

(a) (b)

appoints
Appointer Advisor Advisee

advises

produces
Producer Product Consumer

consumes

Figure 1. A simple role model describing three related role types and their relationships.

This role model could be integrated in ontologies covering topics as different as
foods, wines, consumer electronics, or car dealerships. For example, a consumer elec-
tronics company modeling their infrastructure and their business processes can (re)use
the generic description captured in the role model in Figure 1.

By being domain-independent units, role models have something in common with
upper-level ontologies. Upper-level ontologies, however, are mainly used for integration
purposes and reside “above” domain ontologies. Role models serve a different purpose,
come with a different reuse approach and—as we will see—essentially reside “below”
domain ontologies.

Role modeling can be seen as a design methodology, or process, allowing to break a
larger description into smaller, reusable units—the role models. But to successfully de-
ploy design processes for reuse, the underlying languages must support them. To quote
Kiczales et. al. [8]: “Software design processes and programming languages exist in a
mutually supporting relationship.” Clearly ‘programming languages’ can here be substi-
tuted with ‘ontology languages.’ They go on to explain that the design processes allow
to break a system down into smaller and smaller (reusable) units, and that “a design
process and a programming language work well together when the programming lan-
guage provides abstraction and composition mechanisms that cleanly support the kinds
of units the design process breaks the system into.” It would hence be advantageous—
from a reuse point of view—if ontology languages supported the definition of role mod-
els and provided constructs for composing role models into complete ontologies.

In this paper we investigate how explicitly supporting role modeling in ontology
languages can provide an important and little investigated reuse opportunity—in form
of role models. We also discuss the consequences of supporting the underlying role
modeling semantics. The contributions of this paper are: (1) We demonstrate the viabil-
ity of role models as ontological reuse units. (2) We propose a formalization for what
role modeling means for current ontology languages. (3) We explain the consequences
of introducing the semantics of role modeling into ontology languages. That is, the pos-
sible reasoning effects the ontology engineer has to be aware of. (4) We describe how
the role modeling semantics can be realized by reducing role modeled ontologies into

ontologies expressed in standard ontology languages. This enables the reuse of reason-
ing engines. Preliminary results of our work have been presented in [13].

The remainder of the paper is structured as follows: We begin in the next section
by giving some background on role modeling and DLs. In Section 3 we discuss an
example of how role models can provide reuse opportunities, before providing a formal
reduction of our concepts to an underlying DL in Section 4.

2 Background

This section gives background knowledge the rest of the paper is based on. First, we
introduce role modeling as it is known from conceptual and software modeling. Then,
we discuss Description Logics, the formal underpinning of many current ontology lan-
guages.

2.1 Role Modeling

In modeling, types (or concepts) abstract over sets of individuals. Role modeling at
its core argues for the existence of two inherently distinguishable abstractions: natural
types and role types, a terminology first introduced by Sowa [16]. Intuitively, natural
types describe the part of individuals that are essential to their identity while role types
describe accidental or temporal relations to other individuals.

A common example is the natural type Person and its associated role type Actor. In
this case, a person is said to play the role of an actor. Along with being an actor comes,
for example, giving performances led by stage managers and attending rehearsals led
by directors. Hence, in the role of being an actor one stands in certain relations to
individuals of other role types such as Director.

Guarino defines natural types and role types using the notions of founded types
and semantically rigid types [3]. A type is founded if all of its individuals have to be
related to an individual of another type, where the relation is not part-of. For example,
one could say that an actor necessarily has to be related to a director in order to be
an actor. A type is semantically rigid, if it contributes to the identity of its individuals.
For instance, the name and date of birth of a person are part of its identity. Hence, an
individual cannot drop the type Person, while ceasing to be an Actor is possible. Using
these two notions, we can define natural types and role types:

– A natural type is non-founded and semantically rigid.
– A role type is founded and semantically non-rigid.

Although the notion of roles seems intuitively clear, different definitions exist in the
literature. Steimann summarizes the fifteen most common characteristics the research
community associates with roles in object-oriented and conceptual modeling [17]. As
an ontology describes a static view of the world, those referring to dynamic aspects
observable in software systems are not relevant in this paper. Among the remaining, we
consider the following to be the most fundamental (each of Steimann’s role features is
referred to as ‘Sx’):

S1 “A role comes with its own properties and behaviour. This basic property sug-
gests that roles are types.”

