
Großer Beleg

Ontology Composition using a Role
Modeling Approach

submitted by

Michael Pradel

born 10.03.1983 in Jena

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: MSc. Jakob Henriksson
Professor: Dr. rer. nat. habil. Uwe Aßmann

Submitted September 20, 2007

Abstract

There is an increasing use of ontologies to repre-
sent domain knowledge, however, no notion of on-
tology components has so far been established. This
lack hampers partial reuse of ontologies and makes
a reuse-oriented engineering approach difficult. We
propose to enable component-based ontology engi-
neering by merging ontologies with role modeling,
a well-known modeling paradigm from the object-
oriented software community with focus on object
collaborations. Ontological role models provide an
intuitive reuse unit (ontology components) and allow
for a clearer and more natural way of modeling on-
tologies.

2

Zusammenfassung

Obwohl die Verbreitung von Ontologien zur Darstel-
lung von Wissen kontinuierlich zunimmt, hat sich
bis heute keine klare Definition von Ontologiekompo-
nenten herauskristallisiert. Dies erschwert die Wie-
derverwendung von Teilen existierender Ontologien,
so dass sich ein auf Wiederverwendung basieren-
der Ontologieentwicklungsprozess als kompliziert er-
weist. In dieser Arbeit wird gezeigt, wie komponen-
tenbasierte Ontologieentwicklung durch die Zusam-
menführung von Ontologien mit Rollenmodellierung,
einem in der objekt-orientierten Softwareentwicklung
wohlbekannten Modellierungsparadigma, ermöglicht
wird. Ontologische Rollenmodelle stellen eine intuiti-
ve, wiederverwendbare Einheit dar (Ontologiekompo-
nenten), und ermöglichen eine verständlichere und
natürlichere Modellierung.

3

Contents

1 Introduction 5

2 Preliminaries 7
2.1 Ontologies, Description Logics, and the Semantic Web 7
2.2 Reuse in Ontologies . 11
2.3 Ontology Aligning, Mapping, and Merging 12
2.4 Role Modeling . 13
2.5 Invasive Software Composition . 16

3 Role Modeling for Ontologies 18
3.1 Enhancing Ontology Modeling with Roles 19
3.2 Composing Role Models to an Ontology 22
3.3 Semantics of Ontological Roles . 25
3.4 Comparison with Object-Oriented Software Engineering 29

4 Implementation with Reuseware 31
4.1 Overview . 31
4.2 Core Language and Reuse Language 31
4.3 Composers and Composition Program 33

5 Outlook 36
5.1 Composition of Role-Based Ontologies 36
5.2 Levels of Role Coverage . 40
5.3 Further Ideas . 46

6 Conclusion 48

A Role Models 49

B Source Code 51

Bibliography 55

4

1 Introduction

An ontology is a model used to capture and represent knowledge. It de- Ontology =
knowledge
representation
model

scribes the concepts of a domain and relations between them. In addition,
ontologies allow for reasoning, that is, infer knowledge that has not explicitly
been given. Ontologies are used in artificial intelligence, software engineer-
ing, and biomedical informatics as a form of knowledge representation of
the world or a part of it. The most recent use of ontologies is for the se-
mantic web, where ontologies enhance web content with semantics. That is,
they provide meaning of information aiming at better interoperability of web
content.

Ontologies as used today have a number of fundamental problems that Poor modeling
have not yet been entirely resolved by research and which hamper an even
more extensive use of them. First, ontologies do not provide all modeling
concepts necessary to represent the world. Imagine for instance a person
appearing in several independent contexts, e.g. in his family, at work, and in
a sports club. How can we model his properties being a parent, researcher,
and basketball player? What about properties valid in all contexts, like name
or birthday? In this example, we are dealing with two different ways of ab-
straction. One that is bound to the identity of this person, and another de-
pending on the context in which the person appears. These two abstractions
are called natural types and role types [Sow84]. However, current ontology
languages support only one of them, namely natural types represented by
classes. Thus, it is impossible to distinguish classifying properties and those
belonging to a certain role. Consequently, ontology engineers are forced to
intermingle different aspects into one class description, and hence, cannot
separate concerns.

Second, although ontologies allow for reuse when applied to other do- Few reuse
mains [Ass05], reuse during the ontology engineering process itself is dif-
ficult. Up to now, there is no well-established notion of a reuse unit in
ontologies. The Web Ontology Language OWL [DS04] provides only very ba-
sic reuse mechanisms. In software engineering, the notion of modules and
components has largely enabled reuse of existing software when building
new ones. However, ontology engineering is still far away from a component-
based approach.

Role modeling is a well-known concept from object-oriented software en- Role modeling in
OOgineering [Ree96]. The main argument is that today’s class-oriented ap-

proach mixes the notions of natural types and role types. Roles provide
an abstraction of a set of objects focusing on object collaborations in-
stead on their inherent properties. Although role modeling has not yet
found its way into mainstream programming languages, it has been suc-
cessfully applied in different domains, for example framework develop-
ment [Rie00, RG98, ADN+03, Ste00].

This work introduces roles into ontologies. Making roles an ontological More natural
modelingprimitive (as for instance called for in [Ste05]) provides a number of benefits

for ontology engineering. First, distinguishing role types from classes leads
to more natural modeling. Reconsider the above example of a person and

5

1 Introduction

its roles in different contexts. A role-based approach allows to model that
a person can play one or more of the mentioned roles. Furthermore, role
types can often be reused in different contexts, for instance the parent-
child relationship of persons may reoccur when modeling operating system
processes or tree-based data structures.

Second, roles for better separation of different aspects of a domain than a Separation of
concernspurely classes-based approach. Role types explicitly split a class definition

in parts, each describing the properties of instances of that class in different
contexts.

Third, ontological role models provide an interesting reuse abstraction— Ontological
componentsontological components. We will show how general role models can be

(re)used to describe completely different domains. Ontological role models
thus enable reuse-centered ontology engineering.

In this work, we merge the concept of roles with ontologies on a concep- Roles in ontologies
tual level and address issues to consider when transferring role modeling
from object-orientation. Furthermore, we propose an extension of the Web
Ontology Language OWL enabling modeling of ontologies based on roles.
However, we argue that no additional expressiveness is needed to support
roles. Instead, we provide a translational semantics, mapping our extended
syntax to standard OWL. Moreover, we present a methodology for creating
role-based ontologies.

In order to validate our approach, we realized a prototypical implementa- Prototype
tion based on the Reuseware composition framework [HAJZ07] allowing to
model ontologies with roles and translate them into standard OWL.

The remainder of this work is organized as follows. Chapter 2 summarizes Organization
basic knowledge about ontologies, role modeling in object-oriented software
engineering, and invasive software composition. In Chapter 3, we introduce
roles into ontologies and explain the semantics of our extension. The sub-
sequent chapter describes our prototype. Chapter 5 provides a first glance
on how the ideas presented here can be further explored. Finally, Chapter 6
concludes this work.

6

2 Preliminaries

2.1 Ontologies, Description Logics, and the Semantic
Web

This work is about ontologies, one of the key technologies of the seman-
tic web. In the following, ontologies and one of its underlying formalisms,
Description Logics (DLs), are introduced. Furthermore, the vision of the
semantic web is shortly presented.

Ontologies

An ontology is a model representing the concepts of a domain, their relation- Definition
ships and constraints. The most widely cited definition is:

An ontology is an explicit specification of a conceptualization.

[Gru93]

Independent of the language used to express them, most ontologies share
a common set of notions: individuals, classes, and properties. They will
be shortly explained in the following. We use parts of the pizza ontol-
ogy [DHS+07] as an example, presented using a self-explaining graphical
notation.

Individuals are the instance level elements of an ontology. They may re- Individuals
present concrete objects that exist in the physical world, as well as abstract
objects like numbers or words.

Individuals are abstracted using the modeling concept of a class. A class Classes
describes a set of individuals with common properties and is built from class
expressions. Such class expressions are conditions that have to be fulfilled
by any individual belonging to that class. Class expressions are built us-
ing constructors that vary depending on the specific ontology language. We
graphically represent classes by boxes with gray background. Specifications
inside the box represent the definition of the class (in DL syntax). Subsump-
tion relationships between classes, i.e. supertype-subtype relationships, are
denoted by arrows in a UML-like fashion.

Relations between individuals are described using properties. They allow Properties
to assert facts about classes and individuals. A property is a binary relation
(c, d), where c is an individual, and d is an individual or an element of a
concrete domain. In the first case, the property describes a relation between
two individuals and is called object property. Object properties manifest re-
lations between classes. Our graphical notation presents an object property
as an arrow labeled with the property name that connects two classes. In
contrast, a property targeted towards an element of a concrete domain, e.g.
the natural numbers or the set of strings, is called data type property. It
describes an attribute that individuals of a class possess.

An ontology is a set of statements (axioms) using the modeling concepts Class based
ontologies

7

2 Preliminaries

described above. Today’s ontologies use classes as the only abstraction of
sets of individuals. In this work, a finite set of statements using the modeling
concepts individual, class, and property is called a class-based ontology.

Figure 2.1: Parts of the pizza ontology [DHS+07] as class-based ontology.

Figure 2.1 shows parts of the pizza ontology as an example of a class-based
ontology. Being a well-known ontology of an even better known domain, it
will be used as a running example in this work.

Description Logics

DL is a family of logical knowledge representation languages that can be Underlying
formalism of
ontologies

used to formalize ontologies. They have been developed as extensions of
semantic networks [Qui67] and frames [Min74] which do not provide precise
logic-based semantics [BCM+03].

The syntax of DLs is built upon three disjoint sets: Class names, prop- Syntax
erty names, and individual names. Class expressions (or briefly classes)
are unary predicate symbols that are built using a collection of construc-
tors which depend on the concrete language. Property expressions (or briefly
properties) are binary relations, whereas individuals can be viewed as logical
constants.

The terminology used in DL partly differs from that of ontologies. Ontolo- Different
terminologiesgies are normally called knowledge bases in DL jargon. Classes are referred

to as concepts, and properties are called roles. However, this meaning of role
is different from the modeling concept this work is about (see Section 2.4).
In order to avoid confusion, we exclusively use the terms ontology, class and
property to represent these notions.

An ontology consists of a set of axioms. Axioms can be of the following Axioms

8

2 Preliminaries

types (where D, C are classes, p, q are properties, and a, b are individuals):

C ≡ D (class definition)
C v D (class inclusion)
p ≡ q (property definition)
p v q (property inclusion)
C(a) (class assertion)

p(a, b) (property assertion)

The first four types of axioms describe the terminology of a domain, and TBox and ABox
are used to build the TBox (terminology). Class and property assertions form
the ABox (assertions). A TBox and an ABox together constitute a knowledge
base, or an ontology. The semantics of DLs are formally defined using model-
based semantics.

Most DLs are built on top of the basic language AL (attributive language). Base language: AL
More expressive languages, for instance the underlying DL of the Web On-
tology Language OWL DL (see below), extend AL with more powerful con-
structs. In the following, we give the syntax and semantics of ALC, a rela-
tively simple but for our purposes sufficient extension of AL.

Syntax of ALC class terms Let NC and NP be disjoint sets of class names ALC syntax
and property names. The set of ALC class terms is defined inductively as
follows:

• Each class name A ∈ NC is an ALC class term.

• >, ⊥ are ALC class terms (called top and bottom).

• Let C, D be ALC class terms, and let p ∈ NP . Then, the following are
also ALC class terms:

¬C (negation)
C uD (intersection)
C tD (union)
∀p.C (value restriction)
∃p.C (existential restriction)

The semantics of the class constructors are formally defined using inter- ALC semantics
pretations.

Semantics of ALC class terms An interpretation I consists of a non-empty
interpretation domain 4I and an interpretation function ·I which:

• assigns to each A ∈ NC a subset AI ⊆ 4I

• assigns to each p ∈ NP a binary relation pI ⊆ 4I ×4I.

9

2 Preliminaries

The interpretation function is extended to (complex) ALC class terms by
induction:

⊥I := ∅
>I := 4I

(¬C)I := 4I \ CI

(C uD)I := CI ∩DI

(C tD)I := CI ∪DI

(∀p.C)I := {d ∈ 4I | ∀e ∈ 4I : (d, e) ∈ pI → e ∈ CI}
(∃p.C)I := {d ∈ 4I | ∃e ∈ 4I : (d, e) ∈ pI ∧ e ∈ CI}

Reasoning in Ontologies

The main advantage of DLs compared to other knowledge representation Advantage:
Reasoningformalisms is that they allow for reasoning. This allows for the deduction

of implicit knowledge from explicitly encoded knowledge. Furthermore, rea-
soning allows to detect contradictions in the way knowledge is modeled and
to check whether it is possible to fulfill all the specified constraints.

