
ar
X

iv
:1

90
6.

00
30

7v
1

 [
cs

.S
E

]
 1

 J
un

 2
01

9

Neural Bug Finding:

A Study of Opportunities and Challenges

Andrew Habib

Department of Computer Science

TU Darmstadt

Germany

andrew.a.habib@gmail.com

Michael Pradel

Department of Computer Science

TU Darmstadt

Germany

michael@binaervarianz.de

Abstract—Static analysis is one of the most widely adopted
techniques to find software bugs before code is put in production.
Designing and implementing effective and efficient static analyses
is difficult and requires high expertise, which results in only a
few experts able to write such analyses. This paper explores the
opportunities and challenges of an alternative way of creating
static bug detectors: neural bug finding. The basic idea is to
formulate bug detection as a classification problem, and to
address this problem with neural networks trained on examples
of buggy and non-buggy code. We systematically study the
effectiveness of this approach based on code examples labeled
by a state-of-the-art, static bug detector. Our results show that
neural bug finding is surprisingly effective for some bug patterns,
sometimes reaching a precision and recall of over 80%, but also
that it struggles to understand some program properties obvious
to a traditional analysis. A qualitative analysis of the results
provides insights into why neural bug finders sometimes work
and sometimes do not work. We also identify pitfalls in selecting
the code examples used to train and validate neural bug finders,
and propose an algorithm for selecting effective training data.

I. INTRODUCTION

A popular way of finding software bugs early during the

development process is static analysis tools that search a code

base for instances of common bug patterns. These tools, which

we here call bug detectors, often consist of a scalable static

analysis framework and an extensible set of checkers that each

search for instances of a specific bug pattern. Examples of

bug detectors include the pioneering FindBugs tool [1], its

successor SpotBugs1, Google’s Error Prone tool [2], and the

Infer tool by Facebook [3].

Despite the overall success of static bug detection tools,

there still remains a lot of potential for improvement. A recent

study that applied state-of-the-art bug detectors to a set of al-

most 600 real-world bugs shows that over 95% of the bugs are

currently missed [4]. The main reason is that various different

bug patterns exist, each of which needs a different bug detector.

These bug detectors must be manually created, typically by

program analysis experts, and they require significant fine-

tuning to find actual bugs without overwhelming developers

with spurious warnings. Bug detectors often require hundreds

of lines of code each, even for bug patterns that seem trivial

to find at first sight and when being built on top of a static

analysis framework.

1https://spotbugs.github.io/

This paper studies a novel way of creating bug detectors:

neural bug finding. Motivated by the huge success of neural

networks for various software engineering tasks [5], we ask

a simple question: Can we automatically learn bug detec-

tors from data, instead of implementing program analyses

manually? Giving a positive answer to this question has the

potential of complementing existing bug detectors with addi-

tional checkers that address previously ignored bug patterns.

Moreover, it may enable non-experts in program analysis, e.g.,

ordinary software developers, to contribute to the creation of

bug detectors.

Given the importance of bug detection and the power of

neural networks, the intersection of these two areas so far has

received surprisingly little attention. Existing work focuses

on learning-based defect prediction [6], which ranks entire

files by their probability to contain any kind of bug, whereas

we here aim at pinpointing code that suffers from a specific

kind of bug. Other work addresses the problems of predicting

code changes [7], predicting identifier names [8]–[10], and

predicting how to complete partial code [11]–[13], which are

complementary to detecting bugs. The perhaps closest existing

work is DeepBugs [14], which trains a neural network to find

name-related bugs, and learning-based techniques for identify-

ing security vulnerabilities [15]–[17]. While these approaches

show that neural bug finding is possible for a specific class

of bugs, we here study the potential of neural bug finding in

much more detail and for a broader range of code issues.

