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Abstract
Concurrent, object-oriented programs often use thread-safe library
classes. Existing techniques for testing a thread-safe class either
rely on tests using the class, on formal specifications, or on both.
Unfortunately, these techniques often are not fully automatic as
they involve the user in analyzing the output. This paper presents an
automatic testing technique that reveals concurrency bugs in sup-
posedly thread-safe classes. The analysis requires as input only the
class under test and reports only true positives. The key idea is to
generate tests in which multiple threads call methods on a shared
instance of the tested class. If a concurrent test exhibits an excep-
tion or a deadlock that cannot be triggered in any linearized execu-
tion of the test, the analysis reports a thread safety violation. The
approach is easily applicable, because it is independent of hand-
written tests and explicit specifications. The analysis finds 15 con-
currency bugs in popular Java libraries, including two previously
unknown bugs in the Java standard library.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.1.3 [Programming Tech-
niques]: Object-oriented Programming; D.2.5 [Software Engi-
neering]: Testing and Debugging

General Terms Languages, Reliability, Algorithms

Keywords Thread safety, Testing, Concurrent test generation

1. Introduction
Writing correct concurrent programs is hard for many reasons.
Developers tend to think think sequentially, making concurrent
programs hard to write and understand because of their non-
deterministic and parallel nature. Furthermore, testing techniques
for concurrent programs have not yet reached the sophistication of
techniques for sequential programs.

In this paper, we address the problem of testing concurrent pro-
grams. Ideally, a testing technique requires a single input—a piece
of software to analyze—and produces a single output—true pos-
itive reports of concurrency bugs in the tested software. Existing
techniques do not meet this requirement, because they either re-
quire additional input, produce undesirable additional output, or
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both. As an additional input besides the software to analyze, dy-
namic approaches need tests that execute the software. Writing tests
is often neglected due to time constraints. Furthermore, writing ef-
fective concurrent tests is difficult, because they should lead the
program to sharing state between concurrently executing threads
and should trigger many different execution paths. Another addi-
tional input that many static and dynamic analyses rely on are ex-
plicit, formal specifications, which must be developed in addition to
the program itself. Unfortunately, few programs provide such spec-
ifications. As an additional output besides true positive bug reports,
many existing approaches produce false positives. They reduce the
usability of a bug finding technique and can even make it unusable
in practice [3].

This paper presents an automatic testing technique to detect
concurrency bugs in thread-safe classes. We consider a class to be
thread-safe if it “behaves correctly when accessed from multiple
threads, regardless of the scheduling or interleaving of the exe-
cution of those threads by the runtime environment, and with no
additional synchronization or coordination on the part of the call-
ing code” [20]. We say that a class is thread-unsafe otherwise. Our
approach requires a single input, a program or library containing
the class under test (CUT), possibly accompanied by third-party
libraries that the program depends on, and produces a single out-
put, true positive reports about concurrency bugs in the CUT. The
analysis reports problems that result in an exception or a deadlock.
As both are obvious signs of misbehavior, the analysis reports only
true positives. Each bug report contains an executable, concurrent
test that exposes the problem.

As a motivating example, consider a previously unknown bug
that our approach detected in the StringBuffer class of Sun’s Java
standard library in versions 1.6 and 1.7.1 StringBuffer is docu-
mented as thread-safe and tries to synchronize all accesses to its
internal data by locking on the StringBuffer instance (Figure 1a).
Our analysis generates tests that use StringBuffers concurrently.
For example, the test in Figure 1b creates a StringBuffer and
uses it in two concurrent threads. Executing the test leads to an
exception because insert() retrieves the length of s, a parameter
of type CharSequence, before acquiring the lock. The documenta-
tion states: “This class synchronizes only on the string buffer per-
forming the operation, not on the source.” This behavior is fatal if
the passed source is the StringBuffer itself, a case the developers
of the class apparently forgot to consider. In this case, retrieving
the size of the StringBuffer is non-atomic with the consecutive
update, leading to a potential boundary error caused by an inter-
leaved update. Our analysis detects this bug with no input but the
StringBuffer class and producing no output but this bug report.

1 We reported the problem and the developers acknowledged it as a bug. See
entry 7100996 in Sun’s bug database.



class StringBuffer {
StringBuffer(String s) {

// initialize with the given String
}
synchronized void deleteCharAt(int index) {

// modify while holding the lock
}
void insert(int dstOffset, CharSequence s) {

int l = s.length();
// BUG: l may change
this.insert(dstOffset, s, 0, l);

}
synchronized void insert(int dstOffset,

CharSequence s, int start, int end) {
// modify while holding the lock

}
}

(a) Supposedly thread-safe class.

StringBuffer sb = new StringBuffer("abc");

sb.insert(1, sb); sb.deleteCharAt(0);

Thread 1 Thread 2

Result: IndexOutOfBoundsException in Thread 1

(b) Execution of a generated concurrent test exposing a thread-safety bug.

Figure 1: StringBuffer and a test execution exposing a thread-
safety bug.

Our approach is enabled by the combination of two contribu-
tions. The first contribution is a test generation technique that cre-
ates input to exercise the methods of a CUT from multiple threads.
Each generated test consists of a sequential part that instantiates
the CUT and a concurrent part in which multiple threads call sup-
posedly thread-safe methods on the CUT instance. The technique
enhances existing techniques to generate sequential tests [11, 37]
by adapting them to a concurrent setting. Simply running generated
sequential tests in parallel is very unlikely to result in shared state
and to expose concurrency bugs. Instead, our technique generates
tests that share a single CUT instance between multiple threads and
that expose concurrency bugs by using the instance concurrently.