Typical reasoning tasks on the TBox level are: TBox level

• Subsumption Check if a class description C is subsumed by a class
description D (or short C v D). That is, if all individuals of C must also
belong to D. Subsumption reasoning can be used to deduce the class
hierarchy of a set of classes.

• Equivalence Check if two class descriptions C and D are equivalent (or
short C ≡ D). Equivalent classes share the same semantics but may
be syntactically different.

• Satisfiability Check if a class description is satisfiable with respect to
a TBox. That is, if there may be individuals belonging to that class.

Ontologies including individuals, i.e. a non-empty ABox, allow to solve the ABox level
following reasoning problems:

• Instance problem Test if a given individual belongs to a class.

• Realization problem Find the most specific classes an individual be-
longs to.

• Consistency Check if there is an interpretation of the ontology that
satisfies its TBox and ABox.

A more detailed description of reasoning in DLs can be found in [BCM+03].

OWL and the Semantic Web

The Web Ontology Language OWL [DS04] is an ontology language recom- Web Ontology
Language OWLmended by the World Wide Web Consortium1 with an XML-based concrete

syntax. Other concrete syntaxes, e.g. Manchester OWL syntax [HDG+06]
are also available. OWL is constructed to support applications that process
information on the web. It is a family of languages with three members
differing in their expressiveness:
1http://www.w3.org/

10

2 Preliminaries

• OWL Lite is the least expressive OWL sublanguage but has the lowest
complexity for reasoning tasks. It is designed to construct classification
hierarchies with simple constraints.

• OWL DL provides maximum expressiveness while possessing proper-
ties of computational completeness and decidability. That is, all con-
clusions will be computed and the computation will finish in finite time.

• OWL Full offers even more expressiveness than OWL DL but does not
guarantee computational completeness and is undecidable.

One of the main application areas of OWL is the semantic web [BLHL01]. Semantic web
The main idea is to extend existing web content with semantic data such that
it becomes processible by software agents. This vision is largely promoted
by Tim Berners-Lee:

I have a dream for the Web [in which computers] become capable of
analyzing all the data on the Web – the content, links, and trans-
actions between people and computers. A ‘Semantic Web’, which
should make this possible, has yet to emerge, but when it does, the
day-to-day mechanisms of trade, bureaucracy and our daily lives
will be handled by machines talking to machines. The ‘intelligent
agents’ people have touted for ages will finally materialize.

[BLF01]

The content of the semantic web is annotated with metadata, e.g. by using Multitude of
ontologiesterms defined in an ontology. A natural question is whether this can be

achieved by one comprehensive consistent global ontology. While this might
be wonderful in order to arrive at maximum interoperability between web
content, it is not feasible and probably also not desirable. [MW04] analyzes
three main problems encountered on the way to global consistency: the
process of achieving consistency demanding very large efforts, the high costs
of being consistent, and the serious costs of maintaining consistency over
time. These problems have lead to a multitude of small ontologies covering
different and partly overlapping domains.

2.2 Reuse in Ontologies

As the use of ontologies increases and the ontologies themselves grow larger, Dream:
Component-based
ontology
engineering

the need to construct ontologies in a reuse-centered manner is becoming
more and more important. Besides resulting in ontologies that are eas-
ier to manage and understand, the main goal is to construct ontologies
(at least partly) from existing building blocks, similarly to component-based
software [Szy02].

The Web Ontology Language OWL mainly provides two mechanisms to OWL’s linking
mechanismmake use of already defined ontologies. First, linking allows to loosely ref-

erence distributed web content and other ontologies using URIs. While the
linking mechanism is convenient from a modeling perspective, it is seman-
tically not well-defined. There is no guarantee that the referenced ontology
or web content exists. Furthermore, the usually referenced component, an
ontology class, is relatively small and often hard to detach from the sur-
rounding ontology in a semantically well-defined way. Consequently, a full

11

2 Preliminaries

ontology import is often required since it is unclear which other classes the
referenced class depends on.

Second, OWL provides an owl:imports construct which syntactically in- OWL’s import
mechanismcludes the complete referenced ontology into the importing ontology. It can

only handle complete ontologies and does not allow for partial reuse. The
fact that owl:imports enforces a global interpretation of importing and im-
ported ontologies can lead to inconsistencies in the resulting ontology due
to conflicting modeling axioms. Overall, OWL seems to be inflexible in the
kind of reuse provided, especially regarding the granularity of components.

The need to modularize ontologies is also considered on the level of the Modular ontologies
underlying DLs. One proposal is a logic-based notation that allows to dis-
tinguish between local and external signatures of a TBox [GHKS07]. Sym-
bols in the external signature are assumed to be defined in another ontol-
ogy. This distinction permits conservative extensions of TBoxes, that is,
extensions that do not introduce new consequences in the original ontology.
Another approach is semantic import (as opposed to syntactic import with
owl:imports) [PSZ06]. Semantic import allows importing partial ontologies
and additionally enforcing the existence of any referred external ontologies
or ontology elements (classes, properties, individuals) by the notion of ontol-
ogy spaces. Other approaches towards modular ontologies that focus less on
reuse but rather on dealing with terminological clashes when combining on-
tology modules and selective knowledge sharing are summarized in [Bao06].

2.3 Ontology Aligning, Mapping, and Merging

Numerous applications require to relate and combine independently de- Ontology
reconciliationveloped ontologies. For instance, a search engine for the semantic web

needs to relate and combine the ontologies used for annotating the searched
web content. During this process a number of problems may arise
(see [VJBCS97, Kle01] for a categorization of typical problems into an on-
tology mismatch classification). Research has found a number of solutions
to overcome these problems. This section presents ontology aligning, map-
ping, and merging and gives a short overview of existing tools to reconcile
ontologies.

Ontology alignment is the process of discovering correspondences between Alignment
two source ontologies. [dBEF+06] proposes to distinguish the large number
of algorithms for this task in two dimensions. First, the level of a knowledge
base worked on allows to distinguish schema-based and instance-based ap-
proaches. While schema-based approaches concentrate on classes and rela-
tions of an ontology, instance-based ones consider its individuals. Second,
algorithms can be distinguished regarding their locality. Element-level ap-
proaches compare one particular class or relation with another one. In con-
trast, structural-level ones compare for instance the inheritance hierarchies
of two ontologies.

The outcome of ontology alignment is a specification of the semantic over- Mapping
lap between two ontologies called an ontology mapping. Mapping approaches
differ in the way of representing mappings. Since these are not the main con-
cern of this work, the reader is referred to the survey of mapping approaches
given in [dBEF+06].

Ontology mapping separates between the source ontologies and the map- Merging
pings between them. In contrast, the creation of a new ontology containing

12

2 Preliminaries

all information of two or more source ontologies in a coherent and consis-
tent way is called ontology merging. In general, two ways of merging are
possible. On the one hand, all elements from the source ontologies can be
copied into the resulting one. This approach is for instance realized in the
PROMPT tools [Noy04]. On the other hand, the resulting ontology can im-
port the source ontologies, e.g. using the OWL import construct, and merge
them with bridging axioms without changing them. OntoMerge [DMQ05] is
an example for this approach.

The PROMPT tools use a knowledge model based on the frame-based IPROMPT

knowledge model underlying the ontology editor Protégé [KFNM04]. This
model is general enough to be compatible with DL-based ontology languages
like OWL DL (a version of PROMPT for Protégé-OWL is also available). One
of these tools, IPROMPT, realizes an element-level approach helping to merge
elements from two ontologies in a local context. At the beginning, an initial
list of matchings is created based on class names. The user can choose
to trigger one of the operations proposed by IPROMPT or specify the desired
operation directly. Afterwards, the tool performs the operation, e.g. merg-
ing two classes into a new one or simply copying a class into the resulting
ontology, and computes its consequences. If necessary, a set of conflicts is
presented to the user, for instance because some referenced classes are not
yet in the new ontology. Based on the results of the operation, the list of
suggestions is updated and the process reiterates.

While IPROMPT considers only the local context of ontology elements, AN- ANCHORPROMPT

CHORPROMPT uses a set of heuristics to analyze non-local context. It takes
as input a set of pairs of similar classes (each pair consisting of one class
from each ontology), called anchors, usually given by the user. ANCHOR-
PROMPT compares two pairs by calculating similarity scores of the elements
connecting the anchors. Based on the idea that classes between the given
anchors are likely to be similar as well, a number of new matching sugges-
tions is computed. A detailed description of the algorithm is given in [Noy04].

Another interesting approach is SAMBO [LT05]. It provides a framework SAMBO
for aligning ontologies that allows to combine different strategies. The tool
includes strategies based on linguistic matching, structure-based strategies,
constraint-based approaches, instance-based strategies, and the use of aux-
iliary information like dictionaries and thesauri. Unfortunately, the tool is
not publically available such that no practical tests could be performed.

2.4 Role Modeling

Roles are a modeling concept for object-oriented software that focuses on Two ways of
abstractionobjects and how they collaborate. The main idea is that objects can be ab-

stracted in two ways [Ree96]. One abstraction regards their properties and
classifies them accordingly, yielding classes, the major modeling concept
used in most object-oriented programming languages. The other abstrac-
tion analyzes how objects collaborate in order to achieve a specific goal.
This yields roles and role models.

On a slightly more philosophical level, one can distinguish between natural Natural types vs.
role typestypes and role types. Natural types can be defined as follows [Sow84]:

A natural type is a semantically rigid and non-founded type in-
sofar as an entity that has the type cannot stop being of the type

13

2 Preliminaries

without loosing its identity and does not depend on any collabo-
ration.

Obviously, classes are natural types. In contrast, role types are charac-
terized by the following definition:

A role type is a founded and semantically non-rigid type insofar
as it characterizes an entity by some role it plays in relationship
to another entity or other entities, and if left, does not give up
identity of entities.

Classes are good abstractions to categorize objects by their properties.
However, objects not only exist, they interact with each other in different
contexts to achieve certain (common) goals, in other words, they play roles.
For instance, a person may play the roles baker early in the morning, and
father in the afternoon. Both are completely independent from each other
and each depends on a certain context (for example the bakery and his son).

Research on roles in object-oriented software has resulted in a multitude Definitions
of (partly opposing) definitions [Ree96, Ste05]. The following definitions are
based on [Rie00]:

Definition: Role
A role describes the behavior of an object in a certain context.

An object is said to play a role. It may play multiple roles at the same time
and change its roles during its lifetime. The behavior of an object depends
on a collaboration, and thus, a role never occurs alone but with at least one
other role.

A role type provides an abstraction from similar roles:

Definition: Role type
A role type is a type that characterizes a set of roles with similar
behavior.

Composing all roles of an object completely defines its behavior. Similarly
to classes, role types are a modeling concept to abstract from a number of
objects. However, a role type concentrates on the collaboration of objects
with other objects. A specific collaboration is called an object collaboration
task:

Definition: Object collaboration task
An object collaboration task is a collaboration of objects that play
roles to reach a common purpose.

In other words, an object collaboration task defines the context in which
objects playing roles interact. This leads to a new abstraction not available
for classes:

Definition: Role model
A role model is a set of relating role types. It characterizes a set
of similar object collaboration tasks.

Role models allow to abstract from a set of objects according to their col-
laborations. Thus, they provide a reusable abstraction that focuses on only

14

2 Preliminaries

one context. In contrast, a class model presents multiple classes, each hav-
ing several role types, and their relationships. Class models intermingle
completely independent concerns, and thus, hamper reuse of a single con-
cern. In constrast, role models allow for separation of concerns.

Role types can be connected by two kinds of relationships. On the one
hand, there are the usual object relationships, i.e. association, aggregation
and composition. On the other hand, one wants to model certain constraints
between role types. For instance a person playing the father role cannot play
the role of its son at the same time. Those constraints can be expressed by
role constraints:

Definition: Role constraints
A role constraint is a value from the set role-implied, role-
equivalent, role-prohibited, role-don’t care. For every pair of role
types, one such value is defined.

Role constraints are scoped by an object collaboration task. They only
constrain the roles of objects inside this task. For example, every father also
has a father, and therefor plays the role of a son. However, that is another
context and hence, the role constraint prohibiting one object to play the
roles of father and son at the same time does not apply.

The role constraints have the following meaning for a pair of role
types (R, S):

• Role-implied. An object playing a role defined by role type R is always
capable of playing a role defined by role type S.

• Role-equivalent. An object playing a role defined by role type R is always
capable of playing a role defined by role type S, and vice versa. Thus,
both roles imply each other.

• Role-prohibited. An object playing a role defined by role type R is not
allowed to play a role defined by role type S in the same object collabo-
ration task.

• Role-don’t care. There is no constraint concerning objects playing roles
defined by role types R and S.

