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Abstract
Using a set of API methods often requires compliance with a pro-
tocol, whose violation can lead to errors in the program. However,
most APIs lack explicit and formal definitions of these protocols.
We propose a dynamic program analysis for automatically infer-
ring and refining specifications of correct method call sequences.
Our experiments with several Java programs show that we can infer
meaningful protocols, such as widely respected programming rules.
Furthermore, our analysis finds violations of the inferred specifica-
tions that point out potential bugs to the programmer.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Languages, Reliability, Verification

Keywords Specification mining, Runtime verification

1. Introduction
Formal specifications of correct method call sequences on appli-
cation programming interfaces (APIs) are useful for finding bugs,
verifying the correctness of a program and also serve as documen-
tation. Since no such API usage protocols exist for many existing
libraries and frameworks, specification mining techniques, which
infer legal method call sequences from runtime data of a program,
have been proposed [Ammons et al. 2002, Yang et al. 2006, Gabel
and Su 2008]. Unfortunately, inferred specifications are often er-
roneous and incomplete. This can happen because method calls
that are relevant for one specification are interleaved with irrelevant
calls, or because the analyzed program execution does not fully uti-
lize the API. Another limitation of many existing techniques is to
focus on method calls on single classes or objects. As a result, they
miss more complex API usages that encompass multiple related
objects.

Our approach addresses these problems by (i) iteratively refin-
ing specifications based on several executions of programs using
a particular API and (ii) considering protocols involving multiple
related objects.
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2. Approach
We propose a dynamic analysis that infers, refines, and checks API
usage protocols in two phases: The inference phase derives finite
state machines (FSMs) that describe legal method call sequences,
such as Figure 1. In the checking and refinement phase the analysis
detects confirmations and violations of the inferred protocols; it
uses them to refine the specifications and to report potential bugs.
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Figure 1. An inferred object usage protocol.

2.1 Inferring specifications
The first phase of the analysis infers protocols from method
traces [Pradel and Gross 2009], which we obtain by instrument-
ing and running an application that uses the API. The inserted
instructions report for each method call and return the signature
of the invoked method, as well as the object identity and type of
caller, callee, arguments, and return value of the call. Instead of an-
alyzing these data as a whole, we transform it into small episodes
of related calls that can be analyzed separately. Roughly, each such
an episode consists of the methods called during the execution of a
single method.

To eliminate method calls that are not relevant for a particular
specification, we further filter the call sequences: First, we observe
that related method calls are linked by a dataflow relation. For
instance, m1() and m2() are linked if m2() is invoked on the return
value of m1(). Second, related calls often belong to classes in the
same package. Based on these two observations, we extract call
sequences in which all calls are dataflow-related and belong to the
same package.

Similar call sequences lead us to FSMs that describe typical
usage protocols. Two call sequences are considered to be similar
if the same sets of methods are called on the involved objects. The
order of calls can be different, though. To construct FSMs, we map
each method to a state and create a transition whenever two calls are
observed consecutively. Each transition is labeled with the method
signature of the state that it points to (see Figure 1).



2.2 Checking and refining specifications
Inferred specifications can be used to verify at runtime whether
an application conforms to the detected rules. We perform such
runtime monitoring using similar episodes of related calls as in the
inference phase (Section 2.1). If a call sequence matches parts of a
protocol, we analyze whether the calls conform to the specification
and report a confirmation or a violation. For example, a method
that creates a FileWriter and writes to it triggers the protocol in
Figure 1. If the programmer forgot to call close() at the end, though,
a violation is reported.

Dynamic specification inference can derive only API usage pro-
tocols that actually occur in the analyzed execution of a program.
Hence, legal method calls may be missing. In Figure 1, for instance,
calls to FileWriter.flush() should be permitted before closing the
writer. However, a program execution calling flush() would trig-
ger a violation of the protocol in Figure 1. Another source of false
positives are transitions resulting from incidental method calls that
are not necessarily part of the specification. For example, a call to
File.canWrite() may precede creating the FileWriter but is not re-
quired.

Our approach to correct incomplete and erroneous specifica-
tions is to exploit the results from runtime monitoring to iteratively
refine the inferred specifications. Each new program execution pro-
duces a list of confirmations and violations. A specification with
many confirmations and several violations resulting from a miss-
ing transition in a particular state is likely to be correct, but must
be extended with the missing transition. In contrast, a specification
with various violations is likely to be the result of an incidental call
sequence in the initially analyzed program execution and therefore
should be discarded. In addition to refining protocols, we also re-
move erroneous ones by simply pruning all specifications whose
confirmation/violation ratio is below a certain threshold.

3. Experiments
We implemented our approach and evaluated it with real-world
Java applications. The following reports on a case study on infer-
ring usage protocols for objects from the Java standard library. We
analyzed method traces from six applications: Eclipse, PMD, and
ANTLR (all as part of the DaCapo benchmark suite [Blackburn et al.
2006]); jEdit, 1 JabRef, 2 and XMLUnit. 3 Overall, we analyzed
around three million runtime events.

The method traces from four of the six programs were given
as input to the inference phase. Focusing on API calls to the Java
standard library, 131 specifications were generated. Using these
protocols, we checked traces from three applications and pruned
all protocols with more violations than confirmations. 44 specifi-
cations remain, out of which 22 come from two or more distinct
call sites in the source code. The results suggest that our inference
technique, combined with a simple pruning, produces a significant
amount of typical usage protocols, rather than incidental call se-
quences. A larger case study is reported on in [Pradel and Gross
2009].

To illustrate the effect of our refinement technique, consider
a protocol of StringBuffer, inferred from ANTLR. Initially, it per-
mits to append Strings and ints to the buffer, followed by a call
of toString(). Only 52 % of the checked StringBuffer uses follow
this protocol. In a first refinement step, we also permit appending
other objects (char, etc.) and calling toString() right after creating
the buffer. This increases the confirmation rate to 70 %. In a second
step, we also permit calls to StringBuffer.length(), raising the con-

1 http://jedit.org
2 http://jabref.sf.net
3 http://xmlunit.sf.net

firmation rate to 74 %. All the refinement steps were inferred from
violations of the protocol.

Violations of protocols are, besides being useful to refine spec-
ifications, indicators of potential bugs. For instance, we detected
a bug using the protocol in Figure 1. A method in the XMLUnit
project initializes a FileWriter without closing it at the end of the
method or passing it to another method for doing so. The proto-
col in Figure 1 was initially found in an execution of JabRef. The
example illustrates that our approach is able to automatically infer
common programming practices (“close all writers that you open”)
and detect violations of them.

4. Related Work
Ernst et al. present techniques for dynamically discovering pro-
gram invariants [Ernst 2000]. Ammons et al. mine API usage pro-
tocols from method traces with a probabilistic FSM learner [Am-
mons et al. 2002]. Gabel et al. enhances the performance of such
an approach by focusing on predefined micro-patterns [Gabel and
Su 2008]. Alternatively, correct method call sequences can also be
inferred statically [Whaley et al. 2002]. As an application of our re-
sults, we are currently investigating how to check the protocols that
our analysis generates with existing static and dynamic verification
techniques, such as type state checking [Bierhoff and Aldrich 2007]
and runtime monitoring frameworks [Chen and Rosu 2007].

5. Concluding Remarks
This work contributes by considering protocols of multiple related
objects and refining its results iteratively. It is therefore a further
step to make API usage protocols accessible without the need to
write them manually.
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