S2 “Roles depend on relationships. As suggested by the work of Sowa and Guar-
ino, a role is meaningful only in the context of a relationship.”

S3 “An object may play different roles simultaneously. This is one of the most
broadly accepted properties of the role concept.”

S14 “An object and its roles share identity. In the object-oriented world this entails
that an object and its roles are the same.”

Roles alone are beneficial to separate inherent and accidental characteristics of indi-
viduals. Encapsulating several related roles into a role model is another important aspect
focused on in this paper. Results from the object-oriented software community [5,14]
show that role models are an interesting unit of abstraction for mainly two reasons: First,
role models focus on one specific concern of a domain, and hence, help in separating
concerns. Second, role models are often reusable across domain boundaries because
they can describe relations between individuals on a more general level than natural
types can. We will focus on the second point, reuse of role models, in this work and
show how role models serve as an ontological reuse unit.

An often discussed question is the relation of natural types and role types. Intu-
itively, natural types are related to role types via the “can play role” relationship, but
the question is what semantics to associate. We will use the N B R notation for the
“can play role” relation in this paper, where N is a natural type and R a role type. Sowa
originally proposed to use the subsumption relationship (“IS-A”) to explain B, such
that:

N B R ≡ Rv N

where v represents the IS-A relationship. This interpretation is quite intuitive and
works remarkably well, but not in all situations as we discuss in Section 4.3.

An alternative way of representing roles are separate individuals that are attached
to individuals of natural types in some way. However, that contradicts role feature S14,
since a role-playing individual would be split into at least two separate individuals. For
a detailed discussion, the reader is referred to [17].

2.2 Description Logics and OWL

Description Logics (DLs) are a family of knowledge representation formalisms, where
most members are sub-languages of first-order logics. DLs are used to capture the im-
portant concepts and relations (roles in DL parlance) between individuals of the mod-
eled domain. We will refer to (binary) relations in DL as dl-roles to distinguish them
from the conceptual role types. Concepts and dl-roles can be described by complex
concept (resp. dl-role) descriptions using the construction operators available in the
particular DL.

The most widely used DL is the one underlying the ontology language OWL DL.
To simplify the presentation, we do not cover datatypes in this paper. An OWL DL
interpretation is a tuple I = (∆I , ·I) where the individual domain ∆I is a nonempty
set of individuals, and ·I is an individual interpretation function that maps (i) each

individual name o to an element oI ∈ ∆I , (ii) each concept name A to a subset AI ⊆ ∆I ,
and (iii) each dl-role name RN to a binary relation RNI ⊆ ∆I ×∆I .

Valid OWL DL concept descriptions are defined by the DL syntax:

C ::= > | ⊥ | A | ¬C | CuD | CtD | {o} | ∃R.C | ∀R.C |> mR |6 mR

The interpretation function ·I is extended to interpret>I = ∆I and⊥I = /0. The concept
> (⊥) is called Thing (Nothing) in OWL. The interpretation function can further be
extended to give semantics to the remaining concept and dl-role descriptions (see [12]
for details).

An OWL DL ontology consists of a set of axioms, including concept axioms, dl-role
axioms and individual axioms.4 A DL knowledge base consists of a TBox, an RBox
and an ABox. A TBox is a finite set of concept inclusion axioms of the form C v D,
where C,D are concept descriptions. An interpretation I satisfies C v D if CI ⊆ DI .
An RBox is a finite set of dl-role axioms, such as dl-role inclusion axioms (Rv S). The
kinds of dl-role axioms that can appear in an RBox depend on the expressiveness of the
ontology language. An interpretation I satisfies R v S if RI ⊆ SI . An ABox is a finite
set of individual axioms of the form a : C, called concept assertions, or 〈a,b〉 : R, called
dl-role assertions. An interpretation I satisfies a : C if aI ∈CI , and it satisfies 〈a,b〉 : R
if 〈aI ,bI 〉 ∈ RI .

Let C,D be concept descriptions, C is satisfiable wrt. a TBox T iff there exist an
interpretation I of T such that CI 6= /0; C subsumes D wrt. T iff for every interpretation
I of T we have CI ⊆DI . A knowledge base Σ is consistent (inconsistent) iff there exists
(does not exist) an interpretation I that satisfies all axioms in Σ.

Many people also use the Manchester OWL syntax [7], which is more user friendly
for non-logicians.