Automatically learning bug detectors requires addressing

two problems: (1) Obtaining sufficient training data, e.g., con-

sisting of buggy and non-buggy code examples. (2) Training a

model that identifies bugs, e.g., by distinguishing buggy code

from non-buggy code. The first problem could be addressed

by automatically seeding bugs into code, by extracting buggy

code examples from version histories, or by manually labeling

code examples as instances of specific bug patterns. In this

work, we sidestep the first problem and study whether given

sufficient training data, the second problem is tractable. Our

work therefore does not yield a ready-to-deploy bug detection

tool, but rather novel insights into what kinds of bugs neural

bug finding can and cannot find. We believe that thoroughly

studying this question in isolation is an important step forward

toward the ultimate goal of neural bug finding.

http://arxiv.org/abs/1906.00307v1
https://spotbugs.github.io/

To study the potential of learned bug detectors while

sidestepping the problem of obtaining labeled training data,

we use an existing, traditionally developed bug detector as a

generator of training data. To this end, we run the existing bug

detector on a corpus of code to obtain warnings about specific

kinds of bugs. Using these warnings and their absence as a

ground truth, we then train a neural model to distinguish code

with a particular kind of warning from code without such a

warning. For example, we train a model that predicts whether a

piece of code uses reference equality instead of value equality

for comparing objects in Java. This setup allows us to assess

to what extent neural bug finding can imitate existing bug

detectors.

One drawback of using an existing bug detector as the

data generator is that some warnings may be spurious and

that some bugs may be missed. To mitigate this problem, we

focus on bugs flagged by bug detectors that are enabled in

production in a major company and that empirically show

false positive rates below 10% [18]. Another drawback is that

the learned bug detectors are unlikely to outperform the static

analyzers they learn from. However, the purpose of this work

is to study whether training a model for neural bug finding is

feasible, whereas we leave the problem of obtaining training

data beyond existing static analyzers as future work.

The main findings of our study include the following:

• Learned bug detectors identify instances of a surpris-

ingly large number of bug patterns with precision and

recall over 80%. At the same time, the learned models

sometimes fail to understand program properties that a

traditional analysis easily finds.

• Neural bug finding works because the models learn to

identify common syntactic patterns correlated with bugs,

particular API misuses, or common instances of a more

general bug pattern.

• The composition of the training data a neural bug finding

model is learned from has a huge impact on the model’s

effectiveness. We study several strategies for composing

training data and present a novel algorithm for selecting

effective training examples.

• More training data yields more effective models, but

surprisingly small data sets, e.g., of only 77 examples,

can still yield effective neural bug detectors.

• Following a naive approach for validating a learned bug

detector may lead to very misleading results.

In summary, this paper contributes the first comprehensive

study of neural bug finding. The study reveals novel insights

into the opportunities and challenges associated with this novel

way of creating bug detectors. We believe that our work

is a step forward toward complementing traditional ways of

creating bug detectors. In particular, the study provides a basis

for future work on generating training data for neural bug

finding, for developing machine learning models that reason

about rich representations of code, and for building neural bug

finding tools. To fuel these and other lines of future work, we

Corpus

of code

Buggy

examples

Non-buggy

examples

Vectorized &

labeled examples

ML model
Buggy /

Not buggy

Data

collection
Processing

New

code

Vectorized

code

Processing Query

Training

Prediction

Fig. 1. Overview of neural bug finding.

make our tool and data set publicly available.2

II. METHODOLOGY

Our approach applies machine learning (ML), specifically

deep learning, to source code and learns a model that predicts

whether a given piece of code suffers from a specific bug

or not. Figure 1 gives an overview of the neural bug finding

approach. As training and validation data, we gather hundreds

of thousands of code examples, some of which are known to

contain specific kinds of bugs, from a corpus of real-world

software projects (Section II-A). To feed these code examples

into a neural model, we abstract and vectorize the source code

of individual methods (Section II-B). A particularly interesting

challenge is how to select examples of buggy and non-buggy

code for training the bug detection model, which we address

in Section II-C. Finally, Section II-D describes how we train

recurrent neural network (RNN) models that predict different

kinds of bugs.

