
1

Michael Pradel
TU Darmstadt

Systematic Black-Box Analysis of
Collaborative Web Applications

Joint work with Marina Billes (TU Darmstadt)
and Anders Møller (Aarhus University)

More details: Paper at PLDI 2017

2

Collaborative Web Applications

� Google Docs, MS Office Online,
Cloud9 IDE, and many others

� Multiple interacting users

� Goal: Eventual consistency

Edit Edit

3

Hidden Complexity

Edit Edit

3

Hidden Complexity

Edit Edit

Client-side: Heterogenous browsers
with errorprone language (JavaScript)

3

Hidden Complexity

Edit Edit

Client-side: Heterogenous browsers
with errorprone language (JavaScript)

Concurrent interactions

3

Hidden Complexity

Edit Edit

Client-side: Heterogenous browsers
with errorprone language (JavaScript)

Geographically distributed system

Concurrent interactions

4

Example Bug

Client 1 Client 2

(Google Docs)

4

Example Bug

Client 1 Client 2

Write ”this” ... Delete line ...

(Google Docs)

4

Example Bug

Client 1 Client 2

(Google Docs)

4

Example Bug

Client 1 Client 2

Synchronize ...

(Google Docs)

4

Example Bug

Client 1 Client 2

Inconsistent state

(Google Docs)

5

Challenges for Analysis

How to analyze such a system?

� Huge space of
client actions

� Huge space of
concurrent interleavings

� Complex system with
various components

5

Challenges for Analysis

How to analyze such a system?

� Huge space of
client actions

� Huge space of
concurrent interleavings

� Complex system with
various components

Impossible to
fully explore

Impossible
to fully
understand
and control

6

This Talk: Simian

Technique for analyzing collaborative
web applications

� Automatic: No need to specify
interactions

� Scalable: Blackbox view of system

� Systematic: Bounded exploration of
all potential conflicts

� Precise: No false positives

7

Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

σ .. state, op .. operation, T .. transformation function

σ1

op1

σ2

op2

7

Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

σ .. state, op .. operation, T .. transformation function

σ1

σ′
1

op1
T (op2)

σ2

σ′
2

op2
T (op1)

7

Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

σ .. state, op .. operation, T .. transformation function

Transformation
ensures:
σ1 ≡ σ2 =⇒ σ′

1 ≡ σ′
2

σ1

σ′
1

op1
T (op2)

σ2

σ′
2

op2
T (op1)

7

Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

Correctness = Precedence + Convergence

σ .. state, op .. operation, T .. transformation function

Transformation
ensures:
σ1 ≡ σ2 =⇒ σ′

1 ≡ σ′
2

σ1

σ′
1

op1
T (op2)

σ2

σ′
2

op2
T (op1)

7

Correctness

Operational transformation [Ellis & Gibbs, 1989]

Non-blocking concurrency control

Correctness = Precedence + Convergence

σ .. state, op .. operation, T .. transformation function

Transformation
ensures:
σ1 ≡ σ2 =⇒ σ′

1 ≡ σ′
2

σ1

σ′
1

op1
T (op2)

σ2

σ′
2

op2
T (op1)

Focus of Simian

8

Overview of Simian

Set of user actions

Inconsistencies

Potential conflicts

Phase 1:
Sequential learning

Phase 2:
Concurrent analysis

8

Overview of Simian

Set of user actions

Inconsistencies

Potential conflicts

Phase 1:
Sequential learning

Phase 2:
Concurrent analysis

Blackbox
reasoning
about states
and actions

9

Actions

Action: Logical step triggered by a user

� May consist of multiple
implementation-level steps

� Examples
� Insert text ”a”
� Mark current line and make it bold
� Delete last character (backspace)