3 A Role-Based Design Process for Ontological Reuse

The purpose of this section is to give an intuitive understanding of why role models
are reusable entities and how they can be beneficial to ontology engineers. We use
a running example to discuss consequences of a role modeling approach to ontology
design. Furthermore, we discuss what the benefits of ontological role modeling are from
a conceptual modeling point of view, and what the methodology of defining role-based
ontologies is. Then, in Section 4, we discuss the semantics of such ontologies.

The examples are written in Manchester Syntax [7], which is not further described
here but should be no problem to understand. We extend the syntax for the purpose
of defining and composing role models; the keywords of the extended constructs are
underlined (and in a different color).

Listing 1.1 shows an ontology that models a faculty, introducing main concepts
such as Professor, FacultyMember, and PhDStudent. The faculty is managed by a board
which is described in the role model in Listing 1.2. A board consists of board members
that elect a chairman.5 The chairman can appoint one of the members as secretary. The

4 Individual axioms are called facts in OWL.
5 A ‘chairman’ is here a person designated to preside over a meeting.

Ontology: http://ex.org/Faculty
ImportRoles: http://ex.org/Board
Class: FacultyMember
CanPlay: BoardMember’

Class: Professor
SubclassOf: FacultyMember
CanPlay: ChairMan’

Class: PhDStudent
SubclassOf: FacultyMember

Individual: smith
Types: Professor, Chairman’

Individual: mike
Types: PhDStudent, BoardMember’

Listing 1.1. Role-based ontology.

RoleModel: http://ex.org/Board
Role: BoardMember’
Role: Chairman’
SubclassOf: BoardMember’ and
electedBy’ some BoardMember’

Role: Secretary’
SubclassOf: BoardMember’

ObjectProperty: electedBy’
Domain: Chairman’
Range: BoardMember’

ObjectProperty: appointedBy’
Domain: Secretary’
Range: Chairman’

Listing 1.2. Role model.

ontology in Listing 1.1 imports the board role model and can so use the concepts it de-
fines. Concepts and properties defined in the role model are marked with ’ to distinguish
them from the concepts introduced in the base ontology.

Readers might ask why the board is described in a role model. The reason is that
boards have a recognizable structure with a typical set of relationships that hold bet-
ween entities in that context, regardless of the particular underlying domain. It makes
therefore sense to detach the description of the board from the faculty ontology.

The ontology in Listing 1.1 is made up of standard DL constructs, save the Im-
portRoles and CanPlay constructs. The meaning of the ImportRoles construct is the
obvious, making the role model available to the ontology. The CanPlay constructs are
crucial since they define the relations between the base ontology and the role model.
We refer to such connecting statements as bridge axioms. The role model in Listing 1.2
makes use of two additional constructs, RoleModel and Role that have to obvious mean-
ing. The URL of a RoleModel can be used to import it using the ImportRoles construct.

3.1 Methodology

Role modeling provides a methodology for developing ontologies, a methodology that
we claim encourages good design and supports reuse. The following are the intuitive
development steps that we propose for constructing a role-based ontology:

1. Define base concepts. Define a base ontology that contains the main concepts of the
modeled domain. These concepts correspond to natural types of the domain. That
is, each concept in the base ontology should be semantically rigid and non-founded.
In our example, an ontology modeler would start by defining basic concepts of
a faculty, such as Professor and PhDStudent. Notice that, in a different universe
of discourse, Professor may itself be a role type (for example, for an underlying
natural type Person).

2. Identify role models. Identify accidental or temporal relationships that individuals,
abstracted by the base concepts, may participate in. Then, identify the contexts that

http://ex.org/Faculty
http://ex.org/Board
http://ex.org/Board

those relationships appear in and what concepts (role types) are involved. Such
contexts should be described in separate role models to be integrated into the base
ontology.
(a) If a role model for the desired relationships already exists, it can be reused.
(b) If no fitting role model exists, then define it. This involves capturing the im-

portant role types in the context and defining the relationships between them.
There will exist relationships, since role types are by definition semantically
non-rigid and founded. For instance, the board role model contains the role
types Chairman’ and BoardMember’, which are related by the electedBy’ prop-
erty.

To ensure reusability of role models they have to be self-contained. In particular,
each property defined in a role model must have its domain and range restricted
to a role type from the same role model. This guarantees that each individual that
participates in such a property actually belongs to a role type of the role model.