A. Gathering Data

To study the capability of neural bug finding, we need some

kind of oracle that provides examples of buggy and non-buggy

code to train ML models. One could potentially collect such

data from existing bug benchmarks [19]–[21]. Unfortunately,

such bug benchmarks provide at most a few hundreds of buggy

code examples, which is a relatively small number for training

neural networks. Other directions include mining existing code

repositories for pull requests and commits that fix bugs or

generating training data by injecting bugs, e.g., via mutations.

In this work, we obtain examples of buggy and non-buggy

code by running a state-of-the-art static analyzer as an oracle

on a large corpus of code, and by collecting warnings produced

by the static analyzer. We use Error Prone [2] as the oracle, a

state-of-the-art static bug finding tool for Java, which is devel-

oped and used by Google, and made available as open-source.

We run Error Prone on the Qualitas Corpus [22], a curated set

of 112 open-source Java projects and collect all warnings and

errors reported by Error Prone along with their corresponding

kinds and code locations. To simplify terminology, we call

all problems reported by Error Prone a “bug”, irrespective

of whether a problem affects the correctness, maintainability,

performance, etc. of code.

2URL inserted into final version.

Table I shows the bug kinds we consider in this work.

Error Prone warnings flag class-level problems, e.g., mutable

enums; method-level problems, e.g., missing annotations, such

as the @Override annotation (Id 1 in Table I); and statement-

level and expression-level issues, such as expressions with

confusing operator precedence (Id 9 in Table I). Since most

of the warnings are at the method level or at the expression

level, our study focuses on learning to predict those bugs,

ignoring class-level bugs. After removing class-level bugs,

Table I includes the 20 most common kinds of bugs reported

by Error Prone on the Qualitas corpus.

To illustrate that finding these bugs with traditional means

is non-trivial, the last column of Table I shows how many

non-comment, non-empty lines of Java code each bug detector

has. On average, each bug detector has 170 lines of code, in

addition to th 156k lines of general infrastructure and test code

in the Error Prone project. These numbers show that manually

creating bug detectors is a non-trivial effort that would be

worthwhile to complement with learned bug detectors.

B. Representing Methods as Vectors

1) Code as Token Sequences: The next step is modeling

source code in a manner that allows us to apply machine

learning to it to learn patterns of buggy and non-buggy

code. Among the different approaches, we here choose to

represent code as a sequence of tokens. This representation

is similar to natural languages [23], [24] and has seen various

applications in programming and software engineering tasks,

such as bug detection [25], program repair [26], [27], and code

completion [12].

Let M be the set of all non-abstract Java methods in our

corpus of code. For each method m ∈ M , we extract the

sequence of tokens sm from the method body, starting at the

method definition and up to length n. Let S be the set of

all sequences extracted from all methods M . Extracted tokens

include keywords such as for, if, and void; separators such

as ;, (), and ,; identifiers such as variable, method, and class

names; and finally, literals such as 5 and "abc". Each token

ti = (lex, t, l), where 1 ≤ i ≤ n, is a tuple of the lexeme

itself, its type t, and the line number l at which t occurs in

the source file. We ignore comments. As a default, we choose

a sequence length of n = 50 in our experiments.

As an alternative to a token sequence-based code represen-

tation, we could model code, e.g., as abstract syntax trees

(ASTs), control-flow graphs (CFGs), or program-dependence

graphs (PDGs). Recent work has started to explore the po-

tential of graph-based code representations [28]–[32]. We

here deliberately focus on a simpler, sequence-based code

representation, so that our study provides a lower bound on

the potential effectiveness of neural bug finding, leaving the

use of richer code representations as future work.