10

Action Tree

Sequences of actions by a single user

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

10

Action Tree

Sequences of actions by a single user

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

State at client

10

Action Tree

Sequences of actions by a single user

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

Actions

11

Phase 1: Sequential Learning

Systematic exploration of action tree

� Full traversal up to maximum depth k
� Execute one single-client interaction

per path through the tree

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

11

Phase 1: Sequential Learning

Systematic exploration of action tree

� Full traversal up to maximum depth k
� Execute one single-client interaction

per path through the tree

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

12

Potential Conflicts

Identify potential conflicts

� Actions that affect the same data
when triggered in the same state

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

12

Potential Conflicts

Identify potential conflicts

� Actions that affect the same data
when triggered in the same state

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

13

Equivalent States

Identify equivalent states

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

13

Equivalent States

Identify equivalent states

a

aaa a

aa a

a

a bold del

bold

...

del

a

... ...

a bold del
...

14

Multi-Client Interactions

Two clients trigger actions concurrently

a

bold

a del

14

Multi-Client Interactions

Two clients trigger actions concurrently

a

bold

a del

Sequential prefix:
Executed by client 1

14

Multi-Client Interactions

Two clients trigger actions concurrently

a

bold

a del

Wait until clients
have synchronized

14

Multi-Client Interactions

Two clients trigger actions concurrently

a

bold

a del

Concurrent suffixes:
Executed by client 1 and 2

15

Phase 2: Concurrent Analysis

For each potential conflict:

1) Synthesize a multi-client interaction
� Don’t repeat same suffixes in equivalent states

2) Check if clients eventually converge

Naive approach (for comparison):
Synthesize and check all multi-client
interactions

16

Example

Client 1a

bold

a del

16

Example

Client 1a

bold

a del

16

Example

Client 1a

bold

a del

16

Example

Client 1 Client 2a

bold

a del

16

Example

Client 1 Client 2a

bold

a del

16

Example

Client 1 Client 2a

bold

a del Correct outcome

16

Example

Client 1 Client 2a

bold

a del Incorrect outcome

17

Black-Box Reasoning

How to reason about states?
Pixel-based state abstraction

� Equivalent states if
same pixels

� Conflicting actions if
overlap of affected pixels

� Inconsistent states if
different pixels

≡

6=

18

Implementation

https://github.com/marinabilles/simian

X server

� Approximate comparison of
screenshots

� Blinded areas

Firefox

X server
Firefox

Selenium

19

Evaluation

Ten actions:
Type “a”
Press Return
Toggle bold on line before cursor
Set font face to Verdana on line before cursor
Select and delete line before cursor
Press Tab
Press Space
Type “b”
Toggle italic on line after cursor
Set font size to 18 on line before cursor

20

Inconsistencies

Exploration depth k

1 2 3

Google Docs 0 0 37
Firepad 0 5 32
ownCloud 1 15 126

Various issues in all three systems

21

Examples

(ownCloud)

Inconsistent fonts

Type ”a”

Set font ”Verdana”

Type ”b”

Client 1 Client 2

22

Examples

Incorrect selection shown

(Firepad)

Client 1 Client 2

Type ”a”

Toggle bold

Toggle bold

Type ”a”

23

Examples

Text fragments are swapped
Both clients see incorrect state

(Google Docs)

Client 1 Client 2

Type ”a”

Toggle bold

Press space

Type ”a”

24

Examples

(Google Docs)

Duplicate text fragment
Both clients see incorrect state

Press tab

Type ”b”

Press space

Set font size to 18

Client 1 Client 2

25

Influence of Non-Determinism

Can you reproduce these issues?

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x 10x
0

5

10

15

reproduced (out of 10)

#
in

te
ra

ct
io

ns

(Google Docs, 37 interactions with inconsistency in first run)

26

Performance

How long does it take?

� One inconsistency every 8:43 minutes

� 27–47% spent in first phase

What if we omit the first phase?

� About 10x slower

27

Conclusions

Analysis of collaborative web
applications
� Automatic, scalable, systematic, precise

� Novel two-phase analysis of concurrent systems

� Blackbox reasoning about complex systems

Ongoing and future work
� Exploration of non-determinism

� Cluster inconsistencies by root cause

https://github.com/marinabilles/simian