It is important to note that role modeling is no replacement for class Relation to class
modelingmodeling but an additional modeling concept. It is used to model object-

oriented software with different abstractions than those of class modeling
and it is a natural question how to relate both to each other. Since ob-
jects always belong to one class and may play several roles, it follows that
a class may contain several role types. The composition of all its role types
completely describes the behavior of instances of the class. Furthermore, a
class model may consists of a set of role models. The role model composition
leads to the class model.

What is the benefit of role modeling? Its advantages in framework design Benefits
and usage have been analyzed in [Rie00, RG98]. First of all, role models
reduce complexity of classes and object collaborations by focusing on one
specific aspect. Furthermore, role modeling offers a new dimension of sep-
aration of concern that is not provided by classes [OT00]. This leads to a
more flexible design and encourages reuse. Moreover, applying role model-
ing at the framework border facilitates instantiating a framework since role

15

2 Preliminaries

models help to describe what requirements a framework instantiator has to
fulfill.

Finally, the question may be asked how existing object-oriented software Roles in practice
development techniques support roles. For modeling, a concept called col-
laborations which is part of the UML [OMG05] provides means to represent
role types and role models in UML diagrams. For the implementation, there
is unfortunately no object-oriented programming language directly support-
ing roles to the knowledge of the author. However, role types can be im-
plemented with classes [BRSW97], interfaces [Ste01, Rie00] or using the
language concept of mixins [SB02].

2.5 Invasive Software Composition

Invasive software composition (ISC) [Ass03] is a technique to construct soft- ISC
ware in a reuse-centered way. The idea of component software is to create
applications from existing building blocks in order to maximize reuse. Com-
ponents can be regarded as ready to use, unchangeable blackboxes [Szy02].
ISC goes beyond the ideas of component software by focusing on the compo-
sition and treating components as grayboxes that can be adapted to reuse
contexts.

A composition system is made up of a component model, a composition tech- Graybox
component modelnique and a composition language. Invasive software composition employs a

graybox component model. A component is regarded as a set of fragments
forming a fragment box. A fragment is an arbitrary piece of source code
ranging from complete packages down to individual statements. Fragments
contain variation points, called hooks, that form the composition interface
of the fragment boxes. Implicit hooks are positions or program elements con-
tained in every component by definition of the programming language, for
instance a method entry in Java. In contrast, declared hooks have to be
explicitly specified by the component creator.

The composition technique of invasive software composition is based on Invasive composers
invasive composers. They transform one or more hooks of a component into
other program elements in order to adapt the component to a new context.
Composers are built from a set of basic composition operators, for instance
bind which replaces a hook with a value, or extend that adds a value to a
list hook.

The way components are connected and which adaptations are made must Reflective invasive
compositionbe specified in a composition language. Invasive software composition pro-

poses to use the same language already used for the components and define
transformations in a reflective way with metaprogramming. The Compost
library [COM07] exemplifies invasive software composition for Java using
static metaprogramming.

Beyond adding the idea of graybox composition, ISC unifies a large num- A unifying
approachber of existing software engineering concepts. For instance, architecture

systems [GS94], hyperspace programming [OT00], and aspect oriented pro-
gramming [KLM+97] can be explained as invasive software composition sys-
tems.

The Reuseware Composition Framework

While the Compost library implements ISC for Java, the Reuseware compo- Reuseware
composition
framework

16

2 Preliminaries

sition framework realizes its ideas for arbitrary languages [HAJZ07]. One
problem area identified and targeted by Reuseware is that a large number of
domain specific languages lack support for modularity and composition. Us-
ing the fact that composition has many aspects that are independent of the
particular language model, the framework provides composition technology
and techniques for every formal language lacking such built-in mechanisms.

To extend a given language, one requires its metamodel, that is, a descrip- Core language and
reuse languagetion of the language’s constructs and their relations. Language metamodels

can be expressed as EBNF grammars [Int96] or with meta object facilities
(MOF). The idea of Reuseware is to extend a metamodel to support concepts
of composition. The original language is referred to as the core language
while the extended version is called the reuse language. More concretely,
the context-free grammar of the core language is extended with new non-
terminals that represent variation points. Variation points can be hooks and
slots. While slots can be filled exactly one time, a hook may be extended as
often as necessary. Fragments written in the reuse language can then be
treated as components and may become subject of composition.

Reuseware supports the primitive composition operators bind, extend, Composition
operatorsprepend and append. Several of these operators can be grouped to a com-

plex composition operator. It addresses several variation points belonging
together by executing the primitive operators in sequence.

The Reuseware composition framework consists of two main components, Tools
where one of them is responsible for defining and extending languages. It
uses metamodels based on the Eclipse Modeling Framework (EMF) to rep-
resent languages. EBNF-like grammars can be used as well by an internal
mapping to a metamodel. The other component consists of a language to de-
fine fragment compositions and tooling for the composition execution. The
framework can be used via an Eclipse plugin that allows to define core lan-
guages and reuse languages. From these definitions new plugins are gen-
erated that help in writing fragments, composition programs and actually
execute compositions.

The framework has been successfully applied to a number of languages, Applications
including Xcerpt [BS03] and Java-, a subset of the Java programming lan-
guage. In this work, Reuseware is used to add composition support to the
Web Ontology Language OWL.

17

3 Role Modeling for Ontologies

Ontologies describe the concepts of a domain and relations between them. No roles in
ontologiesEven if an ontology does not include individuals, they are always kept in

mind when building it. The ontology creation process is in large parts driven
by abstracting individuals and describing them using constructs of the on-
tology language. Today’s ontologies are built from classes, that is, a set of
individuals is abstracted by a class. However, classes turn out to be inappro-
priate to express a different way of abstraction—role types (see Section 2.4
for the distinction of natural types and role types).

Consider for instance modeling a set of persons of whom some may play Example
the role of a parent or a child in certain contexts. Person, Parent, and Child
are obviously concepts of the domain under consideration and should con-
sequently each be described as a class. The interesting question is how
to relate them. Not relating them at all (Figure 3.1 (i)) is not considered
a reasonable choice since there without a doubt exists a relationship be-
tween them. Defining Person as subclass of Parent (or Child) as shown in
Figure 3.1 (ii) seems not meaningful since not all persons are parents (or
children). A possible solution is using the subsumption relation the other
way around by making Parent and Child specializations of Person (Figure 3.1
(iii)). Now, imagine the introduction of a class Animal in our ontology that is
disjoint from Person. Since animals may be parents as well, we are tempted
to model Parent as subclass of Animal. However, this results in Parent being
unsatisfiable since individuals belonging to it would have to be persons and
animals which are disjoint.

Figure 3.1: Different ways to relate the classes Person, Parent, and Child.

In more general terms, the lack of roles as ontological primitive compli- Roles as
ontological
primitive

cates an appropriate description of situations where individuals of a certain
class may appear in different roles, which in turn may be played by in-
dividuals of other classes as well. This lack leads to poor modeling since
ontology engineers are forced to (mis)use classes to express role types, and
in the extreme case (as shown above) my have severe unintended implica-
tions. Furthermore, class-only modeling forces the modeler to intermingle
the inherent properties of a class and those belonging to a specific role. This
leads to complex classes that can be difficult to split up afterwards. In order
to overcome these problems, we propose to introduce roles as a primitive of
ontology languages in Section 3.1. Beyond allowing for more natural and

18

3 Role Modeling for Ontologies

flexible modeling, using roles in ontologies permits to explicitly separate dif-
ferent concerns of a class by associating each with a role type.

As shown in Section 2.2 the reuse mechanisms provided by the Web On- Ontology
componentstology Language OWL [DS04] do not satisfy all needs. In particular, it is

impossible to reuse parts of an ontology in a semantically well-defined way.
Approaches towards modular ontologies (also see Section 2.2) are promising,
however, none of them achieves providing an intuitive notion of ontological
components. Classes often are an inappropriate reuse unit since they com-
bine different concerns and have various dependencies to other classes. We
believe that ontological role models are an interesting reuse abstraction and
we show how to employ them as ontology components in Section 3.2. This
permits to build ontologies (at least partly) from reusable building blocks
and leads to a more efficient ontology engineering process.

The major advantage of ontologies compared to other knowledge repre- Translational
semanticssentation mechanisms is its formal semantics allowing for reasoning (see

Section 2.1). In Section 3.3, we give a formal semantics of the role modeling
extensions proposed in this chapter by translating the extended OWL syn-
tax into standard OWL. This translational semantics allows to benefit from
modeling ontologies with roles and at the same time permits to use the large
number of existing tools for ontology creation, management, and reasoning
based on OWL.

Ontologies and the world of object-oriented software engineering have sev- Comparison with
OOeral differences (see [AZW06] for a discussion of the relation between them).

Consequently, the transfer of role modeling into ontologies is not straight-
forward but involves a number of issues to consider. In Section 3.4, we
examine these issues and compare the traditional view of role modeling with
our approach.

Role modeling for ontologies is a conceptual idea, and thus, independent Role modeling - a
conceptual ideaof any concrete ontology language. We aim to define roles such that our

definitions are applicable to most ontology languages. To stay as much
as possible on a conceptual level, we use the very general definition of an
ontology from Section 2.1 in the first two sections of this chapter. Also, we
only regard those elements that are related to role modeling, e.g. we leave
out annotations.

3.1 Enhancing Ontology Modeling with Roles

The usage of classes as exclusive modeling concept to abstract from sim- Problems of
class-based
modeling

ilar individuals has a number of deficiencies. First, classes are relatively
coarse-grained, and thus, introduce more complexity than needed. This not
only leads to complex classes, but also to advanced complexity of their re-
lations. Second, ontology classes often merge properties from different con-
texts, that is, multiple concerns are mixed into one conceptual unit. Finally,
high complexity of class relations and missing separation of concerns ham-
per ontology reuse and composition. Applying the traditional class-based
ontology modeling hinders reuse of parts of an ontology and composition of
new ontologies from existing ones.

Using the fact that one individual usually occurs in different contexts play- Individuals play
different rolesing different roles, it is possible to overcome the problems stated above. We

propose to explicitly model roles using the additional modeling concept of a
role. This allows to distinguish different contexts in which individuals are re-
lated to each other, and abstractly define them as role models. However, role

19

3 Role Modeling for Ontologies

modeling is no replacement for class-based modeling. Instead, it enhances
the modeling concept of a class with the more fine-grained roles. Thus,
role modeling for ontologies helps to remedy the deficiencies of class-based
ontologies without loosing their advantages.

Definition: Role
A role describes the properties of an individual in a certain con-
text.

An individual is said to play a role. Since a context consists of at least one
other role, a role never occurs alone, but always in relation to other roles. An
individual may play multiple roles, where each role may belong to a different
context.

Individuals can be abstracted in two ways: regarding what they are, i.e. Role types allows
for better modelingusing classes, and regarding how they are related to other individuals, i.e.

using role types. Adding the modeling concept of role types adds flexibility
since an ontology designer can explicitly distinguish natural types from role
types.

Definition: Role type
A role type characterizes a set of roles with common properties
in a certain context.

Role types are founded types, i.e. a role type depends on other role types
defining its context, and thus, never occurs alone. A class is said to contain
a role type, if all individuals of that class can play a role of the role type.

A role type abstracts from a number of roles with equal properties, simi-
larly to a class abstracting from individuals that share properties. In con-
trast to a class which usually fully describes an individual, a role type char-
acterizes only its properties in a certain context. This allows for separation
of concerns of a class, defining each in a separate role type. The composition
of several role types may result in a class.

Since roles focus on the collaboration of individuals, a concept to model Relations between
role-playing
individuals

these collaborations, i.e. the relations between individuals, is required. This
is provided by role properties.

Definition: Role property
A role property is a binary relation (a, b), where a is an individual,
and b is an individual or an element of a concrete domain.

When b is a role, the property represents the relation of two individuals.
If b is an element of a concrete domain, it describes an attribute of an indi-
vidual. Thus, the meaning of role properties are exactly the same as those
of class properties, except that they describe the relations and attributes of
role types instead of classes.

Individuals are related in numerous ways. The individual relationship Related individuals
form a
collaboration

graph of an ontology is usually very complex. However, it can be grouped
into collaborations according to the context in which relationships occur.

Definition: Individual collaboration task
An individual collaboration task is a concrete collaboration be-
tween individuals related in a common context.

Often, different individuals relate to each other in very similar manners. Role models
abstract from
similar
collaborations

Certain collaboration patterns are found again and again in ontologies. This
allows to introduce an abstraction of similar individual collaboration tasks:

20

3 Role Modeling for Ontologies

Definition: Role model
Multiple role types that are related to each other in a common
context are a role model. It characterizes a set of concrete col-
laborations between individuals whose relations follow a certain
pattern.

Each role type in a role model has to be directly or indirectly related to the
others. Otherwise the role model would intermingle different concerns that
could be split up into multiple role models. That is, the role type relationship
graph must be non-partitioned. Composing several role models, such that
role types are composed to classes, may lead to a class-based ontology.