3. Define bridge axioms. Describe how the identified role models should be integrated
into the base ontology by defining appropriate bridge axioms. A bridge axiom can
bind a role type to a natural type, assert that an individual belongs to a certain
role type, or assert two individuals to be connected via a property that is part of a
role model. For example, we connect Professor and Chairman’ through a CanPlay
axiom; the individual smith is asserted to be a Chairman’.

3.2 Benefits of Separating Role Models and Base Ontologies

We argue that it is beneficial to separate role models from base ontologies during the
ontology design process. In particular, following the above methodology brings the
following advantages:

– Modularization during development:
• Base ontology development can focus on the main domain concepts and their

hierarchical relations.
• Role models can be defined, and refined, without necessarily focusing on the

domain concepts, because role models typically transcend domains.
• A role model focuses on a single context and important relationships holding

between entities in this context.
– Reuse of role models:
• As role models concentrate on a single concern, reuse is more likely than with

complete ontologies that intermingle different concerns.
• Role models constitute ontological modules. A base ontology can use role type

names and property names of a role model, but not redefine them. Hence, a role
model provides an interface, via the names of its role types and properties.

3.3 Reusing Role Models

The role-based ontology in Listing 1.3 demonstrates the reusability of the board role
model from Listing 1.2. The role model is being deployed in a different setting, this
time in an ontology modeling a company, instead of a university. Because the concern
which is captured in the role model appears in both domains, it can be reused.

Ontology: http://ex.org/Company
ImportRoles: http://ex.org/Board
Class: President
CanPlay: ChairMan’

Class: VicePresident
CanPlay: Secretary’

Class: CompanyAdvisor
CanPlay: BoardMember’

Individual: donald
Types: President, Chairman’

Individual: jane
Types: VicePresident, BoardMember’

Listing 1.3. Role-based ontology reusing the role model from Listing 1.2.

4 Formalization and Semantics of Ontological Role Modeling

In Section 4.1 we formalize ontological roles and role models. Then, in Sections 4.2
to 4.3, we propose two possible semantics for the role modeling constructs used in the
preceding section. The two semantics cover different aspects of role modeling and are
realized by mapping role-based ontologies to different DL constructs.

4.1 Formalization of Role-Based Ontologies

We formalize role-based ontologies in three parts, based on the methodology described
in Section 3. A base ontology only contains natural types. Role models define role
types and their relationships. We use bridge axioms to combine a base ontology with
role models into a role-based ontology.

Definition 1 (Base ontology). A base ontology is a finite set of axioms in some DL,
capturing concepts that are assumed to correspond to natural types.

A base ontology is assumed to capture concepts that provide semantic rigidity for
individuals of the modeled domain. Naturally, any properties that inherently relate such
concepts are also introduced, as are concrete individuals. We do not commit to a partic-
ular DL, since this definition is general enough to cover many DLs.

Definition 2 (Ontological role model). An ontological role model is a TBox where
each concept name is considered a role type. Each concept name must be “related” to
another concept name, either via a dl-role, or by at least one axiom (e.g. a subsumption
axiom). All dl-roles must be domain and range restricted to a type from the role model.

The restriction of “related” concept names prevents role models from being divided
into subparts with pairwise disjoint signatures.6 If such a division is possible, the role
model should be split into separate role models. Intuitively, this restriction ensures that
a role model only describes one concern.

6 As pointed out by a reviewer, what “related” means is not formalized. We recognize this for-
malization as important future work, but here stay with the intuitive notion, as described.

http://ex.org/Company
http://ex.org/Board

Definition 3 (Role-based ontology). A role-based ontology O is a triple O =(N ,R ,B)
where N is a base ontology, R is a finite set of role models and B a finite set of bridge
axioms. The base ontology and the role models have pairwise disjoint signatures. The
bridge axioms in B are of the form:

1. N B R (terminological bridge axiom), or
2. R(a) or S(a,b) (assertional bridge axiom)

where N is an arbitrary concept description, and a,b are individuals, in N . R is a
concept name (role type), and S a dl-role, in one of the role models in R .

The B symbol reads “can play” and specifies that instances of a natural type can
play a role of a certain role type.

To be able to reuse existing tools, most importantly, reasoners, we define the seman-
tics of role-based ontologies via reduction to the underlying DL. Thus, the reduction
algorithm unambiguously defines the semantics of role-based ontologies by referring to
the already understood model-theoretic semantics of DLs.