2) Representing Tokens: To enable the ML model to learn

and generalize patterns from source code, we abstract the

extracted token sequences in such a way that discovered

patterns are reusable across different pieces of code. One

challenge is that source code has a huge vocabulary due to

identifiers and literals chosen by developers [33]. To mitigate

this problem, we extract a vocabulary V consisting of the most

frequent keywords, separators, identifiers, and literals from all

code in our corpus. In addition to the tokens in the corpus, we

include two special tokens: UNK, to represent any occurrence

of a token beyond the most frequent tokens, and PAD to pad

short sequences. In our experiments, we set |V | = 1000 which

covers 82% of all keywords, separators, identifiers, and literals

in our corpus.

We convert the sequences of tokens of a given code example

to a real-valued vector by representing each token t through its

one-hot encoding. The one-hot encoding function H(t) returns

a vector of length |V |, where all elements are zero except

one that represents the specific token t. To allow the learned

models to generalize across similar tokens, we furthermore

learn an embedding function E that maps H(t) to R
e, where

e is the embedding size. Based on these two functions, we

represent a sequence of tokens s ∈ S through a real-valued

vector vs as follows:

Definition 1 (Source Code Vector):

For a sequence of tokens s ∈ S of length n, where

s = t1, t2, . . . , tn is extracted from a source code method

m ∈ M , the vector representation of s is vs =
[E(H(t1)), E(H(t2)), . . . , E(H(tn))].

C. Buggy and Non-Buggy Examples

The training and validation data consists of two kinds of

code examples: buggy and non-buggy examples. We focus

on methods as code examples, i.e., our neural bug detectors

predict whether a method contains a particular kind of bug. Let

K be the set of all bug kinds that the oracle can detect and W

be the set of all warnings reported by it on the Qualitas corpus.

Each warning w ∈ W is represented as w = (k, l,m) where

k ∈ K is the bug kind flagged at line number l in method m.

For each kind of bug k ∈ K , we consider two subsets of M :

• The set Mkbug
of methods flagged by the oracle to suffer

from bug kind k.

• The set MknBug
of methods for which the oracle does not

report any bug of kind k.

Based on these two sets, we select a subset of the methods as

examples to train and validate our models, as described in the

following. After selecting the methods, we produce two sets

of sequences, Skbug
and SknBug

, as described in Section II-B.

1) Selecting Non-Buggy Examples: One strategy for se-

lecting non-buggy examples is to randomly sample from all

methods that are not flagged as buggy for a bug of kind k.

However, we found this naive approach to bias the learned

model towards the presence or absence of specific tokens

related to k, but not necessarily sufficient to precisely detect k.

For example, when training a model to predict a problem with

binary expressions (Id 9 in Table I), using the naive approach

to select non-buggy examples would result in a model that

learns to distinguish source code sequences that contain binary

expressions from sequences that do not. In other words, it

would simply flag any binary expression as potentially buggy.

TABLE I
TOP 20 WARNINGS REPORTED BY ERROR PRONE ON THE QUALITAS CORPUS.

Id Warning Count Description LoC

1 MissingOverride 268,304 Expected @Override because method overrides method in supertype; including interfaces 111
2 BoxedPrimitiveConstructor 3,769 valueOf or autoboxing provides better time and space performance 268
3 SynchronizeOnNonFinalField 2,282 Synchronizing on non-final fields is not safe if the field is updated 66
4 ReferenceEquality 1,680 Compare reference types using reference equality instead of value equality 282
5 DefaultCharset 1,550 Implicit use of the platform default charset, can result in unexpected behaviour 515
6 EqualsHashCode 590 Classes that override equals should also override hashCode 106
7 UnsynchronizedOverridesSynchronized 517 Thread-safe methods should not be overridden by methods that are not thread-safe 125
8 ClassNewInstance 486 Class.newInstance() bypasses exception checking 254
9 OperatorPrecedence 362 Ambiguous expressions due to unclear precedence 118