Figure 3.2 shows an example of a role model. It described the relation
between something tasting and a taste. White rectangles with rounded cor-
ners denote role types. The definition of a role type is inside its rectangle
(in standard DL syntax). In addition, role types are tagged with the name
of their role model, e.g. (Taste). Labeled arrows present binary properties
between role types.

Figure 3.2: The Taste role model containing the two role types Tasting and
Taste, as well as the role property hasTaste.

Given the set of concepts defined above, we are able to enhance a class- Role-based
ontologiesbased ontology with roles. Thus, ontology designers can abstract individuals

not only as classes but also as role types, and hence, focus on their collab-
orations. The resulting ontologies are called role-based:

Definition: Role-based ontology
An ontology that is, in addition to the modeling concepts of
a class-based ontology, (partly) described using role models is
called a role-based ontology.

An example of a role-based ontology is shown in Figure 3.3. The pizza Example: Pizza
ontology with rolesontology from Figure 2.1 has been enhanced by two role models: Origin and

Taste.1 Originally, the Food class included properties describing the fact
that it is tasting and that foods have a place of origin. However, these are
completely independent concerns that should be modeled as such. Onto-
logical role modeling allows to explicitly separate both concerns by splitting
the Food class into two role types. The role models emphasize the collabora-
tions of individuals of Food in different contexts and specify to which context
a relation belongs.

There may be role types that do not belong to any class but are included as Open role types
envisage reusepart of a role model (image for instance Figure 3.3 without the Origin class).

This indicates that the ontology may be extended with other classes taking
the open roles. Thus, open roles allow to underspecify an ontology and
explicitly point out which parts are missing. The set of open roles defines an
interface of an ontology useful to combine it with other ontologies.

1All role models used in this work can be found in the appendix.

21

3 Role Modeling for Ontologies

Figure 3.3: The pizza ontology enhanced by roles.

Definition: Bound role type
A role type that is contained in a class of an ontology is a bound
role type.

Definition: Open role type
A role type that is not contained in any class of an ontology is an
open role type.

Open role types should belong the a role model containing at least one
bound role type. For a role model without any bound role type, there is no
reason to include it since it has no relation to the ontology. The process of
adding an open role type to a class is referred to as binding the role type to
the class.

This accomplishes the introduction of roles as additional modeling concept Summary
for ontologies. The properties of individuals can be abstracted by role types.
In contrast to classes, role types focus on collaborations of individuals and
allow to split classes according to their concerns. Ontological role models
abstract from recurring individual collaborations that have a similar context
and allow to build role-based ontologies.

3.2 Composing Role Models to an Ontology

Due to the semantic web and other applications, there is a large number Reuse in ontology
developmentof ontologies covering different domains. However, few ontologies are built

upon others or even built mainly from existing ontologies. A similar situ-
ation occurred in software development some decades ago and has lead to
component-based software [Szy02, Ass03]. The idea to reuse existing work
during ontology development is alluring. Ideally, it should be possible to
construct entire ontologies from existing building blocks. However, we have

22

3 Role Modeling for Ontologies

seen in Section 2.2 that the built-in mechanisms of OWL are not sufficient
and an intuitive reuse abstraction for ontologies is still needed.

The problem can be summarized by asking: How can a component system The open question
for ontologies look like that enables reuse of ontology fragments when build-
ing new ontologies? This section tries to answer this question, by specifying
what parts of an ontology can be reused and how to assemble them to obtain
a valid ontology.

Figure 3.4: Composing role models yields an ontology.

Role models seem to be ideal candidates for ontology modules. They con- Conceptual idea
sist of several role types and their relationships representing one aspect of a
domain. Given a role model for each aspect of a domain and composing them
leads to the complete ontology (Figure 3.4 presents this idea schematically).

We propose to compose an ontology from role models in two steps: Methodology

1. First, the main concepts of a domain have to be identified and de-
scribed by classes. However, particular properties and their relation-
ships to other classes belonging to a certain context should be left out
for the moment. This first step results in a set of classes containing
only inherent restrictions and properties, for example the name of date
of birth of a person, or none at all. Each class represents a natural
type occurring in the domain. These classes may be related via sub-
sumption or equivalence relationships, as well as using properties that
belong to individuals’ identities.

2. Second, the ontology engineer considers the collaborations of individu-
als and searches for a role model describing their relations. In case that
there is a reusable role model that describes the wanted collaboration,
it is added to the ontology by binding its role types to classes. This step
is repeated until the domain is described to the necessary degree.

What happens if there is no role model available that describes a certain Creating new role
modelscollaboration of individuals in the domain under consideration? One so-

lution would be to add the necessary class expressions and relationships
directly to the classes. However, once added, concerns are intermingled and
can only be separated later with great difficulty. That is why a new role
model should be created. Describing a missing concern as a role model al-
lows to keep it separate from other concerns and furthermore, permits to
reuse it later on.

23

3 Role Modeling for Ontologies

Figure 3.5: First construction step of the wine ontology containing only un-
related classes without restrictions.

As an example for role model composition, we build a simple ontology Example: Wine
describing the wine domain. The result will be similar to parts of the wine
ontology from the OWL guide2, but to some extent adapted for our purposes.
As a first step, the basic concepts of the domain are described by unrelated
classes without any restrictions (Figure 3.5). To simplify matters, only four
classes are considered here. Next, we try to find role models to represent
collaborations of individuals in the wine domain. Wineries and wines are
related since the former produces the latter. This relationship is very well
described by the Product role model. It includes the role types Product and
Producer as well as two others. The role model is introduced into the ontol-
ogy by binding the role types to the classes Wine and Winery (Figure 3.6).
The other two role types (Consumer and Seller) stay open, i.e. unbound,
since they obviously do not occur in our ontology.

Figure 3.6: Wine ontology after adding the Product role model.

Now, let us consider the relationship between Wine and WineTaste.
Clearly, we can reuse one of the role models already used in the pizza on-
tology, namely the Taste role model. The relation of wine and food can be
described by the Meal role model, considering wine as a drink that goes
with a meal (in that case simply food). Applying both to our ontology leads

2http://protege.cim3.net/file/pub/ontologies/wine/wine.owl

24

3 Role Modeling for Ontologies

to Figure 3.7. This description of the wine domain shall be enough for our
purposes.

Figure 3.7: Wine ontology after adding the Product, Origin, and Taste role
models.

The result of our example illustrates the benefits of role model composi- Role models as
ontology
components

tion. Most parts of the ontology are built from existing role models that have
already been used in other ontologies in this work. At the beginning of this
chapter, we asked how it is possible to decompose ontologies into compo-
nents. A component should be a reusable, self-contained entity with high
inner cohesion and few relations to other components. Role models offer all
these features. Reusability and high inner cohesion result from the fact that
they represent exactly one concern of a domain. Since role models do not
refer to other role models, they are self-contained. Thus, role models are a
good candidate for ontology components.

This section showed how an ontology can be built from existing parts— Summary
ontological role models. A methodology for role model composition was
briefly presented and illustrated with an example. The outcome is a role-
based ontology built from reusable parts.

3.3 Semantics of Ontological Roles

So far, role modeling for ontologies has been described on a conceptual level. Formalizing
ontological rolesTo benefit from the advantages of formally defined syntax and semantics of

DLs it is necessary to extend these formalism to roles. This section presents
ALCR, a syntactical extension of the ALC DL described in Section 2.1.

We believe that ontological role modeling requires no additional expres-
siveness of the ontology language. Instead, we extend the language with
additional syntax to facilitate reuse-based modeling since ALC, as well as
OWL, lack built-in constructs supporting component-based ontology engi-
neering. The fact that we do not add expressiveness is reflected by the use
of translational semantics. That is, our syntax extensions can be translated
into standard DL (or standard OWL). The semantics of roles in ontologies is
thus automatically given by the usual DL semantics.

The following language elements are added to the syntax: Syntax extensions

• Role type terms

• Role models

25

3 Role Modeling for Ontologies

• Role type bindings

• Role type assertions

In the following, we will formally define the syntax of these extensions
as ALCR and the translation into ALC. Afterwards, the definitions and the
translation are illustrated with examples using the more readable Manch-
ester OWL syntax [HDG+06].

Adding Roles to the ALC Description Logic

The following definitions refer to the syntax and semantics of ALC from Sec- Role type terms
tion 2.1. At first, we define role type terms usable to define role types:

Definition: ALCR role type terms
Let NR and NRP be sets of role type names and role property
names, such that NP , NC , NR, and NRP are pairwise disjoint.
The set of role type terms is defined inductively as follows:

• Each role type name RA ∈ NR is an ALCR role type term.

• >,⊥ are ALCR role type terms (called top and bottom).

• Let RC , RD be ALCR role type terms, and let pR ∈ NRP .
Then, the following are also ALCR role type terms:

¬RC (negation)
RC uRD (intersection)
RC tRD (union)
∀pR.RC (value restriction)
∃pR.RC (existential restriction)

A set of role types and role properties relating them yields a role model. Role models
Formally, we define them as follows:

Definition: ALCR role models
Let NM be a set of role model names, let RA ∈ NR be a role type
name, and let RC be a role type term. An ALCR role model M
with M∈ NM is a set of axioms of the form RA ≡ RC .

Role type terms occurring on the left hand side of such an axiom are called
defined role types. All other role type names occurring in a role model are
referred to as primitive role types.

Of course, it is necessary to combine role types of ALCR with usual classes Role binding
from ALC to describe that individuals of a class may play a certain role. This
connection is realized with the following axiom:

Definition: Role binding axiom
Let C be an ALC class term and let R be an ALCR role type term.
The following can be used as an axiom and is called role binding:

R B C

Similarly to the class assertion axioms, we need an axiom to assert indi- Role assertions
viduals to be in the extension of a role type:

26

3 Role Modeling for Ontologies

Definition: Role assertion axiom
Let R be a role type and let a be an individual name. The following
can be used as an axiom and is called role assertion:

R(a)

Using the above definitions, we can define role-based ontologies: Role-based
ontology

Definition: Role-based ontology
An ALCR ontology is a pair (T ∪ TR,A ∪ AR), where T is an ALC
TBox and A is an ALC ABox, and:

• TR = M1 ∪ · · · ∪Mn ∪ B, where M1, . . . ,Mn are role models
and B is a set of role binding axioms

• AR is a set of role assertion axioms

The sets of role type names (and role property names respec-
tively) occurring in M1, . . . ,Mn are pairwise disjoint. Further-
more, they are disjoint with the set of class names (and property
names respectively) occurring in T ∪ A.

The above syntax extensions allow to model ontologies with roles and Translation to ALC
hence, use the benefits described in the previous sections. In order to be
compatible with existing standards and tools, we propose a translation of
ALCR ontologies to ALC ontologies:

1. Make all role types (and their definition for defined role types) of the
role models M1 ∪ · · · ∪Mn available as classes in the ontology.

2. Make all role properties used in the role models M1 ∪ · · · ∪Mn available
as properties in the ontology.

3. For each role type R used in the ontology:

a) Let {C1, . . . , Cn} be the set of classes to which R is bound (i.e.
R B Ci). Then add axiom R v C1 t · · · t Cn t ⊥ to the ontology.

b) For each role assertion R(a), make the same assertion available in
the resulting ontology, now referring to the class-representative for
the role type R.

4. Remove TR and AR from the ontology.

The resulting ontology uses only ALC constructs since:

• All role type terms have been replaced by class terms.

• The role types and role properties of all role models have been trans-
formed into classes and properties.

• All role type bindings have been removed.

• All role type assertions have been transformed into class assertions.

One may argue that, since ALC and ALCR are equivalent from a seman- Why we need this
syntactic sugartic point of view, there is no need for a separate syntax for role modeling.

However, we believe that ontology engineers should be able to describe the
conceptual difference between role types and natural types with language
primitives for role modeling. Doing this, they benefit from the advantages
described in the preceding parts of this chapter.

27

3 Role Modeling for Ontologies

Example using Manchester OWL Syntax

In Section 3.2 we described the composition of several role models into an Example: Wine
Ontologyontology by the example of a wine ontology using a graphical, rather infor-

mal notation. While this was useful to explain the idea and benefits of role
model composition, we come back to the example now using a textual and
formalized presentation.

Modeling the role-based ontology from Figure 3.7 in concrete syntax based
on Manchester OWL would like this:

import http://ontology-rolemodels.org/product.rm
import http://ontology-rolemodels.org/meal.rm

Class: Wine
Plays: Product
Plays: Drink

Class: Winery
Plays: Producer

Class: Food
Plays: Meal
Plays: Product

We have omitted the Taste role model as well as the Taste class since
they are not interesting for illustrating the translation. To demonstrate the
impact of binding one role type to multiple classes, we assume the Product
role type also to be bound to Food. That is, foods can also be considered
products in some contexts.