4.2 Conjunctive Role Modeling Semantics

The goal is to define a semantics for role-based ontologies that cover desirable prop-
erties of role modeling. As a minimal requirement, the semantics should cover the
Steimann criteria S1, S2, S3, and S14 described in Section 2. More importantly, we
need to account for the differentiation between natural and role types according to the
distinction made by Guarino [3]. That is, natural types are semantically rigid, while role
types are not, and do not provide identity for its instances. We will address this by ac-
knowledging that individuals cannot only be instances of role types. This suggests that
role types that are not explicitly related to some natural type should—by definition—be
unsatisfiable (empty in all models of the ontology). Conveniently, unbound role types
can easily be detected with standard ontology reasoners. Relations between natural and
role types should explicitly be modeled by ontology engineers using terminological
bridge axioms (that is, using the CanPlay construct).

The semantics of a role-based ontology O = (N ,R ,B) is here given by a transfor-
mation to an ontology O ′ in the DL of N according to the following transformation:

O ′ = N ∪R
∪ {Rv N|N B R ∈ B}
∪ B \{N B R|N B R ∈ B}
∪ {Rv⊥|R ∈ R ∧¬∃N : N B R ∈ B}

As can be seen, the translation scheme consists of four steps:

1. Integration. The base ontology and the role models (with pairwise disjoint signa-
tures) are combined.

2. Terminological bridge axioms. Here we use the semantics proposed by Sowa for
realizing the B relationship [15]. That is, if instances of a natural type N can play a
role of a role type R, we specify R to be subsumed by N.

Ontology: http://ex.org/Faculty
Class: FacultyMember
Class: Professor
SubclassOf: FacultyMember

Class: PhDStudent
SubclassOf: FacultyMember

Class: BoardMember’
SubclassOf: FacultyMember

Class: Chairman’
SubclassOf: BoardMember’ and
electedBy’ some BoardMember’
and Professor

Class: Secretary’
SubclassOf: BoardMember’ and

Nothing
ObjectProperty: electedBy’
Domain: Chairman’
Range: BoardMember’

ObjectProperty: appointedBy’
Domain: Secretary’
Range: Chairman’

Individual: smith
Types: Professor, Chairman’

Individual: mike
Types: PhDStudent, BoardMember’

Listing 1.4. Translation of a role-based ontology into the underlying ontology language.

3. Assertional bridge axioms. All other bridge axioms are incorporated into O ′. That
is, all the assertional bridge axioms.

4. Unbound role types. Role types that are not related to any natural type through B
subsume ⊥ (Nothing in OWL), that is, they are unsatisfiable.

We will illustrate the transformation using the example from Listings 1.1 and 1.2.
Applying the transformation yields the ontology in Listing 1.4. This ontology only uses
standard ontology constructs. It must be highlighted that the ontology in Listing 1.4
only captures the meaning of the ontology units from Listings 1.1 and 1.2. The on-
tology engineer is never expected to continue working on the “compiled” ontology.
The abstractions gained through explicit role modeling are lost in the compilation step,
making the resulting ontology more difficult to maintain. At the same time, because
the compilation result is expressed in a standard DL, existing ontology reasoners can
handle it directly.

For instance, the role type Secretary’ is not bound to any natural type, and hence,
defined as a subtype of Nothing (⊥). To understand the consequences of this translation,
let us consider two scenarios:

1. Assume an additional assertion, stating that mike is an instance of Secretary’. As
Secretary’ is unbound, and thus, unsatisfiable, the resulting ontology would be in-
consistent.

2. Assume another role type relies on instances of Secretary’. For instance, Chairman’
could be a subclass of the concept (assistedBy’ some Secretary’). As there can be
no instances of Secretary’, Chairman’ would also become unsatisfiable.

Obviously, our translation scheme for unbound role types helps in finding situations
where role types are misused as natural types. The logical solution to repair our on-
tology for the two scenarios would be an additional bridge axiom FacultyMember B
Secretary’. In this case, Secretary’ is no longer unsatisfiable and, as a consequence, the
above illustrated inconsistencies do not occur.

Finally, let us come back to the four properties of Steimann from Section 2.1. As
we define roles as concepts that can be described with all constructs of the underlying

http://ex.org/Faculty

DL, we fulfill S1. The second property, S2, is also supported, since we require that
the context of each role type is captured in its surrounding role model. The second
kind of bridge axiom in Definition 3 can be used arbitrarily often, hence, allowing
one individual to be an instance of multiple role types (S3). The last property (S14) is
supported as we do not represent roles as additional individuals but combine them with
natural types using subsumption.