Some existing bug finding techniques use a manually written
test harness that, given a set of calls with concrete parameters,
randomly selects and executes calls [5, 21]. Our test generation
technique advances upon this approach in two ways. First, it re-
lieves developers from providing calls and from finding appropri-
ate parameters for these calls. The test generator creates parame-
ters by instantiating other classes and by calling methods of other
classes. Second, and even more important, an automated approach
produces more diverse tests because it tries to combine many dif-
ferent methods, parameters, and receiver objects. As a result, gen-
erated tests include usage scenarios that a human may not come
up with. For example, the test in Figure 1b triggers a bug by pass-
ing a StringBuffer to itself, a situation that apparently remained
untested for several years.

The second contribution is a test oracle, called the thread safety
oracle, that determines whether a concurrent test execution exposes
a thread safety problem. The oracle classifies a concurrent execu-
tion as erroneous if the execution leads to an exception or to a dead-
lock and if this exception or deadlock cannot be triggered by any
linearization of the calls in the concurrent execution. A lineariza-
tion maps all calls of a concurrent test into a single thread while

preserving the order of calls made by individual threads. The ora-
cle assumes that sequential executions are deterministic. The thread
safety oracle is generic, precise, and practical. It is generic, because
it can detect different kinds of concurrency bugs, including data
races, atomicity violations, and deadlocks, given that the bug even-
tually causes an exception or deadlock. A study of 105 real-world
concurrency bugs found that 62% of all bugs lead to a crash or a
deadlock [30], suggesting that the thread safety oracle addresses
a significant problem. The oracle is precise, because it guarantees
that each reported problem is a real bug, since exceptions and dead-
locks are certainly undesired behavior. Finally, the oracle is practi-
cal, because it does not require any explicit specification to come
with the CUT and instead leverages generic and implicit indicators
of incorrectness.

The thread safety oracle relates to seminal work on linearizabil-
ity as correctness criterion [22] and its recent adaption to object-
oriented programs in Line-Up [5]. In contrast to Line-Up, our ora-
cle is more effective and more efficient. It is more effective, because
each test execution that fails according to the oracle is a true posi-
tive. In contrast, the Line-Up oracle classifies 426 of 1,800 test exe-
cutions as failing, which—after manual inspection—contain seven
bugs [5]. This high violations-to-bugs ratio is due to benign lin-
earizability violations and to multiple violations caused by the same
bug. Our oracle is more efficient, because it only runs linearizations
of a concurrent test if the concurrent test leads to an exception or
a deadlock. Instead, Line-Up explores all linearizations before run-
ning a concurrent test.2

We implement our approach as a prototype tool for Java and ap-
ply it to six popular code bases, including the Java standard library
and Apache Commons Database Connection Pools (DBCP). The
analysis detects six previously unknown bugs, for example, two
problems in supposedly thread-safe classes, ConcurrentHashMap

and StringBuffer, of the most recent version of the Java standard
library. In total, our implementation successfully reveals 15 bugs
in the analyzed code bases. Twelve of them are exposed through a
deadlock or an exception thrown by the virtual machine or the Java
standard library, that is, not relying on the use of exceptions in the
CUT itself.

In summary, this paper makes the following contributions:

• A technique to generate concurrent tests that exercise a CUT
from multiple threads.

• A generic test oracle that finds concurrent executions that ex-
pose thread safety bugs in the CUT.

• Empirical evidence that combining concurrent test generation
with the thread safety oracle is effective in automatically finding
concurrency bugs.

2. Overview
We presents a dynamic analysis to detect concurrency bugs in
thread-safe classes. This section explains the key ideas of the anal-
ysis; Sections 3 and 4 fill in the details.

There are three requirements for detecting a thread safety bug
with a dynamic analysis. First, a test that drives the CUT to a state
exposing the bug. Second, an execution environment that exposes
the bug when executing the test. Third, an oracle that recognizes the
execution as erroneous. Various approaches addressing the second
requirement have been proposed [6, 10, 12, 33, 43]. This work
focuses on the first and the third requirement. We address the
first requirement by generating tests that drive a CUT (Section 3).
Using automatically generated tests instead of relying on existing

2 A direct comparison of our results with Line-Up is not possible as the
details about the classes under test [5], as well as the specific bugs found,
are no longer available [4].



tests has two benefits: (1) it makes our approach easy to use and
(2) it provides a large range of different inputs that can expose
bugs not triggered by manually written tests. We address the third
requirement with an oracle that determines whether a concurrent
execution exposes a thread safety problem (Section 4).

Our analysis consists of three iteratively performed steps, which
correspond to the three requirements. At first, a generator of con-
current tests creates a test that sets up an instance of the CUT and
that calls methods on this instance from multiple threads. Next, we
execute the generated test. Since the class is supposed to be thread-
safe, it should synchronize concurrent calls on the shared instance
as needed. As a result, the methods should “behave as if they occur
in some serial order that is consistent with the order of the method
calls made by each of the individual threads involved” [1]. The third
step of our analysis checks whether the CUT behaves as expected.
If the analysis finds that the concurrent execution shows behav-
ior not possible in any linearization of calls, it reports a bug and
terminates. Otherwise, the analysis goes back to the first step and
continues until a stopping criterion, such as a timeout or a specified
maximum number of generated tests, is reached.

3. Generating Concurrent Tests
This section presents a technique to generate concurrent tests that
exercise a CUT from multiple threads. The input to the test gener-
ator is a class C and, optionally, a set of auxiliary classes A that
C depends on. The generator creates call sequences. Each call ci
in a call sequence (c1, . . . , cn) consists of a method signature, a
possibly empty list of input variables, and an optional output vari-
able. The input variables of a call represent parameters passed to the
method. For an instance call, the first input variable is the receiver
of the call. The output variable of a call represents its return value.
We model constructor invocations as calls where the output vari-
able represents the new object. Similarly, we model field accesses
as calls where the underlying object is the only input variable and
where the output variable represents the field value. We say that a
call sequence is well-defined if each input variable of a call cj is
the output variable of a call ci with i < j, that is, if each call uses
only variables defined on prior calls.