The role models that are imported could be defined as follows:

Rolemodel: http://ontology-rolemodels.org/product.rm
Role: Product
Role: Producer

EquivalentTo: produces some Product
Role: Seller

EquivalentTo: sells some Product and sellsTo some Consumer
Role: Consumer

EquivalentTo: consumes some Product

Role Property: produces
Domain: Producer
Range: Product

Role Property: sellsTo
Domain: Seller
Range: Consumer

Role Property: consumes
Domain: Consumer
Range: Product

Rolemodel: http://ontology-rolemodels.org/meal.rm
Role: Drink

EquivalentTo: accompanies some Meal
Role: Meal

Role Property: accompanies
Domain: Drink
Range: Meal

Our translation as defined above yields the following class-based ontol-
ogy (omitting the role properties that are simply copied in as usual class
properties):

Class: Wine
Class: Winery
Class: Food

Class: Product
SubClassOf: Wine or Food

Class: Producer

28

3 Role Modeling for Ontologies

EquivalentTo: produces some Product
SubClassOf: Winery

Class: Seller
EquivalentTo: sells some Product and sellsTo some Consumer
SubClassOf: owl:Nothing

Class: Consumer
EquivalentTo: consumes some Product
SubClassOf: owl:Nothing

Class: Drink
EquivalentTo: accompanies some Meal
SubClassOf: Wine

Class: Meal
SubClassOf: Food

Role types are defined as subtypes of the disjunction of the classes they
are bound to. Note that, open role types like Consumer appear as subtypes
of owl:Nothing, that is, there cannot be any individuals belonging to those
role types. This reflects the idea that each individual has an identity and
consequently, belongs to at least one natural type, i.e. class.

This concludes the definition and illustration of the semantics of role Summary
modeling in ontologies. We have extended the syntax of the ALC DL and
defined a translational semantics, transforming extended syntax into stan-
dard ontologies. An example helped the reader to understand this trans-
lation. We believe that the proposed syntax extensions and semantics are
only one possible implementation of the conceptual idea of ontology roles.
In Chapter 5 we will discuss others.

3.4 Comparison with Object-Oriented Software
Engineering

The preceding sections of this chapter were about applying the paradigm OO modeling vs.
ontologiesof role modeling to ontologies. While there is no similar work known to

the authors, role modeling and its applications in object-orientation are well
studied. An interesting question is how both worlds compare to each other
with respect to roles. This section analyzes commonalities of roles in object-
orientation and ontologies, and examines which differences we encountered
and consider to be important for transferring roles into ontologies.

As a first commonality, both worlds abstract sets of elements on the in- Natural types vs.
role typesstance level (objects and individuals respectively) with types on the concep-

tual level. Although our definition of ontological roles differ from the classi-
cal definition (see Section 2.4), the fundamental distinction of natural types
and role types seems meaningful in both worlds. From a modeling point of
view, this differentiation seems to be the most important aspect of roles.

Furthermore, ontology role modeling and roles in software engineering Collaborations as
reuse abstractionshare most of the properties inherent to the role-based approach. In par-

ticular, roles allow to focus on relations between individuals or objects and
to abstract them with role models that describe collaborations. These role
models provide a self-contained reuse abstraction that allows to use parts
of an ontology or pieces of source code again in cases where classes are not
the appropriate abstraction. For instance, collaborations serve to describe
design patterns in object-oriented designs [GHJV95, Rie96]. Chapter 3.2
showed how collaborations provide a reuse abstraction for ontologies.

The last commonality to mention is a cheerless one. Although the ideas Integration into
mainstream
languages

of role modeling are widely accepted and its benefits are undoubted, neither
a mainstream language for object-oriented programming, nor an ontology

29

3 Role Modeling for Ontologies

language supports roles as first-class concept. To deal with that situation,
a number of work-arounds have been proposed in the software commu-
nity [BRSW97, Ste01, SB02].

When transferring roles into ontologies, a number of differences of object- Subject of
modelingorientation and ontologies have to be considered. A substantial discrepancy

exists regarding what is modeled. While object-orientation describes a dy-
namic world that changes during the runtime of an application, ontologies
provide a static view of the world. This leads to different definitions of a role.
On the one hand, a role describes the behavior of an object and on the other
hand, the properties of an individual.

While object-oriented modeling employs closed-world semantics (i.e. what Open vs. closed
worldis not explicitly modeled is assumed not to exist), ontologies assume an open

world (i.e. non-existence does not imply falsity). Of course, this difference
also affects roles. Using the semantics defined in Section 3.3, not binding a
role type to a certain class does not imply that individuals belonging to the
class cannot play that role (except for the case where the class is declared
to be disjoint from the classes the role is bound to). We believe this to be
a quite natural consequence of introducing roles into ontologies, whereas
enforcing closed-world semantics for roles would contradict fundamental
ideas of ontological modeling.

In Section 2.4, we described role constrains as a means to enforce certain Role constraints
conditions on which combinations of roles individuals are allowed to play.
In ontologies, constraints of this kind can be expressed using the usual
ontological axioms. Let (R, S) be a pair of role types. The role constraints
from Section 2.4 roughly correspond to the following axioms:

• Role-implied: R v S

• Role-equivalent: R ≡ S

• Role-prohibited: R u S v⊥
• Role-don’t care: (nothing)

However, these axioms do not reflect the fact that role constraints in object-
orientation are scoped by an object collaboration task. How to express this
notion of scoping in role-based ontologies is still an open question.

An interesting question is whether ontological role models are more apt Reusability
for reuse than their object-oriented counterparts. The contrasting nature
of what is described influences how precise role types have to be defined.
Using roles in object-orientation as partial implementation of a class (as for
instance in [SB02]) requires a definite specification of the behavior the role
represents in form of a concrete implementation. Ontologies only require
to fix static modeling aspects and constraints imposed on role types. This
may imply that role models in ontologies are less restrictive than implemen-
tations of role models in software. Consequently, their reusability would be
larger while providing all modeling that is possible and necessary in ontolo-
gies. Clarifying this issue in more depth should be part of future research.

Although a couple of issues had to be considered, the differences of roles Summary
in object-orientation and ontologies do not hinder the transfer of many of its
ideas. Most of the inherent properties of the role modeling approach can be
adapted and lead to the conceptually very similar definitions in Section 3.1.

30

4 Implementation with Reuseware

This chapter presents a prototypical implementation of role-based ontology Prototype of
translationengineering using the Reuseware composition framework [HAJZ07]. Our

implementation allows for defining role models and role-based ontologies, as
well as for their translation into standard ontologies. We use a syntax based
on the Manchester OWL syntax [HDG+06] and extend it with constructs
needed for role modeling as described in Chapter 3.

At first, we give an overview of our implementation and explain how it is in- Organization
tegrated in the Reuseware framework (Section 4.1). Section 4.2 presents the
abstract syntax and concrete syntax of the role modeling enabled Manch-
ester OWL. Finally, Section 4.3 shows how the translation to standard OWL
is realized as invasive composition. The complete source code of our imple-
mentation can be found in Appendix B.

4.1 Overview

Reuseware realizes the ideas of invasive software composition [Ass03] for Core language and
reuse languagearbitrary languages. For invasive composition, we require knowledge of the

metamodel of the language we are working with. In Reuseware, two kinds
of languages are distinguished: A core language, lacking sufficient support
for modularity, and a reuse language, extending the core language with new
syntax to overcome this lack.

As we have shown in Section 2.2, the built-in mechanisms of OWL for Owlm and
reuseowlmreuse and modularity are inflexible and do not allow for partial reuse. OWL,

more precisely the Manchester OWL syntax, is hence our core language
(called owlm in the sequel). In Chapter 3, we introduced roles into ontologies
which lead to role models as a notion of ontological components. However,
OWL does not support roles and has to be extended. This extension yields
our reuse language (called reuseowlm in the sequel).

We define owlm and reuseowlm using EBNF-like grammars that allow to Overview
generate Eclipse plugins supporting the actual composition. A set of role
models in reuseowlm are the components. Role-based ontologies describe
how to combine role types and classes with role binding axioms and are
hence the composition program. The details of the composition, i.e. the
translation to standard OWL, is described by two composers and finally
yields a class-based ontology in owlm. Figure 4.1 shows an overview of
the implementation.

4.2 Core Language and Reuse Language

This section presents the specifications of owlm and reuseowlm. We con- Abstract syntax of
owlmcentrate on important parts of the grammars that should help the reader to

understand our implementation without bothering about all details (see Ap-
pendix B for the complete grammars). At first, we define the abstract syntax
of owlm:

31

4 Implementation with Reuseware

Figure 4.1: An extension of the core language yields the reuse language. The
composition program describes how components are invasively
combined using composers.

Ontology = statements:OntologyStatement*;
OntologyStatement = ClassDescription | PropertyDescription | Assertion;
ClassDescription = classID:NamedType, description:Description*;

An ontology is a list of statements that can describe class descriptions, Concrete syntax of
owlmproperties, and assertions. The abstract syntax is accompanied by a con-

crete syntax:

CONCRETESYNTAX owlm FOR owlm
Ontology ::= "Ontology:" statements*;
ClassDescription ::= "Class:" classID description*;

The above grammars define the core language owlm and allow for gener- Abstract syntax of
reuseowlmating a parser accepting class-based ontologies. To support role modeling,

we define the reuse language reuseowlm. Its abstract syntax extends non-
terminal symbols from owlm, for instance adding a new type of statement
for importing role models:

owlm.OntologyStatement = ImportStmt;
ImportStmt = filename:componentmodel.Location;
ImportStmt ==> minimalcl.Composer;

The first line extends the derivation options for owlm.OntologyStatement
with ImportStmt, i.e. an ontology now also may contain import statements.
In the third line, the import statement is declared as a subclass of Composer.
This allows to define a composer translating the import statements. Simi-
larly, we also add a construct for combining classes with role types (Plays) to
the grammar (omitted). Furthermore, the language extension adds support
for role models:

RoleModel = modelID:owlm.NamedType, stmts:RoleStatement*;
RoleStatement = RoleDescription | RolePropDescription;

32

4 Implementation with Reuseware

A role model has an identifier (its name) and consists of a list of state-
ments which can describe role types (RoleDescription) and role properties
(RolePropDescription).

The translation from Section 3.3 requires to declare a class representing
a role type as subclass of the disjunction of all classes it is bound to. For
instance, if the role type Product is bound to Pizza and Wine, the class
Product will be declared as a subclass of Pizza OR Wine. The disjunction of
subclasses is built during the composition analyzing the Plays constructs
used in the role-based ontology. Each occurrence of Plays will add a new
subclass disjunct. Consequently, we introduce a hook, i.e. a variation point
that may be extended multiple times:
AtomicExpressionHook;
owlm.AtomicExpression = AtomicExpressionHook;
AtomicExpressionHook ==> componentmodel.Hook;

Hooks are declared by subclassing componentmodel.Hook and giving the
type of fragments that may be bound to it (owlm.AtomicExpression).

The following is the concrete syntax of reuseowlm: Concrete syntax of
reuseowlmCONCRETESYNTAX rowlm FOR reuseowlm EXTENDS owlm

owlm.Ontology ::= "Ontology:" statements*;

ImportStmt ::= "import" filename;

RoleModel ::= "Rolemodel:" modelID stmts*;
RoleDescription ::= "Role:" roleID descriptions*;
RolePropDescription ::= "Role Property:" propID "Domain:" domain "Range:" range;

AtomicExpressionHook ::= "<<" name ">>";

The above grammars define the core language owlm and the reuse lan-
guage reuseowlm. These grammars give us the metamodels of our languages
and allow to continue with the actual composition.

4.3 Composers and Composition Program

In this section, the translation from role-based ontologies into class-based Composition
ontologies is explained as invasive composition of role models. During the
composition, all constructs that have been introduced in reuseowlm must
be translated into owlm. We have to consider the following:

• Import statements

• Plays constructs

• Role models consisting of role types and role properties

• Role assertions

The main idea is to use a role-based ontology as a composition program Two composers
referring to composers for import and Plays. The import composer makes
all role types and role properties from the imported role model available as
classes and properties (i.e. step 1 and 2 of the translation in Section 3.3).
The plays composer builds the subclass-superclass relationships between
classes representing role types and role-playing classes (i.e. step 3 from the
translation). Role assertions have exactly the same syntax as class asser-
tions and thus, do not require particular consideration but are simply left
as they are.

The following is an example import statement: Import composer

33

4 Implementation with Reuseware

import /Taste.rowlm

Since we declared the import statement as a subclass of Composer, we can
define a composer for it:

define composer reuseowlm.ImportStmt(filename) {

fragmentlist reuseowlm.RoleModel rm = →filename;
fragmentlist owlm.Ontology roleOntology = ’Ontology: Class: Top’.rowlm;

The filename (e.g. /Taste.rowlm) is the only parameter and is used to read
in the file’s content as a role model (third line). Furthermore, we create an
ontology that serves as a container for the newly added ontology statements.