We refer to the above-described semantics as conjunctive role modeling semantics
because a role type R played by different natural types N1, . . . ,Nn is interpreted as a
subtype of the conjunction of the natural types, that is, R v N1u . . .uNn. This follows
immediately from defining B using standard subsumption. While simple, this semantics
does not come without problems from a role modeling perspective. We investigate this
further in the next section.

4.3 Disjunctive Role Modeling Semantics

Another important role modeling feature from Steimann’s overview paper [17] is the
following:

S7 “Objects of unrelated types can play the same role. Although a fundamental
observation [...] it is not acknowledged by all authors.”

Although “not acknowledged by all authors”, it is a rather intuitive and useful mod-
eling notion. Imagine, for example, that we replace the class Professor, from Listing 1.1,
with the two classes FullProfessor and AssistantProfessor. Imagine, furthermore, that
they are declared to be disjoint (natural, since you cannot be both). Suppose we want
to express that both kinds of professors can be chairmen in a board. Not only is this a
natural thing to express, but doing so would also enable us to discuss the properties of
a chairman (defined by Chairman’), regardless of which kind of professor it is. To do
this, we would issue the following bridge axioms:

FullPro f essor B Chairman′

AssistantPro f essor B Chairman′

While the above axioms are intuitive to understand and write, the conjunctive role
modeling semantics, based on Sowa’s original interpretation of B, does not work as
we perhaps would like. The reason is that the above gets interpreted as Chairman′ v
FullPro f essor uAssistantPro f essor, which renders Chairman′ unsatisfiable. This is
the case since the intersection of FullPro f essor and AssistantPro f essor is necessar-
ily empty, since they are disjoint. In general, the conjunctive role modeling semantics
can result in unexpected results when types that are not related via subsumption (e.g
FullPro f essor and AssistantPro f essor in the above example) are related to the same
role type via B.

To be able to address S7, we provide an alternative semantics by letting role types
be subsumed by the union of all natural types their are bound to. For the above ex-
ample, this results in Chairman′ v FullPro f essortAssistantPro f essor, which in this
case does not make Chairman′ unsatisfiable. We call this the disjunctive role modeling
semantics and its formal realization is as follows:

...
Class: FullProfessor
SubclassOf: FacultyMember

Class: AssistantProfessor
SubclassOf: FacultyMember

...
Class: Chairman’
SubclassOf: BoardMember’ and

electedBy’ some BoardMember’ and
(FullProfessor or AssistantProfessor)

...

Listing 1.5. Translation of a role-based ontology into the underlying ontology language
using disjunctive role modeling semantics.

O ′ = N ∪R
∪ {Rv N1t . . .tNn|{N1, . . . ,Nn}= {N|N B R ∈ B}}
∪ B \{N B R|N B R ∈ B}
∪ {Rv⊥|R ∈ R ∧¬∃N : N B R ∈ B}

The above equations only differ from the corresponding equations for conjunctive
semantic in the translation of terminological bridge axioms. Therefore, disjunctive se-
mantics only differs from the conjunctive in cases where several natural types are bound
to the same role type. In the case from the previous section with a single concept Pro-
fessor bound to role type Chairman’, both semantics are equivalent. In contrast, the two
semantics give different results if both FullProfessor and AssistantProfessor are bound
to the role type Chairman’. While we obtain an inconsistency with the conjunctive se-
mantics, disjunctive semantics allow for a consistent interpretation. The result is shown
in Listing 1.5 (parts that are equal to Listing 1.4 are left out).

The disjunctive role modeling semantics satisfies S7, as well as the previously dis-
cussed role modeling requirements. Being able to connect unrelated, possibly disjoint,
natural types to the same role type can be valuable from a modeling perspective. How-
ever, fulfilling S7 turns out to have a drawback: In contrast to standard DLs, the dis-
junctive semantics is non-monotonic. A logic is monotonic if adding a new axiom never
falsifies assertions that were true before adding the axiom.

Lemma 1. Ontological role modeling under disjunctive semantics is non-monotonic.