A test consists of a prefix and a set of suffixes. The prefix is
a call sequence supposed to be executed in a single thread. The
prefix instantiates the CUT and calls methods on the CUT instance
to “grow” the object, that is, to bring it into a state that may allow
the suffixes to trigger a bug. A suffix is a call sequence supposed
to be executed concurrently with other suffixes after executing the
prefix. All suffixes share the output variables of the prefix and can
use them as input variables for suffix calls. In particular, all suffixes
share the CUT instance created in the prefix. While our general
approach is independent of the number of suffixes, we focus on
two suffixes per test, so that a test is a triple (p, s1, s2) where p is
the prefix and s1, s2 are suffixes. The rationale for this choice is
that most real-world concurrency bugs involve no more than two
threads [30].

Figure 1b is a very simple example for a test. The prefix is a
single call to the constructor of StringBuffer, which returns the
CUT instance sb. Each of the two suffixes calls a single method
using the shared CUT instance sb as the receiver. In practice,
effective concurrent tests are not always that simple. Calling a
method often requires providing parameters of a particular type,
which in turn may require calling other methods. Furthermore,
triggering a bug often requires to bring the CUT instance in a
particular state, for example, by calling setter methods.

3.1 Tasks
To automatically generate concurrent tests, we divide the genera-
tion of a test into simpler tasks, which build and extend call se-

quences. Each task takes a call sequence sin = (c1, . . . , ci) and
returns a new sequence sout = (c1, . . . , ci, cj , . . . , cn) that ap-
pends n− j+1 additional calls to sin. The additional calls can use
output variables of previous calls as their input variables. We use
three kinds of tasks:

• instantiateCUTTask, which appends a call to create a new
instance of the CUT.

• callCUTTask, which appends a call to the CUT instance.
• parameterTask, which makes a parameter of a particular type

available by choosing an output variable of a previous call or by
appending a call that returns an object of the required type.

A task succeeds if it extends sin with additional calls in such
a way that sout is well-defined and that sout executes in a single
thread without throwing an uncaught exception. The latter require-
ment adapts an idea from sequential test generation [37], namely
to use the result of executing call sequences for selecting which se-
quences to extend further. Generated call sequences that result in an
exception typically contain an illegal call, for example, a call that
violates the precondition for calling the method. Although focusing
on non-exceptional call sequences does not guarantee that each call
is legal, it ensures that extending a sequence will eventually lead to
executing more calls without reaching an obviously illegal state.

To successfully accomplish a task, the test generator extends
sin into candidates for sout until a candidate is found that is well-
defined and that executes without an exception. If after creating
a specified number of candidates no candidate has fulfilled these
conditions, the test generator gives up on this task and the task fails.
For example, the callCUTTask may fail if the CUT instance is in
a state that does not allow calling any of the CUT methods.

3.2 Test Generation Algorithm
Algorithm 1 describes how our analysis generates a concurrent test.
There are three global variables, which maintain their values over
multiple invocations of the algorithm: the setP of prefixes, the map
M assigning a prefix to its set of suffixes, and the set T of already
generated but not yet returned tests.

The algorithm has three main steps. At first, it creates a new pre-
fix or chooses a previously created prefix (lines 6 to 20). Then, it
creates a new suffix for the prefix (lines 21 to 26). Finally, the algo-
rithm creates tests by combining the new suffix with each existing
suffix (lines 27 to 29). To create prefixes and suffixes, the algo-
rithm invokes tasks. The functions randTake and randRemove
randomly select an element of a set with a uniform probability dis-
tribution, and the randRemove function also removes the selected
element from the set.

Creating Prefixes During the first step (lines 6 to 20), the algo-
rithm creates a new prefix unless maxPrefixes (discussed in Sec-
tion 5) have already been created. The reason for limiting the num-
ber of prefixes is that we require multiple suffixes for each prefix
to test different concurrent usages of a CUT instance. To create
a new prefix, the algorithm invokes the instantiateCUTTask.
This task randomly chooses a method m from all methods in C
and A that have C or a subtype of C as return type. If calling m
requires parameters, the task invokes parameterTasks to make
these parameters available. The instantiateCUTTask returns a
call sequence that creates all required parameters, stores them into
output variables, and calls m. If the test generator cannot instantiate
the CUT, for example, because there is no public constructor, the
algorithm fails. For Figure 1b, the instantiateCUTTask chose
the StringBuffer constructor as m and obtains a string literal as
parameter from parameterTask (literals are passed without stor-
ing them into a variable).



Algorithm 1 Returns a concurrent test (p, s1, s2)

1: P: set of prefixes B global variables
2: M: maps a prefix to suffixes
3: T : set of ready-to-use tests
4: if |T | > 0 then
5: return randRemove(T )
6: if |P| < maxPrefixes then B create a new prefix
7: p← instantiateCUTTask(empty call sequence)
8: if p = failed then
9: if P = ∅ then

10: fail(”cannot instantiate CUT”)
11: else
12: p← randTake(P)
13: else
14: for i← 1,maxStateChangerTries do
15: pext ← callCUTTask(p)
16: if pext 6= failed then
17: p← pext
18: P ← P ∪ {p}
19: else
20: p← randTake(P)
21: s1 ← empty call sequence B create a new suffix
22: for i← 1,maxCUTCallTries do
23: s1,ext ← callCUTTask(s1, p)
24: if s1,ext 6= failed then
25: s1 ← s1,ext
26: M(p)←M(p) ∪ {s1}
27: for all s2 ∈M(p) do B one test for each pair of suffixes
28: T ← T ∪ {(p, s1, s2)}
29: return randRemove(T )

After instantiating the CUT, the algorithm tries to invoke meth-
ods on the CUT instance to change the state of the CUT instance.
The callCUTTask randomly chooses a method among all meth-
ods of C and invokes the parameterTask for each required pa-
rameter. The prefix in Figure 1b contains no state changing call.
Alternatively to the shown prefix, the test generator could have cre-
ated the call sequence

StringBuffer sb = new StringBuffer();
sb.append("abc");

where the second call is a state changing call.