Then, we iterate through the list of role model statements. A statement
may be either of the type RoleDescription or of the type RolePropDescription:

foreach (stmt : rm.stmts) {
if (stmt instanceof reuseowlm.RoleDescription) {

fragmentlist owlm.ClassDescription newCls = ’Class: ’ + stmt.roleID
+ ’’.rowlm;
extend newCls.description with stmt.descriptions;

fragmentlist owlm.SubClassOf extSCO = ’SubClassOf: (Bottom OR <<’
+ stmt.roleID + ’SubClassHook>>)’.rowlm;
extend newCls.description[first] with extSCO;

extend roleOntology.statements[first] with newCls;
}

For each role description (i.e. role type defined in the role model), a new
class is created having the definition of the role type it represents. Then, we
introduce a hook for adding new subclasses and add Bottom as first disjunct.
If a role type is not bound to any class (i.e. left open), the hook will not be
bound and the class is declared as a subclass of Bottom. Other subclasses
are added to the disjunction in the plays composer that identifies the hook
using a naming convention (’<<’ + roleID + ’SubClassHook>>’). Finally, the
new class is added to the statements of the container ontology.

if (stmt instanceof reuseowlm.RolePropDescription) {
fragmentlist owlm.PropertyDescription newProp = ’Property: ’ + stmt.propID
+ ’ Domain:’ + stmt.domain + ’ Range:’ + stmt.range + ’’.owlm;
extend roleOntology.statements[first] with newProp;

}
}

Role properties are simply converted into properties by copying their
name, domain, and range, and adding them to the statements of the con-
tainer ontology. Finally, the statements are returned by the import com-
poser, i.e. instead of the import statement, the list of classes and properties
is inserted into our resulting ontology:

return roleOntology.statements;
}

The following is an example for the Plays construct triggering the plays Plays composer
composer:

Class: Pizza
Plays: Tasting

The plays composer has the roleID of the played role type as a parameter:

define composer reuseowlm.Plays(roleID) {

fragmentlist owlm.Ontology ontology = CTX_ROOT;
fragmentlist owlm.ClassDescription clsDesc = CTX_CONTAINER;

34

4 Implementation with Reuseware

The composer must refer to the complete ontology in order to find the
subclass hook that has been introduced in the import composer. It obtains
a reference of the complete ontology from CTX_ROOT and a reference of
the surrounding construct (e.g. the class Pizza in the above example) from
CTX_CONTAINER.

fragmentlist owlm.ClassExpression clsExpr = clsDesc.classID+’’.owlm;
fragmentlist componentmodel.VariationPointName hookName = roleID +
’SubClassHook’.bc;
extend →hookName on ontology with clsExpr;

}

Using our naming convention for hooks, we construct the correct hook
name (TastingSubClassHook) and extend it with the surrounding class ex-
pression (Pizza). Applying the import composer for all import statements
and the plays composer for all Plays statements transforms all reuseowlm
constructs into owlm. Thus, the composition finally yields a class-based
ontology.

In this chapter, we have presented an implementation of the translation Summary
from Section 3.3 using the Reuseware composition framework. It is a first
prototype allowing to model ontologies with roles and afterwards translate
it into a standard ontology language in order to use existing tools, e.g. for
reasoning.

35

5 Outlook

The idea of introducing roles into ontologies has not been considered in any Not the end but
the beginningother work known to the author, and of course, not all aspects and impli-

cations of ontological roles can be part of this work. Quite the contrary, we
believe that the proposed ideas are only the beginning and further investi-
gations on a wide range of issues should be done. This chapter presents a
couple of ideas that have not been examined in-depth but nevertheless seem
to be worth mentioning to support future research.

An ontology aims to provide a common model of domain concepts and Combining
different ontologiestheir relationships. It attempts to offer a unified view in order to build in-

teroperable applications. However, ontologies are modeled by many people
and everyone possibly has a different view of the world. The diversity of peo-
ple’s views results in a diversity of ontologies describing different but often
overlapping parts of the world. To achieve the actual goal of harmonizing
the conceptual model of a domain, different ontologies have to be related
and combined. Although promising approaches have been proposed (see
Chapter 2.3), there still are a number of unsolved problems, in particular,
mismatches that cannot be resolved automatically. We believe that role-
based ontologies are in a certain sense easier to relate and combine than
purely class-based ones since they offer an additional abstraction helpful
when searching commonalities between different ontologies. This idea, com-
position of role-based ontologies, is presented in Section 5.1.

Today’s ontologies are modeled with classes. An important question to Degrees of
coverageconsider is how to introduce roles into existing ontologies in order to benefit

from more natural modeling, separation of concerns of classes, and compo-
sition of role-based ontologies. In Section 5.2, we describe a step-by-step
introduction of roles into class-based ontologies leading to different levels of
role coverage. Role coverage denotes the degree of role usage in an ontology
which may influence the likelihood of an ontology to be apt for role-based
ontology composition.

Finally, Section 5.3 presents further ideas for future investigations and
concludes this chapter.

5.1 Composition of Role-Based Ontologies

This section tries to answer the question how to semi-automatically compose Composing role
types instead of
classes

ontologies such that the result does not break the semantics. Promising ap-
proaches towards ontology aligning, mapping, and merging have been pro-
posed and implemented (see Section 2.3). However, these approaches con-
centrate on only one abstraction of sets of individuals—classes. This leads
to difficulties when dealing with classes that intermingle different concerns.
We argue that the existing solutions should be complemented by role-based
techniques that consider the collaborations of classes during the composi-

36

5 Outlook

tion process.1 We believe that composing role types is in some situations
easier than composing classes since role types cover only one concern of an
individual, whereas classes usually mix several. Furthermore, role models
clarify the context to which class restrictions and relationships belong. This
can hardly be determined by class-based approaches, since classes do not
distinguish relationships from different contexts.

Before going into details of role-based ontology composition, an example Example: Pizza
and pastais shown to give the intuition of the idea. We aim at composing two role-

based ontologies covering the pizza and pasta domains (Figure 5.1). They
are modeled such that all collaborations of individuals are abstracted with
role models and no properties exists between classes.2 The main idea is to
initially relate the role models from both ontologies and afterwards compose
the classes based on the role type relations bridging the ontologies. In Fig-
ure 5.1, we illustrate different role model relations. One role model (Origin)
is shared by both ontologies which is the ideal case for the purpose of com-
position. The Taste and Flavor role models seem to describe the same issue
but with different means of expression. Hence, they should be treated as
being equivalent. The other role models (Meal and Product) do not relate to
each other.

Figure 5.1: Pizza and pasta ontologies modeled with roles.

Aligning the role models is visualized in Figure 5.2, where the dashed
line means equivalence of role types. This information can now be used to
compose the classes of the ontologies. The open role type Country from the
pasta ontology can obviously be bound to the class Country from the pizza
ontology, since it only contains this identical role type. Flavor and Taste
also contain only one role type each. Since these have been found to be
equivalent during the role model alignment, their classes are also equivalent.
In contrast, the classes Pizza and Pasta only partially overlap. Both pizza
and pasta can have an origin (they share the Thing role type from the Origin
role model), and in addition, the role types Tasting and Food are equivalent

1In this chapter, we refer to combining and relating ontologies as ontology composition, in
contrast to role model composition as explained in Section 3.2.

2Class relationships and properties inherently belonging to a natural type are ignored here
since they complicate role-based composition.

37

5 Outlook

according to the role model alignment. However, pizzas are considered to
be meals in some contexts, while pasta can be seen as a product. In other
words, the residual role types Meal and Product do not match. To model
this situation, the composition system should propose a common superclass
for Pizza and Pasta. The result of the composition process is shown in
Figure 5.3, where equivalent classes are merged into one and a new class is
introduced as superclass of Pizza and Pasta. Giving it a meaningful name
cannot be done automatically.

Figure 5.2: Alignment of role models of pizza and pasta ontology.

Figure 5.3: Composition of pizza and pasta ontologies using roles.

After illustrating it with an example, composition of role-based ontologies Composition
techniqueis described in the general case in the following. The composition process

consists of two major steps.

1. At first, the role models from the input ontologies have to be aligned. Role model
alignmentThat is, relations between role types and role properties are analyzed

and if possible, role models (and hence their role types) are declared
to be equivalent. This step consists of pairwise comparison of all role

38

5 Outlook

models, i.e. m × n comparisons if the ontologies contain m (and n re-
spectively) role models. During this step, we consider two cases:

• Two ontologies may use the same role models, for instance taken
from a common role model catalog. Consequently, they are equal
and no further alignment is needed.

• Role models may want to express the same or a very similar col-
laboration but do not use exactly the same expressions. In other
words, we encounter explication mismatches of role models. In
this case, existing techniques to overcome those mismatches can
be applied. For instance, techniques to align classes based on
thesauri can be plugged-in to align role types.

2. The role model alignment described above yields two ontologies de- Class composition
scribed by role models whereof some are equivalent. The second step
of the composition process is now relating and combining classes. Four
basic cases may occur:

• All role types of two class are equivalent. Thus, the classes are
equivalent as well.

• Two classes have equivalent role types but also contain different
ones. That is, their individuals share a number of common prop-
erties but differ in others. In the example, this is the case for
the classes Pizza and Pasta. From a modeling perspective this
situation quite clearly demands for a common superclass. A com-
position system should propose one to the ontology engineer who
has to decide whether a superclass makes sense and if so, how
to name it. Unfortunately, it seems that this step cannot be fully
automated.

• Classes do not have any equivalent role types, and hence, cannot
be aligned at all.

• Two role types are equivalent and one is open, i.e. not bound to
any class. An open role types indicates an unspecified part of an
ontology. If one ontology provides a class containing a role type
that is left open in the other ontology, individuals of that class
can play the required role. Thus, the open role type is bound
to the class containing the bound role type. For instance, when
composing the pizza and pasta ontologies, this case occurs for the
Country role type.

Relating and combining classes based on role model equivalences can
lead to more complicated cases. For example, role type equivalence
may propose to split a class into several classes. However, we limit our
discussion to the basic cases described above.

So why not apply techniques to resolve explication mismatches directly to Class alignment
vs. role model
alignment

classes? The problem is that classes intermingle concerns. Consequently,
they often overlap partially without being equivalent and it is hard to sepa-
rate matching parts from those that differ in a semantically well-defined way.
In contrast, role modeling splits classes into semantically independent parts
and thereby allows to apply matching techniques on a more fine-grained
level. For example, the classes Pizza and Pasta semantically overlap, but
are not equivalent. A class-only approach would probably not be able to
split both class definitions such that the roles of having an origin and a

39

5 Outlook

taste are recognized as shared while the rest of the classes differ in some
way.

In Section 2.3, we mentioned a classification of ontology alignment ap- Classification as
ontology alignment
approach

proaches [dBEF+06]. Our proposal to compare role models can be classified
as a schema-based approach (as opposed to instance-based) on a structural
level (as opposed to element level).

For composing ontologies based on role models, we assumed the source
ontologies to have a particular property—global role coverage. Intuitively,
it means that all collaborations of individuals that an ontology formalizes
are described by role types and none by classes (see the following section for
more details). To understand why we need global coverage to decide whether
classes are (partly) equivalent by only regarding their role types, imagine a
class containing role types but also properties that are not part of any role
type. If all its role types imply equivalence to another class, the non-role
properties may still contradict this equivalence. Thus, to compose ontologies
based on their role models, the concerned classes have to be covered by
roles. In order to compose a complete ontology, it must be globally covered.

To sum up, this section proposed a role-based ontology composition tech- Summary
nique. The main idea is that composing role types is in some situations
easier than composing classes since role types separate different concerns
and provide another abstraction than classes. The composition process con-
sists of two steps. At first, the role models from both ontologies are aligned.
Afterwards, their classes are composed based on the alignment of contained
role types.

5.2 Levels of Role Coverage

Due to the emerging semantic web and other applications of ontologies, e.g. How to add roles to
a class-based
ontology?

in biomedical informatics, there exists a large number of ontologies. They
are finite sets of axioms using the modeling concepts individual, class, and
property. None of them is built from roles, role types, and role models.
However, as shown in Chapter 3, role-based ontologies yields numerous
benefits. The natural question to ask is how to introduce role modeling into
existing ontologies.