The reason for this is that adding assertional bridge axioms can redefine previous
knowledge. Consider the following role-based ontology O = (N ,R ,B), with:

N = {FullPro f essoruAssistantPro f essor v⊥,

FullPro f essor(smith),AssistantPro f essor(jones)}
R = {Chairman′ = electedBy′ some BoardMember′}

B = {FullPro f essor B Chairman′}

Based on the disjunctive role modeling semantics we have O |=¬Chairman′(jones).
But adding the bridge axiom AssistantPro f essor B Chairman′ to B , this is not the
case anymore, that is, O 6|= ¬Chairman′(jones). As we have to retract knowledge when
adding a bridge axiom, role modeling under the disjunctive semantics is non-monotonic.

5 Related Work

Reuse is an important part in the ontology development process. A structured reuse
opportunity is presented by upper-level ontologies (e.g. [10]). Upper-level ontologies
typically describe generic concepts related to notions such as time, space, matter, and
have a high reuse value since they span many different domains. Role models also span
different domains, but their reuse usage is different from upper-level ontologies. In gen-
eral, upper-level ontologies reside “above” the base ontology and reuse is accomplished
by declaring a base concept B as a subclass of the upper-level concept U , that is, BvU
in DL syntax. Role models on the other hand reside “below” the base ontology and the
reuse relationship is inverted from the upper-level one. That is, reuse is in general ac-
complished using axioms such as R v B, where R is a role type from a role model. As
such, role models are complementary to upper-level ontologies. The main incentive for
upper-level ontologies is to achieve base ontology integration and reuse is a condition
for its success. For role models, reuse is the incentive.

The OntoClean methodology proposed by Guarino [4] shares a number of ideas
with our approach. The paper describes common misuses of the subsumption con-
cept, for instance, to represent part/whole relations, instantiations, or meta-level rela-
tionships, and proposes to identify them using meta-properties for ontological classes.
The two basic meta-properties of a class are essence and rigidity. Properties of a class
belong to its essence, if they must hold for an instance (in contrast, for example, to
properties of a role type, which can hold). Rigidity means that the properties of the
class must hold for all instances. Our approach relates to this work as essential and
rigid classes correspond to natural types, while non-essential and non-rigid classes are
role types. Based on the meta-properties, Guarino proposes to impose constraints on
subsumption relationships, for instance, forbidding a rigid concept to be subsumed by a
non-rigid concept. This constraint is enforced in our approach by translating the termi-
nological bridging axiom into RvC, where a non-rigid concept R is always subsumed
by a rigid concept C. Furthermore, OntoClean claims that each ontology has a backbone
taxonomy with its rigid classes and their subsumption relationships. Such a backbone
taxonomy roughly corresponds to our base ontology that exclusively consists of natural
types.

The work in [19] proposes, similarly to us, to discriminate role concepts from basic
concepts to overcome the gap between the recognition of different types of concepts
and what is provided in standard ontology languages. The approach builds upon three
notions: role concepts, equivalent to our role types, potential players, which roughly
correspond to classes bound to a role type via a CanPlay relationship, and role-holder,
that is, instances actually playing a role. The authors argue for two distinct type hi-
erarchies and emphasize the relation of a role to its context. Furthermore, the paper
describes compound roles that are built from primitive roles, realizing ideas that are

similar to roles playing roles as in [17]. In contrast to our approach, the authors im-
plement roles in their own ontology framework, including an ontology language and
custom-built tools.7 Instead, we propose to embed roles into existing languages using
syntactic extensions that can be translated into the underlying ontology language.

6 Conclusions and Outlook

Ontologies are increasingly often applied in real-life scenarios, where they are used
for modeling large knowledge domains. Perhaps the most prominent example to name
here is the Gene Ontology [20] with its almost 25.000 terms (as of January 2008). To
successfully develop and maintain such large ontologies, powerful modularization and
reuse techniques are required.

In this paper we have discussed the notion of roles as explicit modeling constructs,
that has been discussed in the domain of conceptual modeling for some time now, but
never really utilized in ontology languages. We have shown how making roles explicit
concepts—instead of encoding them implicitly in dl-roles—enables us to encapsulate
role models and reuse them in different ontologies, even across domain boundaries. A
role model in this context is an ontology consisting of role concepts and relationships
between them. We have shown how to construct role-based ontologies from a base
ontology, a role model and a set of bridging axioms relating natural concepts from
the base ontology to role concepts from the role model via a CanPlay relationship. The
semantics of this new relationship has been defined by translating role-based ontologies
to equivalent ontologies in a standard DL. In this paper, we have discussed two such
semantics: conjunctive semantics and disjunctive semantics. The former is simpler, but
does not allow individuals of disjoint natural concepts to play the same role, which may
be counter intuitive to ontology designers. The latter semantics allows such situations,
but at the cost of a non-monotonic logic. It is at this stage not possible to recommend
one of the semantics as canonical—they serve different purposes. We first need to study
how role models are used and applied in practice to better understand which semantics
is more intuitive to ontology engineers.

