Systematic Black-Box Analysis of Collaborative Web Applications

Michael Pradel TU Darmstadt

Joint work with Marina Billes (TU Darmstadt) and Anders Møller (Aarhus University)

More details: Paper at PLDI 2017

Collaborative Web Applications

- Google Docs, MS Office Online,Cloud9 IDE, and many others
- Multiple interacting users
- Goal: Eventual consistency

Client-side: Heterogenous browsers with errorprone language (JavaScript)

Client-side: Heterogenous browsers with errorprone language (JavaScript)

Concurrent interactions

Client-side: Heterogenous browsers with errorprone language (JavaScript)

Concurrent interactions

Geographically distributed system

Client 1

Client 2

Client 1

Write "this" ...

Client 2

Delete line ...

Client 1

testing this

Client 2

Client 1

Client 2

testing this

Synchronize ...

Client 1

Client 2

Inconsistent state

Challenges for Analysis

How to analyze such a system?

- Huge space of client actions
- Huge space of concurrent interleavings
- Complex system with various components

Challenges for Analysis

How to analyze such a system?

- Huge space of client actions
 Impossible to
- Huge space of fully explore concurrent interleavings
- Complex system with various components
- Impossible to fully understand and control

This Talk: Simian

Technique for analyzing collaborative web applications

- Automatic: No need to specify interactions
- Scalable: Blackbox view of system
- Systematic: Bounded exploration of all potential conflicts
- Precise: No false positives

Operational transformation [Ellis & Gibbs, 1989] Non-blocking concurrency control

 σ .. state, op .. operation, T .. transformation function

Operational transformation [Ellis & Gibbs, 1989] Non-blocking concurrency control

$$\begin{array}{c|c}
\sigma_1 & \sigma_2 \\
 & op_1 \\
 & T(op_2)
\end{array}$$

$$\begin{array}{c|c}
\sigma_2 \\
 & Top_2 \\
 & T(op_1)
\end{array}$$

$$\sigma_1' \qquad \sigma_2'$$

 σ .. state, op .. operation, T .. transformation function

Operational transformation [Ellis & Gibbs, 1989] Non-blocking concurrency control

 σ .. state, op .. operation, T .. transformation function

Operational transformation [Ellis & Gibbs, 1989] Non-blocking concurrency control

 σ .. state, op .. operation, T .. transformation function

Correctness = Precedence + Convergence

Operational transformation [Ellis & Gibbs, 1989] Non-blocking concurrency control

 σ .. state, op .. operation, T .. transformation function

Correctness = Precedence + Convergence
Focus of Simian

Overview of Simian

Set of user actions

Phase 1:

Sequential learning

Potential conflicts

Phase 2:

Concurrent analysis

Inconsistencies

Overview of Simian

Set of user actions

Phase 1:

Sequential learning

Potential conflicts

Phase 2:

Concurrent analysis

Inconsistencies

Blackbox reasoning about states and actions

Actions

Action: Logical step triggered by a user

- May consist of multiple implementation-level steps
- Examples
 - Insert text "a"
 - Mark current line and make it bold
 - Delete last character (backspace)

Action Tree

Sequences of actions by a single user

Action Tree

Sequences of actions by a single user

Action Tree

Sequences of actions by a single user

Phase 1: Sequential Learning

Systematic exploration of action tree

- Full traversal up to maximum depth k
- Execute one single-client interaction per path through the tree

Phase 1: Sequential Learning

Systematic exploration of action tree

- Full traversal up to maximum depth k
- Execute one single-client interaction per path through the tree

Potential Conflicts

Identify potential conflicts

Actions that affect the same data when triggered in the same state

Potential Conflicts

Identify potential conflicts

Actions that affect the same data when triggered in the same state

Equivalent States

Identify equivalent states

Equivalent States

Identify equivalent states

Two clients trigger actions concurrently

Two clients trigger actions concurrently

Sequential prefix: Executed by client 1

Two clients trigger actions concurrently

Wait until clients have synchronized

Two clients trigger actions concurrently

Concurrent suffixes: Executed by client 1 and 2

Phase 2: Concurrent Analysis

For each potential conflict:

- 1) Synthesize a multi-client interaction
 - Don't repeat same suffixes in equivalent states
- 2) Check if clients eventually converge

Naive approach (for comparison): Synthesize and check all multi-client interactions

Client 1

Client 1

Client 2

Black-Box Reasoning

How to reason about states? Pixel-based state abstraction

Equivalent states if same pixels

Conflicting actions if overlap of affected pixels

Inconsistent states if different pixels

Implementation

- Approximate comparison of screenshots
- Blinded areas

Evaluation

Ten actions:

Type "a"

Press Return

Toggle bold on line before cursor

Set font face to Verdana on line before cursor

Select and delete line before cursor

Press Tab

Press Space

Type "b"

Toggle italic on line after cursor

Set font size to 18 on line before cursor

Inconsistencies

Various issues in all three systems

	Exploration depth k		
	1	2	3
Google Docs	0	0	37
Firepad	0	5	32
ownCloud	1	15	126

Inconsistent fonts

(ownCloud)

Incorrect selection shown

(Firepad)

Text fragments are swapped Both clients see incorrect state

(Google Docs)

Duplicate text fragment Both clients see incorrect state

Set font size to 18

Type "b"

Press tab Press space

(Google Docs)

Influence of Non-Determinism

Can you reproduce these issues?

(Google Docs, 37 interactions with inconsistency in first run)

Performance

How long does it take?

- One inconsistency every 8:43 minutes
- 27–47% spent in first phase

What if we omit the first phase?

About 10x slower

Conclusions

Analysis of collaborative web applications

- Automatic, scalable, systematic, precise
- Novel two-phase analysis of concurrent systems
- Blackbox reasoning about complex systems

Ongoing and future work

- Exploration of non-determinism
- Cluster inconsistencies by root cause