We propose to enhance an existing ontology with roles using a staged ap- Staged
introductionproach that includes four levels. Each level increases the degree of role

modeling used in the ontology, and at the same time the advantages that
can be taken from it. Level 0 are class-based ontologies, i.e. not containing
roles at all. Almost all existing ontologies are on that level. Introducing a
couple of role models leads to partially covered ontologies (level 1). It allows
to reuse role models and improves modeling since natural types and role
types can be distinguished. Level 2, locally covered role-based ontologies,
demands a property called coverage to be fulfilled in parts of the ontology.
In addition to the benefits from level 1, local composition becomes possible.
That is, parts of the ontology can be composed with others as described in
Section 5.1. When the coverage property holds for the complete ontology,
level 3 is reached: Globally covered role-based ontologies. In that case, the
complete ontology can be composed based on roles. Figure 5.4 provides an
overview of the levels and their benefits.

The coverage of a role-based ontology describes to what extent the prop- The notion of
coverageerties and collaborations of individuals that are formalized are described by

roles. A role-based ontology is partially covered if parts of its collaborations

40

5 Outlook

Figure 5.4: Levels of role modeling of ontologies and their benefits.

are described using role types. In that case, an individual may belong to
all role types of a class but nevertheless not belong to the class itself, since
some restrictions of the class may not be specified by any role type. If all
parts of a class description are included in one of its role types, this class is
covered. Thus, an individual belonging to all role types of a class, necessar-
ily belongs to the class, too. An ontology including some covered classes is
called locally covered. If all classes of the ontology are covered, it is globally
covered. Figure 5.4 schematically presents the degrees of coverage.

In the following, a step-by-step introduction of roles into an existing on-
tology is described. We explain the properties of each level, what has to be
done to reach it, and what benefits arise.

Level 0: Class-Based Ontology

Almost all existing ontologies belong to level 0. These are class-based on- Existing ontologies
tologies without any role models. Although well-established, they possess
a number of substantial problems: No distinction of natural types and role
types leading to poor modeling, intermingling of concerns hampering reuse,
and hard-to-resolve ontology mismatches complicating ontology composi-
tion.

For instance, the pizza ontology from Figure 5.5 is a class-based ontology. Example
It intermingles two independent concerns of food in the Food class. One
of them, the relation between Food and Spiciness describes the taste of food
and seems to be interesting to reuse. However, it is not specified which parts
of Food concern the taste.

Level 1: Partially Covered Role-Based Ontology

A class-based ontology may be enhanced by role models in two ways. Either Introducing role
modelssome mismodeled classes are partially replaced by role types, or new aspects

of the domain under consideration are described using roles. Both leads to
a partially covered role-based ontology.

In our example, we detach the concern of food to have a taste into a role
model as shown in Figure 5.6. Parts of the definition of the Food class are
transferred into the role type Tasting of the Taste role model.

Enhancing the pizza ontology with the Taste role model brings two main Benefits

41

5 Outlook

Figure 5.5: A level 0 ontology without any role models (same figure as in
Chapter 2).

advantages. First, the modeling becomes clearer since it is explicitly defined
which parts of Food belong to the taste concern. The role model provides
a self-contained fragment of the modeled whole that can be added and re-
moved without affecting the rest of the model. Second, the role model is
reusable and may be used again in another ontology describing individuals
possessing a taste.

Level 2: Locally Covered Role-Based Ontology

In a level 1 ontology, no class is covered, i.e. there are still collaborations Covering particular
classesdescribed in the class and not by a role type. If, however, a proper subset

of its classes is completely covered, we have a locally covered role-based
ontology.

In Figure 5.6, parts of the Food class and its relationships have been Example
transferred to the Taste role type, whereas the concern of having an origin is
still part of the class. Recalling the definition of natural types and role types,
that implies having an origin to be an inherent property of food. However,
we believe that this should be modeled as role type which yields the ontology
in Figure 5.7. Now, the Food class is completely covered by role types, and
thus, the ontology is locally covered.

The main advantage of complete coverage is that completely covered Benefits
classes can be composed by only regarding their role types and role rela-
tionships. The reason is that no other restrictions may contradict what has
been found when looking at the role types. For instance, another ontology
requiring some of the role types of a completely covered class and indicating
this lack by open role types, can be composed immediately. Furthermore,
relating and combining classes is facilitated since different concerns can be
treated independently (see Chapter 5.1).

42

5 Outlook

Figure 5.6: The pizza ontology as partially covered role-based ontology. The
Food class is only partially covered since the concern of having
an origin is not described as role type.

Level 3: Globally Covered Role-Based Ontology

By expanding the coverage property to all classes and properties of an on- Covering all
classestology, we arrive at globally covered role-based ontologies. That means, all

described collaborations of an ontology are represented by role models.
An interesting question is whether covered classes should still be allowed Do we still need

classes?to contain restrictions or whether the complete class description can be de-
duced by merging its role types. Referring to the definition of natural types
and role types, we believe that inherent properties of individuals should still
be modeled with classes. Another answer could be identity roles [Bac80],
a somewhat denaturalized usage of role types for representing properties
actually belonging to the identity of individuals (and thus, normally to be
represented as natural types). A better answer to this question should be
subject of further investigations.

Figure 5.8 presents our example as a globally covered role-based ontology. Example
The Layers role model may be subject of discussion since having a base and
a topping can also be seen as an inherent property of pizzas. Though, it is
used here for the sake of our example. Another (maybe better) example for
for a globally covered role-based ontology is the wine ontology from Figure
3.7.

Global coverage provides all benefits of local coverage for the complete Benefits
ontology. That is, the entire ontology can be composed based on roles as
described in Section 5.1. Furthermore, the degree of reuse is maximized,
since the complete knowledge description is based on potentially reusable
role models.

This completes the step-wise introduction of role modeling into an existing Summary
ontology. Starting from an ontology modeled exclusively based on classes,
adding reusable role models leads to better modeling. Transferring all de-

43

5 Outlook

Figure 5.7: The upper part of the ontology (Country, Food, and Spiciness) are
completely covered, while the lower part is not—a locally covered
role-based ontology.

scriptions of a class’ collaborations into role types yields role coverage, and
thus enables local composition based on roles. By expanding this property
onto the complete ontology, global composition becomes possible and reuse
is maximized.

44

5 Outlook

Figure 5.8: All classes are completely covered—a globally covered role-based
ontology.

45

5 Outlook

5.3 Further Ideas

Ontological role modeling should be integrated into common ontology tools Tool integration
like the Protégé ontology editor [KFNM04]. Since role modeling can be trans-
lated into standard OWL (see Section 3.3), an adaptation of ontology reason-
ers is not required. However, ontology engineers should be supported in
using roles on a syntactical level.

As a very first teaser for further developments, we have implemented some Role modeling in
Protégémockups demonstrating how Protégé support for role modeling could look

like. Figure 5.9 is a screenshot of a tab for the creation of role models.
The upper-right panel (Role Model Browser) shows the list of role models
currently used in the ontology and allows to create new ones or delete them.
For a selected role model, its role type can be edited in the lower-right panel
(Roles). The right panel (Role Editor) serves for editing role types by adding
and removing role expressions and disjoint role types.

More extensions are necessary to fully implement the ideas of this work.
The class tab should be enhanced such that binding roles to classes is pos-
sible. Furthermore, the individuals tab should provide support for role as-
sertions. An interesting question is how to store role models, how to relate
them with the ontology and when to invoke the translation into the stan-
dard ontology language. One proposal would be on-the-fly translation and
marking translated elements with annotations that are interpreted by the
Protégé extension. Of course, completely different realizations of ontological
role modeling in Protégé and other tools is possible as well. Our example
merely intends to be a starting point for discussion.

Figure 5.9: A simple role modeling tab for the Protégé ontology editor.

46

5 Outlook

Other issues also remain to be further clarified. The semantics of roles
may be subject of discussion. Apart from focusing on can-play semantics,
must-play may in some cases be desirable for role bindings. It would be
interesting to define different translations of role-based ontologies into clas-
sical ontologies providing different semantics. Another issue to clarify is the
implication of applying one role model several times in an ontology. One
could argue for multiple imports where each import is associated with a
unique name space. However, this would disallow to refer to all individuals
of a certain role type, for instance to all products in an ontology. Finally,
further investigations into the implications of the open-world semantics of
ontologies relating to role bindings and role assertions should be performed.

The ideas of this chapter are highly experimental and could not be inves- A final warning
tigated in the desired extent during this work. However, we believe them to
be worth mentioning as outlook and thought-provoking impulse for future
research.

47

6 Conclusion

In this work, we have merged the role modeling paradigm with ontologies.
We have taken the first steps to transfer the idea of roles from object-oriented
software development to ontologies and propose ontological role models as
a novel reuse abstraction. Role models provide a notion of ontological com-
ponents and allow to enhance the insufficient reuse mechanisms of exist-
ing ontology languages. Furthermore, roles enable more natural modeling
since natural types and role types can be distinguished explicitly. Due to
the translational semantics, our approach is compatible with existing for-
malisms and tools.

The main contributions of this work are the following:

• We present the conceptual idea of ontological roles and illustrate their
usefulness with examples.

• We define ontological roles and role models on a conceptual level as
well as formally.

• We propose a methodology for role-based ontology engineering.

• We provide a translational semantics and an implementation of it.

During this work, a number of new questions emerged that should be
subject of further research. The idea of ontological role modeling should be
further developed on a conceptual level. At first, the semantics of roles may
be subject of discussion. Furthermore, other uses of ontology roles should
be analyzed, for instance, composition of role-based ontologies. Beyond ad-
dressing conceptual questions, the ideas of this work should be developed
on a practical level. As a next step, integrating roles into existing ontology
modeling tools would be important. Moreover, one should study ontologies
of a larger size and come up with a role model catalog.

Overall, we argue that roles provide an interesting reuse abstraction for
ontologies and thus, should be supported as an ontological primitive.

48

A Role Models

Figure A.1: Taste role model.

Figure A.2: Origin role model.

Figure A.3: Product role model.

49

A Role Models

Figure A.4: Meal role model.

Figure A.5: Flavor role model.

Figure A.6: Layers role model.

50

B Source Code

Languages

Ontology = statements:OntologyStatement*;

OntologyStatement = ClassDescription | PropertyDescription | Assertion;

ClassDescription = classID:NamedType, description:Description*;

Description = SubClassOf | EquivalentTo | DisjointWith;

SubClassOf = c:ClassExpression;
EquivalentTo = c:ClassExpression;
DisjointWith = c:ClassExpression;

ClassExpression = AtomicExpression | Conjunction | Disjunction | Existential |
Universal;

Conjunction = conjunction:ClassExpression+;
Disjunction = disjunction:ClassExpression+;
Existential = prop1:NamedProperty, class1:ClassExpression;
Universal = prop2:NamedProperty, class2:ClassExpression;

AtomicExpression = NamedTypeEx;

PropertyDescription = propID:NamedProperty, domain:NamedType, range:NamedType;

Assertion = ClassAssertion | PropertyAssertion;
ClassAssertion = type:NamedType, indiv:NamedIndiv;
PropertyAssertion = prop:NamedProperty, indiv1:NamedIndiv, indiv2:NamedIndiv;

NamedTypeEx = atom:NamedType;

NamedType = value:S;
NamedProperty = value:S;
NamedIndiv = value:S;

Listing B.1: languages/owlm.as

51

B Source Code

CONCRETESYNTAX owlm FOR owlm

Ontology ::= "Ontology:" statements*;

ClassDescription ::= "Class:" classID description*;

SubClassOf ::= "SubClassOf:" c;
EquivalentTo ::= "EquivalentTo:" c;
DisjointWith ::= "DisjointWith:" c;

NamedTypeEx ::= atom;

Conjunction ::= "(" conjunction ("AND" conjunction)* ")" ;
Disjunction ::= "(" disjunction ("OR" disjunction)* ")";
Existential ::= "(" prop1 "SOME" class1 ")";
Universal ::= "(" prop2 "ONLY" class2 ")";

PropertyDescription ::= "Property:" propID "Domain:" domain "Range:" range;

ClassAssertion ::= type "(" indiv ")";
PropertyAssertion ::= prop "(" indiv1 "," indiv2 ")";

NamedType ::= value[(’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ |
’0’..’9’ | ’_’ | ’-’)*];

NamedProperty ::= value[(’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ |
’0’..’9’ | ’_’ | ’-’)*];

NamedIndiv ::= value[(’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ |
’0’..’9’ | ’_’ | ’-’)*];

Listing B.2: languages/owlm.cs

owlm.OntologyStatement = ImportStmt;

ImportStmt = filename:componentmodel.Location;
ImportStmt ==> minimalcl.Composer;

Plays = roleID:owlm.NamedType;
Plays ==> minimalcl.Composer;
owlm.Description = Plays;

RoleModel = modelID:owlm.NamedType, stmts:RoleStatement*;
RoleStatement = RoleDescription | RolePropDescription;
RoleDescription = roleID:owlm.NamedType, descriptions:owlm.EquivalentTo*;
RolePropDescription = propID:owlm.NamedProperty, domain:owlm.NamedType,

range:owlm.NamedType;