In conclusion, we suggest to integrate explicit role concepts with ontology lan-
guages, such as OWL, as they offer a unique reuse and modularization opportunity
that goes beyond currently available mechanisms for ontology reuse. Role models form
components; their role types define a component interface enabling to check correct
usage of the component—for example, every used role type must be assigned to some
base concept. A notion of components that allows checking for correct usage is lacking
in today’s ontology languages. This gap can be closed by role modeling. Role model-
ing goes beyond upper-level ontology reuse, as it allows more specific ontologies to be
reused and also allows reusing multiple role models within one ontology. Role models
are, therefore, an important tool in every ontology designer’s tool box.

Of course, more work is needed. We would like to perform a larger case study of ap-
plying role models to refactoring, modularizing, and partially reusing a large ontology.
Role modeling should be supported by ontology modeling tools that can transform the

7 http://www.hozo.jp

http://www.hozo.jp

role-based ontologies before applying reasoners. Furthermore, it will be interesting to
study other applications of role models in ontologies—for example, where ontologies
are used for describing situations in an action calculus [9].

References
1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The

Description Logic Handbook. Cambridge University Press, 2003.
2. B. Cuenca-Grau and B. Motik. OWL 2 Web Ontology Language: Model-theoretic semantics.

W3C Working Draft, 2008. http://www.w3.org/TR/owl2-semantics/.
3. N. Guarino. Concepts, attributes and arbitrary relations - Some linguistic and ontological

criteria for structuring knowledge bases. Dat. Knowl. Eng., 8(3):249–261, 1992.
4. N. Guarino and C. A. Welty. Evaluating ontological decisions with OntoClean. Communi-

cations of the ACM, 45(2):61–65, 2002.
5. S. Herrmann. Object Teams: Improving modularity for crosscutting collaborations. In Net

Object Days, 2002.
6. S. Herrmann. A precise model for contextual roles: The programming language Object-

Teams/Java. Applied Ontology, 2(2):181–207, 2007.
7. M. Horridge and P. F. Patel-Schneider. Manchester syntax for OWL 1.1. In International

Workshop OWL: Experiences and Directions (OWLED ’08), 2008.
8. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In European Conference on Object-Oriented Programming
(ECOOP ’97), pages 220–242. Springer, 1997.

9. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about actions using description logics
with general TBoxes. In European Conference on Logics in Artificial Intelligence (JELIA
’06), pages 266–279. Springer, 2006.

10. I. Niles and A. Pease. Towards a standard upper ontology. In International conference on
Formal Ontology in Information Systems (FOIS ’01), pages 2–9. ACM, 2001.

11. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language se-
mantics and abstract syntax. W3C Recommendation, 2004. http://www.w3.org/TR/
owl-semantics/.

12. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax. Technical report, W3C, Feb. 2004. W3C Recommendation.

13. M. Pradel, J. Henriksson, and U. Aßmann. A good role model for ontologies: Collaborations.
In International Workshop on Semantic-Based Software Development, 2007.

14. T. Reenskaug, P. Wold, and O. Lehne. Working with Objects, The OOram Software Engi-
neering Method. Manning Publications Co, 1996.

15. J. Sowa. Using a lexicon of canonical graphs in a semantic interpreter, pages 113–137.
Cambridge University Press, 1988.

16. J. F. Sowa. Conceptual structures: information processing in mind and machine. Addison-
Wesley Longman Publishing Co., Inc., 1984.

17. F. Steimann. On the representation of roles in object-oriented and conceptual modelling.
Data Knowledge Engineering, 35(1):83–106, 2000.

18. F. Steimann. The role data model revisited. Roles, an interdisciplinary perspective, AAAI
Fall Symposium, 2005.

19. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. Role organization model in Hozo.
In International Conference on Managing Knowledge in a World of Networks (EKAW), pages
67–81. Springer, 2006.

20. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature
Genetics, 25(1):25–29, May 2000.

http://www.w3.org/TR/owl2-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/

	Ontology Design and Reuse with Conceptual Roles
	Jakob Henriksson, Michael Pradel, Steffen Zschaler, and Jeff Z. Pan
	Bibliography