Creating Suffixes During the second step (lines 21 to 26), the
algorithm creates a new suffix for the prefix p. Therefore, it repeat-
edly invokes the callCUTTask. In addition to the suffix, the call
in line 23 passes the prefix to the task to allow for using output
variables from the prefix as input variables in the suffix. After ap-
pending calls to the CUT instance, the new suffix is added to the
set of suffixes for the prefix p.

All tasks that append method calls depend on the parameter-
Task. This task uses three strategies to make a parameter of a
particular type t available. If the given call sequence already has
one or more output variables of type t or a subtype of t, the task
randomly chooses between reusing a variable and creating a fresh
variable. The rationale for creating fresh variables is to diversify
the generated tests instead of passing the same parameters again
and again. To reuse a variable, the task randomly chooses from all
available variables with matching type. To create a fresh variable,
the behavior depends on the type t. If t is a primitive type or
String, the task returns a randomly created literal. Otherwise,
the tasks randomly chooses a method from all methods in C and
A returning t or a subtype of t. If calling this method requires
parameters, the task recursively invokes itself. We limit the number

ArrayList l = new ArrayList();

l.add("a");
l.add("b");

l.hashCode();

Thread 1 Thread 2

Result: ConcurrentModificationException in Thread 2

Figure 2: Test execution using a thread-unsafe class.

of recursions to avoid infinite loops and fail the task if the limit
is reached. If there is no method providing t, the parameterTask
returns null. Using null as a parameter may be illegal. In this case,
executing the sequence can result in an exception, for example, a
NullPointerException, so that the candidate is rejected.

Creating Tests The third step of the algorithm (lines 27 to 29)
combines the new suffix with each existing suffix for the prefix
into a test. The algorithm stores the created tests in T and on
further invocations returns a randomly selected test from T until
T becomes empty.

3.3 Beyond This Work
The tests generated by Algorithm 1 provide input to exercise a class
without any human effort, and hence, increase the usefulness of
existing dynamic analyses. For example, executions of generated
tests can be analyzed by existing detectors of data races [15, 32, 42,
44] or atomicity violations [16, 21, 28, 38, 45]. Without generated
tests, these analyses are limited to manually created tests and the
bugs exposed by these tests.

4. Thread Safety Oracle
This section presents an automatic technique to determine whether
the execution of a concurrent test exposes a thread safety bug.

4.1 Thread Safety
A class is said to be thread-safe if multiple threads can use it with-
out synchronization and if the behavior observed by each thread is
equivalent to a linearization of all calls that maintains the order of
calls in each thread [1, 20]. Saying that a class is thread-safe means
that all its methods are thread-safe. Our approach can also deal with
classes that guarantee thread safety for a subset of all methods by
excluding the unsafe methods when generating suffixes for a test.

Figure 2 is an example for a thread-unsafe class and a test exe-
cution that exposes this property. The concurrent use of ArrayList
from java.util results in an exception that does not occur in any
of the three possible linearizations of the calls:

add→ add→ hashCode

add→ hashCode→ add

hashCode→ add→ add

Therefore, the execution in Figure 2 shows that ArrayList is
thread-unsafe, as expected.

A property related to thread safety is atomicity, that is, the
guarantee that a sequence of operations performed by a thread ap-
pears to execute without interleaved operations by other threads.
One way to make a class thread-safe is to guarantee that each
call to one of its methods appears to be atomic for the calling
thread. However, a thread-safe class does not guarantee that mul-
tiple calls to a shared instance of the class are executed atomi-
cally [45]. For example, consider the use of the thread-safe class
java.util.concurrent.CopyOnWriteArrayList in Figure 3. Exe-
cuting the concurrent test has three possible outputs. For all three,



CopyOnWriteArrayList l = new CopyOnWriteArrayList();

l.add("a");
println(l);

l.add("b");

Thread 1 Thread 2

Result: [a], [a,b], or [b,a]

Figure 3: Test execution using a thread-safe class.

there is a linearization of calls that provides the same result, so the
test execution does not expose a thread safety problem:

add("a")→ println()→ add("b") gives [a]
add("a")→ add("b")→ println() gives [a,b]
add("b")→ add("a")→ println() gives [b,a]

4.2 Definitions
The thread safety oracle answers the question whether a concurrent
test execution exposes a thread safety problem by comparing the
concurrent execution to executions of linearizations of the test. We
use ⊕ to concatenate sequences, and c →s c′ indicates that call c
comes before call c′ in a call sequence s.

Definition 1 (Linearization). For a test (p, s1, s2), let P12 be the
set of all permutations of the call sequence s1 ⊕ s2. The set of
linearizations of the test is:

L(p,s1,s2) = {p⊕ s12 | s12 ∈ P12 ∧
(∀c, c′ (c→s1 c′ ⇒ c→s12 c′) ∧
(c→s2 c′ ⇒ c→s12 c′))}

That is, a linearization of a test (p, s1, s2) appends to p all calls
from s1 and from s2 in a way that preserves the order of calls in s1
and s2.

Definition 2 (Execution). For a test (p, s1, s2), we denote the set
of all distinguishable executions of this test as E(p,s1,s2). Each
e(p,s1,s2) ∈ E(p,s1,s2) represents the sequential execution of p
followed by a concurrent execution of s1 and s2. Likewise, we
denote the sequential execution of a call sequence s as es.

A single test can have multiple distinguishable executions be-
cause of the non-determinism of concurrent executions.

The following definition of thread safety refers to the equiva-
lence e1 ∼= e2 of two executions e1 and e2. We discuss in Sec-
tion 4.3 how our oracle decides whether two executions are equiv-
alent.