AtomicExpressionHook;
owlm.AtomicExpression = AtomicExpressionHook;
AtomicExpressionHook ==> componentmodel.Hook;

Listing B.3: languages/reuseowlm.as

52

B Source Code

CONCRETESYNTAX rowlm FOR reuseowlm EXTENDS owlm

owlm.Ontology ::= "Ontology:" statements*;

ImportStmt ::= "import" filename;

Plays ::= "Plays:" roleID;

RoleModel ::= "Rolemodel:" modelID stmts*;

RoleDescription ::= "Role:" roleID descriptions*;

RolePropDescription ::= "Role Property:" propID "Domain:" domain
"Range:" range;

AtomicExpressionHook ::= "<<" name ">>";

componentmodel.FragmentName ::= name[(’A’..’Z’ | ’a’..’z’) (’A’..’Z’ |
’a’..’z’ | ’0’..’9’ | ’_’ | ’-’)*];

componentmodel.Location ::= path[(’http’ ’:’ ’/’)? (’/’ (’A’..’Z’|
’a’..’z’ | ’0’..’9’ | ’_’ | ’.’ | ’-’)+)+];

componentmodel.VariationPointName ::= name[(’A’..’Z’ | ’a’..’z’) (’A’..’Z’ |
’a’..’z’ | ’0’..’9’ | ’_’ | ’-’)*];

Listing B.4: languages/rowlm.cs

Fragments

Rolemodel: Taste
Role: Tasting
EquivalentTo: (hasTaste SOME Taste)
Role: Taste

Role: Open

Role Property: hasTaste
Domain: Taste
Range: Tasting

Listing B.5: fragments/components/Taste.rowlm

53

B Source Code

define composer reuseowlm.ImportStmt(filename) {
// realizes ’import’ statement by copying role models into the ontology

// simply ontology to extend with role-classes and to be
// included in the importing ontology
fragmentlist owlm.Ontology roleOntology =

’Ontology: Class: Top’.rowlm;

fragmentlist reuseowlm.RoleModel rm = →filename;

foreach (stmt : rm.stmts) {
if (stmt instanceof reuseowlm.RoleDescription) {

// transform all roles into classes and copy their definition
fragmentlist owlm.ClassDescription newCls =

’Class: ’ + stmt.roleID + ’’.rowlm;
extend newCls.description with stmt.descriptions;

// add hook for new subclasses (to be extended by plays-composer)
fragmentlist owlm.SubClassOf extSCO =

’SubClassOf: (Bottom OR <<’ +
stmt.roleID + ’SubClassHook>>)’.rowlm;

extend newCls.description[first] with extSCO;

// add role to base-ontology
extend roleOntology.statements[first] with newCls;

}

if (stmt instanceof reuseowlm.RolePropDescription) {
// transform role properties into properties and copy their definition
fragmentlist owlm.PropertyDescription newProp =

’Property: ’ + stmt.propID + ’ Domain:’ + stmt.domain +
’ Range:’ + stmt.range + ’’.owlm;

extend roleOntology.statements[first] with newProp;
}

}
return roleOntology.statements;

}

Listing B.6: fragments/composers/importComposer.bc

define composer reuseowlm.Plays(roleID) {
// transforms ’plays’ statement to subclass relationships

// get surrounding ontology and class
fragmentlist owlm.Ontology ontology = CTX_ROOT;
fragmentlist owlm.ClassDescription clsDesc = CTX_CONTAINER;

// role-playing class - we add it as possible subclass of the role
fragmentlist owlm.ClassExpression clsExpr = clsDesc.classID+’’.owlm;

// a hook with this name was added by the import-composer
fragmentlist componentmodel.VariationPointName hookName =

roleID + ’SubClassHook’.bc;

extend →hookName on ontology with clsExpr;
}

Listing B.7: fragments/composers/playsComposer.bc

54

B Source Code

Ontology:

import /Taste.rowlm

Class: Spicy
Plays: Taste

Class: Pizza
Plays: Tasting

Class: Pasta
Plays: Taste
EquivalentTo: ((accompaniedBy SOME Sauce) OR (Noodles AND Italian))

Property: hasOrigin
Domain: Pasta
Range: Country

Pasta(myPasta)
hasTaste(myPasta, hot)

Listing B.8: fragments/compositionsPrograms/ontology.rowlm

55

Bibliography

[ADN+03] Heidrun Allert, Peter Dolog, Wolfgang Nejdl, Wolf Siberski, and
Friedrich Steimann.

Role-oriented models for hypermedia construction - conceptual
modeling for the semantic web.

Technical report, 2003.

[Ass03] U. Assmann.
Invasive Software Composition.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[Ass05] Uwe Assmann.
Reuse in semantic applications.
In Proceedings of Summer School Reasoning Web 2005, Msida,

Malta (25th–29th July 2005), volume 3564 of LNCS, pages 290–
304. REWERSE, 2005.

[AZW06] Uwe Aßmann, Steffen Zschaler, and Gerd Wagner.
Ontologies, Meta-Models, and the Model-Driven Paradigm, pages

249–273.
Springer, 2006.

[Bac80] Charles W. Bachman.
The role data model approach to data structures.
In International Conference on Databases (ICOD), pages 1–18,

1980.

[Bao06] Honavar Bao.
Divide and conquer semantic web with modualr ontologies - a brief

review of modular ontology language proposals.
In Proceedings of the First International Workshop on Modular On-

tologies (WoMo2006), 2006.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors.

The description logic handbook: theory, implementation, and appli-
cations.

Cambridge University Press, New York, NY, USA, 2003.

[BLF01] Tim Berners-Lee and Mark Fischetti.
Weaving the web: The original design and ultimate destiny of the

world wide web by its inventor.
DIANE Publishing Company, 2001.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic web.
Scientific American, 2001.

[BRSW97] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf.
The role object pattern.
In Proceedings of the Conference on Pattern Languages of Programs

(PLoP ’97), 1997.

56

Bibliography

[BS03] François Bry and Sebastian Schaffert.
The XML query language Xcerpt: Design principles, examples, and

semantics.
In Revised Papers from the NODe 2002 Web and Database-Related

Workshops on Web, Web-Services, and Database Systems,
pages 295–310, London, UK, 2003. Springer-Verlag.

[COM07] The COMPOST Consortium.
The COMPOST system portal.
http://www.the-compost-system.org/, 2007.

[dBEF+06] Jos de Bruijn, Marc Ehrig, Cristina Feier, Francisco J. Martin-
Recuerda, Francois Scharffe, and Moritz Weiten.

Ontology mediation, merging and aligning.
John Wiley & Sons, 2006.

[DHS+07] Nick Drummond, Matthew Horridge, Robert Stevens, Chris Wroe,
and Sandra Sampaio.

Pizza ontology v1.5.
http://www.co-ode.org/ontologies/pizza/2007/02/12/, Febru-

ary 2007.

[DMQ05] Dejing Dou, Drew V. McDermott, and Peishen Qi.
Ontology translation on the semantic web.
Journal of Data Semantics, 2:35–57, 2005.

[DS04] Mike Dean and Guus Schreiber.
OWL Web Ontology Language reference.
W3C recommendation, W3C, February 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides.

Design patterns: Elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1995.

[GHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ul-
rike Sattler.

A logical framework for modularity of ontologies.
In Manuela M. Veloso, editor, Proceedings of IJCAI’07: the 20th

International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6–12, 2007, pages 298–303, 2007.

[Gru93] Thomas R. Gruber.
A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[GS94] David Garlan and Mary Shaw.
An introduction to software architecture.
Technical Report CMU-CS-94-166, Carnegie Mellon University,

January 1994.

[HAJZ07] Jakob Henriksson, Uwe Assmann, Jendrik Johannes, and Steffen
Zschaler.

Reuseware - Adding modularity to your language of choice.
In Proceedings of Technology of Object-Oriented Languages and

Systems Europe 2007, Zurich, Switzerland (24th–27th June
2007), 2007.

57

Bibliography

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,
Robert Stevens, and Hai Wang.

The Manchester OWL syntax.
OWL: Experiences and Directions (OWLED), November 2006.

[Int96] International Organization for Standardization.
ISO/IEC 14977:1996: Information technology — Syntactic metalan-

guage — Extended BNF.
1996.

[KFNM04] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and
Mark A. Musen.

The Protege OWL plugin: An open development environment for
semantic web applications.

Third International Semantic Web Conference (ISWC), November
2004.

[Kle01] M. Klein.
Combining and relating ontologies: an analysis of problems and

solutions.
In A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and

M. Uschold, editors, Proceedings of the Workshop on Ontologies
and Information Sharing, IJCAI’01, Seattle, USA, 2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin.

Aspect-oriented programming.
In Proceedings of the European Conference on Object-Oriented Pro-

gramming (ECOOP 1997), pages 220–242, 1997.

[LT05] Patrick Lambrix and He Tan.
A framework for aligning ontologies.
In Principles and Practice of Semantic Web Reasoning 2005: Third

International Workshop, PPSWR, pages 17–31, 2005.

[Min74] Marvin Minsky.
A framework for representing knowledge.
Technical report, Cambridge, MA, USA, 1974.

[MW04] Prasenjit Mitra and Gio Wiederhold.
An ontology-composition algebra.
In Handbook on Ontologies, Springer Series on Handbooks in In-

formation Systems, pages 93–116. Springer, 2004.

[Noy04] Natalya Fridman Noy.
Tools for mapping and merging ontologies.
In Handbook on Ontologies, Springer Series on Handbooks in In-

formation Systems, pages 365–384. Springer, 2004.

[OMG05] Object Management Group OMG.
Unified modeling language: Superstructure, version 2.0,

formal/05-07-04, August 2005.

[OT00] H. Ossher and P. Tarr.
Multi-dimensional separation of concerns and the hyperspace ap-

proach.
In Proceedings of the Symposium on Software Architectures and

Component Technology: The State of the Art in Software Devel-
opment. Kluwer, 2000.

58

Bibliography

[PSZ06] Jeff Z. Pan, Luciano Serafini, and Yuting Zhao.
Semantic import: An approach for partial ontology reuse.
In Proc. of the ISWC2006 Workshop on Modular Ontologies (WoMO),

2006.

[Qui67] M. R. Quillian.
Word concepts: a theory and simulation of some basic semantic

capabilities.
Behavioral Science, 12(5):410–430, September 1967.

[Ree96] Wold P.-Lehne O. A. Reenskaug, T.
Working with Objects, The OOram Software Engineering Method.
Manning Publications Co, 1996.

[RG98] Dirk Riehle and Thomas Gross.
Role model based framework design and integration.
In Proceedings of the 1998 Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA ’98),
pages 117–133, New York, NY, USA, 1998. ACM Press.

[Rie96] D. Riehle.
Describing and composing patterns using role diagrams.
In Proceedings of the 1st International Conference on Object-

Oriented Technology in Russia (WOON ’96), 1996.

[Rie00] Dirk Riehle.
Framework Design: A Role Modeling Approach.
PhD thesis, 2000.

[SB02] Yannis Smaragdakis and Don Batory.
Mixin layers: an object-oriented implementation technique for re-

finements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology

(TOSEM), 11(2):215–255, 2002.

[Sow84] J. F. Sowa.
Conceptual structures: information processing in mind and ma-

chine.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1984.

[Ste00] Friedrich Steimann.
On the representation of roles in object-oriented and conceptual

modelling.
Data Knowledge Engineering, 35(1):83–106, 2000.

[Ste01] Friedrich Steimann.
Role = interface: a merger of concepts.
Journal of Object-Oriented Programming, 14(4):23–32, 2001.

[Ste05] Friedrich Steimann.
The role data model revisited.
Roles, an interdisciplinary perspective, AAAI Fall Symposium,

2005.

[Szy02] Clemens Szyperski.
Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

59

Bibliography

[VJBCS97] Pepjijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and
M. J. R. Shave.

An analysis of ontological mismatches: Heterogeneity versus in-
teroperability.

In AAAI 1997 Spring Symposium on Ontological Engineering, Stan-
ford, USA, 1997.

60

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, September 20, 2007

	Introduction
	Preliminaries
	Ontologies, Description Logics, and the Semantic Web
	Reuse in Ontologies
	Ontology Aligning, Mapping, and Merging
	Role Modeling
	Invasive Software Composition

	Role Modeling for Ontologies
	Enhancing Ontology Modeling with Roles
	Composing Role Models to an Ontology
	Semantics of Ontological Roles
	Comparison with Object-Oriented Software Engineering

	Implementation with Reuseware
	Overview
	Core Language and Reuse Language
	Composers and Composition Program

	Outlook
	Composition of Role-Based Ontologies
	Levels of Role Coverage
	Further Ideas

	Conclusion
	Role Models
	Source Code
	Bibliography