Definition 3 (Thread safety). Let TC be the set of all possible tests
for a class C. C is thread-safe if and only if:

∀(p, s1, s2) ∈ TC ∀e(p,s1,s2) ∈ E(p,s1,s2)
∃l ∈ L(p,s1,s2) so that e(p,s1,s2) ∼= el

That is, a class is thread-safe if each concurrent test execution
has an equivalent linearization.

4.3 The Test Oracle
Showing that a class is thread-safe according to Definition 3 is
difficult in practice, because all possible tests and all possible
executions of these tests would have to be considered. However,
the thread safety oracle can show that a class C is thread-unsafe by
showing:

∃(p, s1, s2) ∈ TC ∃e(p,s1,s2) ∈ E(p,s1,s2)
so that ∀l ∈ L(p,s1,s2) e(p,s1,s2) � el

Algorithm 2 Checks whether a test (p, s1, s2) exposes a thread
safety bug

1: repeat
2: e(p,s1,s2) ← execute(p, s1, s2)
3: if failed(e(p,s1,s2)) then
4: seqFailed← false
5: for all l ∈ L(p, s1, s2) do
6: if seqFailed = false then
7: el ← execute(l)
8: if failed(el)∧ sameFailure(e(p,s1,s2), el) then
9: seqFailed← true

10: if seqFailed = false then
11: report bug e(p,s1,s2) and exit
12: until maxConcExecs reached

That is, the thread safety oracle tries to find a test that exposes
behavior not possible with any linearization of the test. To decide
whether two executions are equivalent, the oracle compares the
exceptions and deadlocks caused by the executions.

Definition 4 (Equivalence of executions). Two executions e1 and
e2 are equivalent if

• neither e1 nor e2 results in an exception or a deadlock, or
• both e1 and e2 fail for the same reason (that is, the same type

of exception is thrown or both executions end with a deadlock).

Although this abstraction ignores many potential differences
between executions, such as different return values of method calls,
it is crucial to ensure that the analysis only reports a class as thread-
unsafe if this is definitely true.

Algorithm 2 shows how the analysis checks whether a test
(p, s1, s2) exposes a thread safety problem. The algorithm repeat-
edly executes the test until a maximum number of concurrent ex-
ecutions is reached, or until a bug is found. If the test fails, that
is, it throws an exception or results in a deadlock, the algorithm
executes all linearizations of the test to check whether the same
failure occurs during a sequential execution of the same calls. If no
linearization exposes the same failure, the algorithm reports a bug
because the CUT is thread-unsafe.

The thread safety oracle is sound but incomplete.3 Every exe-
cution for which the oracle reports a bug is guaranteed to expose
a real thread safety problem according to Definition 3, but the or-
acle may classify an execution as correct even though it exposes
a thread safety problem. The soundness of the oracle ensures that
our approach detects concurrency bugs without reporting false pos-
itives.

We build upon two assumptions, which we find true for most
real-world classes during our evaluation. First, we assume that un-
caught exceptions and deadlocks that occur in a concurrent usage
of a class but not in a sequential usage are considered a problem.
This assumption is in line with the commonly accepted definition
of thread safety [1, 20]. Second, we assume that sequential execu-
tions of a call sequence behave deterministically. Sequentially non-
deterministic methods, for example, methods that depend on the
current system time, should be excluded from our analysis. Alter-
natively, our analysis can be combined with a runtime environment
that ensures deterministic sequential execution [40].

3 We mean soundness and completeness regarding incorrectness [47]. In
other communities, such as type systems, the terms are typically used with
respect to correctness, that is, inverse to the usage here.



5. Implementation
We implement the test generator and the thread safety oracle into
an automatic bug detection tool for thread-safe Java classes. This
section presents several challenges faced by the implementation
and how we address them.

The test generator executes many call sequences and must do so
both efficiently and without interference between different execu-
tions. To execute sequences efficiently we take a reflection-based
approach similar to the sequential test generator Randoop [37]. A
problem not addressed by Randoop is that different call sequences
may interfere because of static state. For example, a call sequence
s1 may assign a value to a static field and a call sequence s2 may
read the static field. As a result, the outcome of executing s2 may
vary depending on whether s1 is executed before s2. This problem
is independent of concurrency. We address the problem by reset-
ting all static state to the state of the freshly loaded classes before
each execution of a call sequence. For this purpose, our implemen-
tation instruments classes so that all modifications of static state
are recorded and can be reset. Csallner and Smaragdakis describe a
similar approach for a sequential test generator [11].

The test generator takes a random seed as an input, which al-
lows for precise replay of the test generation process, as long as
the tested classes behave deterministically in sequential execu-
tions. Experience with sequential, random test generation shows
that short runs with many different seeds trigger bugs faster than
few runs with a small number of seeds [9]. Our initial experi-
ments confirmed this observation, so we run the analysis in multiple
rounds that each use a different random seed. The first rounds stop
after trying a small number of suffixes (ten) for a single prefix. Later
rounds gradually raise the maximum number of generated prefixes
(maxPrefixes) to 25 and the maximum number of generated suf-
fixes to 500. The values of other parameters used in Algorithm 1 are
maxStateChangerTries = 5, maxConcExecs = 100, and
maxCUTCallTries = 2.

To detect deadlocks, we use the management interface for the
thread system of the Java virtual machine. A daemon thread peri-
odically queries this interface and notifies the thread safety oracle
in case of a deadlock.

Although being a prototype, the performance of our tool is ac-
ceptable for a testing tool (details in Section 6). The by far most
important bottleneck of our implementation is the repeated concur-
rent execution of tests. For example, for the CUT taking the longest
to analyze, 99.5% of the time is spent with concurrent executions.
We see two ways to address this issue. First, the analysis can ex-
ploit multiple cores by exploring different concurrent executions of
the same test in parallel. Second, our analysis can be easily com-
bined with existing techniques to increase the probability of hitting
a bug by controlling or perturbing the scheduler [6, 10, 12, 33, 43].
Our current implementation executes tests with the standard Java
thread scheduler. To plug a more sophisticated scheduling tech-
nique into our approach, one can redefine the execute function of
Algorithm 2.

6. Evaluation
We evaluate our approach by applying the prototype implementa-
tion to Java classes from six popular code bases: the Java standard
library shipped with Sun’s JDK, the database connection pool li-
brary Apache Commons DBCP, the serialization library XStream,
the text processing toolkit LingPipe, the chart library JFreeChart,
and Joda-Time, a library to handle data and time.

6.1 Experimental Setup
All experiments are done on an eight-core machine with 3GHz Intel
Xeon processors and 8GB memory running 32-bit Ubuntu Linux

class ConcurrentHashMap {
void clear() {

final Segment[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {

Segment s = segmentAt(segments, j);
if (s != null)

s.clear(); // locks the segment
}

}
void putAll(Map m) {

for (Map.Entry e : m.entrySet())
// BUG: m’s entries may change
put(e.getKey(), e.getValue());

}
Object put(Object key, Object value) {

Segment s = /* get segment in a thread-safe way */;
return s.put(key, value); // locks the segment

}
}

(a) Supposedly thread-safe class.

ConcurrentHashMap map = new ConcurrentHashMap();
map.put("a", "b");

map.clear();
map.hashCode();

map.putAll(map);

Thread 1 Thread 2

Result: StackOverflowError in Thread 1
(b) Execution of a generated concurrent test exposing a thread-safety bug.

Figure 4: Concurrency bug in ConcurrentHashMap.

and the Java Hotspot VM version 1.6.0 27, giving 2GB memory to
the VM. We run experiments with different CUTs in parallel but
run at most four tests at a time to reserve a core for each concurrent
thread exercising the CUT. We repeat each experiment ten times
with different random seeds [37].

To analyze a CUT, the test generator uses all other public classes
from the code base and common classes from the Java standard
library as auxiliary classes.

6.2 Bugs Found
The analysis found 15 bugs in supposedly thread-safe classes, six
of them previously unknown. Each bug can cause concurrency
bugs in clients relying on thread-safe classes. Table 1 lists all bugs
along with the reason for failing. The last column indicates whether
the reason is a deadlock or an exception thrown implicitly by the
virtual machine or by the Java standard library, or if triggering the
bug requires an explicitly thrown exception in the analyzed code
base. For twelve of 15 bugs, an implicit exception is sufficient to
reveal the bug. That is, our approach reveals most bugs without any
requirement on the analyzed classes, such as throwing an exception
if an unsafe state is reached.

The analysis reveals two previously unknown bugs in the Java
standard library, one of them shown as the motivating example in
the introduction (Figure 1). The other new bug in the Java standard
library is illustrated in Figure 4. The class ConcurrentHashMap is
part of the java.util.concurrent package, which provides thread-
safe collection classes. For better scalability, the class divides the
map into segments that are locked independently of each other, in-
stead of relying on a single exclusion lock. Unfortunately, putAll()
does not consider the case where the passed map is the same as the
receiver object of the call. The method retrieves the entries of the
passed map without any synchronization and then passes each el-



ID Code base Class Declared Found Reason for failing Implicit
thread-safe unsafe

Previously unknown bugs:

(1) JDK 1.6.0 27 and 1.7.0 StringBuffer yes yes IndexOutOfBoundsException yes
(2) JDK 1.6.0 27 and 1.7.0 ConcurrentHashMap yes yes StackOverflowError yes
(3) Commons DBCP 1.4 SharedPoolDataSource yes yes ConcurrentModificationException yes
(4) Commons DBCP 1.4 PerUserPoolDataSource yes yes ConcurrentModificationException yes
(5) XStream 1.4.1 XStream yes yes NullPointerException yes
(6) LingPipe 4.1.0 MedlineSentenceModel yes yes IllegalStateException no

Known bugs:

(7) JDK 1.1 BufferedInputStream yes yes NullPointerException yes
(8) JDK 1.4.1 Logger yes yes NullPointerException yes
(9) JDK 1.4.2 SynchronizedMap yes yes Deadlock yes

(10) JFreeChart 0.9.8 TimeSeries yes yes NullPointerException yes
(11) JFreeChart 0.9.8 XYSeries yes yes ConcurrentModificationException yes
(12) JFreeChart 0.9.12 NumberAxis yes yes IllegalArgumentException no
(13) JFreeChart 1.0.1 PeriodAxis yes yes IllegalArgumentException no
(14) JFreeChart 1.0.9 XYPlot yes yes ConcurrentModificationException yes
(15) JFreeChart 1.0.13 Day yes yes NumberFormatException yes

Automatic classification of classes as thread-unsafe:

(16) Joda-Time 2.0 DateTimeFormatterBuilder no yes IndexOutOfBoundsException (10x) yes
(17) Joda-Time 2.0 DateTimeParserBucket no yes IllegalArgumentException (9x) no

NullPointerException (1x) yes
(18) Joda-Time 2.0 DateTimeZoneBuilder no yes NullPointerException (6x) yes

ArrayIndexOutOfBoundsException (2x) yes
IllegalFieldValueException (2x) yes

(19) Joda-Time 2.0 MutableDateTime no yes IllegalFieldValueException (9x) no
ArithmeticException (1x) yes

(20) Joda-Time 2.0 MutableInterval no yes IllegalArgumentException (10x) no
(21) Joda-Time 2.0 MutablePeriod no yes ArithmeticException (10x) yes
(22) Joda-Time 2.0 PeriodFormatterBuilder no yes ConcurrentModificationException (5x) yes

IndexOutOfBoundsException (4x) yes
IllegalStateException (1x) no

Joda-Time 2.0 ZoneInfoCompiler no no (stopped after 24h) –

Table 1: Summary of results. The last column indicates whether the reason for failing is implicit in the Java runtime environment or explicitly
specified in the code base under test.

ement to the correctly synchronized put(). As a result, a call to
map.putAll(map) can undo changes done by a concurrently ex-
ecuting thread that also modifies the map—a clear thread safety
bug. Our analysis generates the test in Figure 4b, which exposes
the problem. Calling hashCode() results in a stack overflow for
self-referential collections, because the method recursively calls
itself (this is documented behavior). If ConcurrentHashMap were
thread-safe, this behavior should not be triggered by the test, be-
cause all three possible linearizations of the calls in Figure 4b call
clear() before calling hashCode(). However, the test fails with a
StackOverflowError, because putAll() undoes the effects of the
concurrently executed clear().

Figure 5 is a previously unknown bug that our analysis detects
in Apache Commons DBCP. The supposedly thread-safe class
SharedPoolDataSource provides two methods setDataSource-

Name() and close() that register and unregister the data source via
static methods of InstanceKeyObjectFactory, respectively. The
factory class maintains a thread-unsafe HashMap assigning names to
data sources. Although registering new instances is synchronized to
avoid concurrent accesses to the HashMap, unregistering instances
is not synchronized. The generated test in Figure 5b shows that
this lack of synchronization leads to an exception when calling
setDataSourceName() and close() concurrently.

To allow for reproducing our results, all analyzed classes, de-
scriptions of the bugs, and a generated test to trigger each bug are
available at http://mp.binaervarianz.de/pldi2012.

6.3 Annotating Classes as Thread-unsafe
Beyond finding bugs, our analysis can be used to analyze classes
having no documentation on their thread safety and to automat-
ically annotate these classes as thread-unsafe where appropriate.
In a preliminary study for this work, we found that one of the
most common concurrency-related questions of Java developers
is whether a particular library class is thread-safe. Few libraries
come with precise documentation to answer this question. To ad-
dress this lack of documentation, our analysis can automatically
annotate classes as thread-unsafe. Since the oracle is sound, these
annotations are guaranteed to be correct.

To evaluate this usage scenario, we run our analysis on a li-
brary that specifies for each class whether it is thread-safe or not.
The library (Joda-Time) contains 41 classes, of which 33 are docu-
mented as thread-safe and eight are documented as thread-unsafe.
The lower part of Table 1 summarizes the results. For seven of
the eight thread-unsafe classes, our analysis detects a thread safety
problem. The missing class, ZoneInfoCompiler, reads files from
the file system, transforms them, and writes other files as output.



class SharedPoolDataSource {
void setDataSourceName(String v) {

key = InstanceKeyObjectFactory
.registerNewInstance(this);

}
void close() {

InstanceKeyObjectFactory.removeInstance(key);
}

}

class InstanceKeyObjectFactory {
static final Map instanceMap = new HashMap();
synchronized static String

registerNewInstance(SharedPoolDataSource ds) {
// iterate over instanceMap

}
static void removeInstance(String key) {

// BUG: unsynchronized access to instanceMap
instanceMap.remove(key);

}
}

(a) Supposedly thread-safe class.

SharedPoolDataSource ds1 = new SharedPoolDataSource();
ds1.setConnectionPoolDataSource(null);

dataSource.setDataSourceName("a"); dataSource.close();

Thread 1 Thread 2

Result: ConcurrentModificationException in Thread 1

(b) Execution of a generated concurrent test exposing a thread-safety bug.

Figure 5: Concurrency bug in Apache Commons DBCP.

Since the thread-safety oracle does not check the integrity of such
files, it cannot detect problems caused by concurrent usages of the
class. For the 33 classes that are documented as thread-safe, no
problems are found after running the analysis for 24 hours.

6.4 Effort of Using the Analysis
Using our approach involves minimal human effort, because the
analysis requires the source code or byte code of the classes under
test as only input and produces true positives as only output. Expe-
rience from applying automated bug finding techniques in industry
shows that both properties are important [3].

The computational effort of our implementation is acceptable
for an automatic testing tool. Figure 6a shows how long the analysis
takes to trigger the problems from Table 1. The horizontal axis
shows the IDs from Table 1, sorting the classes by the average time
required to find the problem. The vertical axis gives the minimum,
average, and maximum time taken to find the problem over ten
runs. Most of the problems are found within one hour. For several
problems, the analysis takes only a few seconds. Other classes
require several hours of computation time, with up to 8.2 hours for
bug 8 (JDK’s Logger). Given that the bug remained unnoticed for
several years in one of the most popular Java libraries, we consider
this time to be still acceptable. Section 5 outlines ways to reduce
the running time of our implementation with additional engineering
effort. The approach has very moderate memory requirements. The
test generator selects methods randomly and therefore does not
maintain significant amounts of state. If executing a generated call
sequence exceeds the available memory, an exception is thrown and
the sequence is not extended.
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Figure 6: Effort required to trigger a thread-safety problem.

A question related to running time is how many tests the anal-
ysis generates and executes before hitting a bug. Figure 6b shows
the average number of generated tests for each bug, listing the bugs
in the same order as in Figure 6a. For some bugs, a small num-
ber of tests (several hundreds or even less than hundred) suffices to
expose the problem. Other bugs require more tests, up to 17 mil-
lion for bug 4. A manual inspection of bugs requiring many tests
suggests that the task of executing a bug-exposing test with the
“right” thread interleaving dominates over the task of generating a
bug-exposing test. Combining our work with techniques to control
scheduling may reduce the number of tests for hitting a bug.

7. Limitations
First, the approach assumes that exceptions and deadlocks are un-
desirable. We found this “implicit specification“ to be true in prac-
tice, but in principle a class could throw exceptions as part of its
legal, concurrent behavior. Second, the approach has limited sup-
port for multi-object bugs. Although the generated tests combine
multiple classes and objects, they only reveal bugs triggered by
concurrent calls to the same object. Third, the approach is limited
to bugs that manifest through an exception or deadlock, and there-
fore it may miss more subtle problems leading to incorrect but not
obviously wrong results.

8. Related Work
8.1 Finding Concurrency Bugs
Table 2 compares this work with other bug finding techniques based
on four criteria: whether static or dynamic analysis is used, the



Approach Input Output Correctness criterion

P PT PTS B BF DR Atom DL Crash Other

[15, 32, 36,
42, 49]

D m l m m l l m m m m

[8] SD m l m m l l m m m m

[44] D m l m l m l m m l m

[2, 14, 21,
29, 39, 48]

D m l m m l m l m m m

[16, 45] D m m l l m m l m m m

[28, 38] D m m l l m m l m l m

[34] S m l m m l m m l m m

[25] D m l m l m m m l m m

[26] D m m l m l m m l m m

[51] D m l m l m m m m l m

[13, 18] D m m l l m m m m m l

[5, 24, 31] D m l m m l m m m m l

[7, 17] D m m l m l m m m m l

[52] SD m l m m l m m m m l

This work D l m m l m m m l l m

Table 2: Comparison with existing static (S) and dynamic (D) ap-
proaches. Input: program (P), program and tests (PT), or program,
tests, and specifications (PTS). Output: bugs (B) or bugs and false
positives (BF). Correctness criterion: data race (DR), atomicity vi-
olations (Atom), deadlock (DL), crash, or other.

input and output of the analysis, and the correctness criterion. The
unique feature of our work is to require only a program as input.

Data Races Dynamic data race detectors search for unsynchro-
nized, conflicting accesses to shared data by analyzing happens-
before relations [15, 32], by checking whether the program fol-
lows a locking discipline [42, 49], or by a combination of both
techniques [36]. Our approach detects data races, if they manifest
through an exception or a deadlock.

Atomicity Violations Analyses for finding atomicity violations
rely on specifications of atomic blocks or of sets of atomic vari-
able accesses, provided manually [16, 38, 45] or inferred heuris-
tically [2, 14, 21]. Inference causes false positives when violat-
ing source code is not supposed to be atomic. Our analysis detects
atomicity violations, if they lead to an exception or a deadlock.

Deadlocks Naik et al. [34] search deadlocks statically but require
tests. Joshi et al. [26] model check a reduced program and rely
on annotations of condition variables. Both analyses report false
positives. Our analysis finds deadlocks triggered by generated tests.

Active Testing To avoid false positives, active testing validates
potential bugs by controlling the scheduler to provoke an exception
or a deadlock. The approach has been applied to data races [44],
atomicity violations [28, 38], deadlocks [25], and memory-related
concurrency bugs [51]. Our approach shares the idea of reporting
problems only if a certainly undesired situation occurs but does not
rely on manually written tests.

Linearizability Herlihy and Wing introduce linearizability as
a correctness criterion for concurrent objects [22]. Line-Up [5]
checks the linearizability of calls but requires manually specified
method parameters. As shown in Figure 1, unusual parameters that
a human may miss can trigger long-standing bugs. Line-Up exe-
cutes all linearizations before running a concurrent test, whereas
our oracle analyzes linearizations only if the test fails. Elmas et
al. [13] and Fonseca et al. [17] propose linearizability-based analy-
ses that require specifications to abstract the state of a component.

Other Correctness Criteria Gao et al. [18] search for typestate
errors in multi-threaded programs and rely on typestate specifica-
tions. Joshi et al. [27] filter false warnings from verifying concur-
rent programs by using a sequential version of a program as an
oracle for the concurrent program. The approach relies on formal
specifications and tests. Other approaches check for violations of
inferred invariants [24, 31, 46] or unusual orderings [52]. The price
paid for not relying on explicit specifications are false positives.

8.2 Support for Finding Concurrency Bugs
Several techniques control the thread scheduling when running
a concurrent program repeatedly, for example, based on model
checking [10, 33], random scheduling [6, 43], or artificial de-
lays [12]. These techniques reduce the time to trigger a bug
and could enhance the performance of our analysis. Pugh and
Ayewah [41] and Jagannath et al. [23] address the problem of man-
ually writing concurrent unit tests. Our work is orthogonal to theirs,
because we generate tests automatically.

8.3 Test Generation
This work is inspired by techniques to generate sequential tests,
such as [11, 19, 37]. In contrast to them, our test generator creates
concurrent tests. Integrating more elaborate test generation tech-
niques, such as learning from observed call sequences [50], into
our approach could help to detect complex bugs faster.

Ballerina [35] generates efficient multi-threaded tests, showing
that two threads, each with a single call, can trigger many concur-
rency bugs. The test generator described here is directed towards
generating objects of required types and aims to generate (prefix,
suffix, suffix) triples to expose concurrency problems. In addition,
Ballerina checks test executions for linearizability (similar to [5])
and therefore produces false positives.

9. Conclusions
We present an automatic testing technique to reveal severe bugs in
thread-safe classes. Using our approach involves very little human
effort because it requires neither tests nor explicit specifications for
the classes under test, and because it produces only true positive
bug reports. The analysis is enabled by two contributions: (1) a
technique for generating tests that exercise a thread-safe class from
multiple threads, and (2) an oracle that reports a bug when a concur-
rent test execution results in an exception or a deadlock that cannot
occur in any linearized execution of the test. We validate our claims
by applying the analysis to six popular Java libraries. The analysis
reveals 15 bugs in supposedly thread-safe classes, including two
previously unknown bugs in the Java standard library.

Our technique for generating concurrent tests provides input
that can drive other dynamic analyses, which traditionally rely on
manually written tests. Generated tests not only add diversity to
otherwise available tests but also allow for dynamically analyzing
classes that have no tests at all.
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