10 DoubleCheckedLocking 204 Double-checked locking on non-volatile fields is unsafe 305
11 NonOverridingEquals 165 A method that looks like Object.equals but does not actually override it 179
12 NarrowingCompoundAssignment 158 Compound assignments like x += y may hide dangerous casts 167
13 ShortCircuitBoolean 116 Prefer the short-circuiting boolean operators && and || to & and | 88
14 IntLongMath 111 Expression of type int may overflow before being assigned to a long 127
15 NonAtomicVolatileUpdate 80 Update of a volatile variable is non-atomic 142
16 WaitNotInLoop 77 Object.wait() and Condition.await() must be called in a loop to avoid spurious wakeups 76
17 ArrayToString 56 Calling toString on an array does not provide useful information (prints its identity) 256
18 MissingCasesInEnumSwitch 53 Switches on enum types should either handle all values, or have a default case 86
19 TypeParameterUnusedInFormals 46 A method’s type parameter is not referenced in the declaration of any of the formal parameters 135
20 FallThrough 45 switch case may fall through 96

Total 280,651 3,402

To address this problem, we selectively pick non-buggy

examples that are similar to the buggy examples, but that do

not suffer from the same programming error k. For example,

if a warning kind k flags binary expressions, we would like

SknBug
to be mostly composed of sequences that include binary

expressions but that do not suffer from k. To select such similar

examples in an automated manner, we perform two steps. First,

we convert each sequence into a more compact vector that

summarizes the tokens in the sequence. Second, we query

all non-buggy examples for those similar to a given buggy

example using a nearest neighbor algorithm. The following

explains these two steps in more detail.

The first step converts sequence vectors to frequency vectors.

Let vs = [t1, t2, . . . , tn] be a vector of n tokens corresponding

to code sequence s. We convert vs into a vector of frequencies

vfreq
s

of all words in V . In other words, we compute:

vfreqs = [count(ti1 , s), count(ti2 , s), . . . , count(ti|V |
, s)]

for some fixed ordering i1, i2, . . . , i|V | of the vocabulary V ,

and where count(t, s) returns the number of occurrences of

t in s. We exclude the special tokens UNK and PAD when

computing vfreq
s

.

Before searching the space of non-buggy examples using

the token-frequency vectors, we counteract the effect of tokens

with very high frequencies. Examples of these tokens include

new, =, return, and separators, all of which are likely

to appear across many different sequences of source code

but are less relevant for selecting non-buggy examples. To

counteract their influence, we apply term frequency-inverse

document frequency (TF-IDF), which offsets the number of

occurrences of each token in the frequency vectors by the

number of sequences this token appears in. TF-IDF is widely

used in information retrieval and text mining to reflect how

important a word is to a document in a corpus of documents,

while accommodating for the fact that some words occur more

frequently than others.

As the second step, to search the space of non-buggy

code sequences in our data set, we use an efficient, high-

dimensional search technique called approximated nearest

neighbor (ANN). We use ANN to search the vector repre-

sentations of all non-buggy methods for a subset SANN
knBug

of

non-buggy examples that are similar to the multi-dimensional

space of sequence vectors in Skbug
.

Definition 2 (ANN Non-Buggy Examples): For every buggy

example skbug
∈ Skbug

of bug kind k ∈ K , the ANN of skbug

is ANNsearch(skbug
, SknBug

) where ANNsearch(x, Y) returns

the ANN of x in Y . Therefore, the set of non-buggy nearest

neighbors sequences of Skbug
is:

SANN
knBug

=
{

s′ ∈ SknBug
| s′ = ANNsearch(s, SknBug

)

∀s ∈ Skbug

} (1)

ANN uses locality sensitive hashing to perform this high-

dimensional space, which is much more efficient than exhaus-

tively computing pair-wise distances between all vectors.

2) Selecting Buggy Examples: When selecting sequences

SknBug
of non-buggy examples, we need to consider whether

the location of the bug is within the first n tokens of the

method. A warning w = (k, lw,m) that flags line lw in method

m could fall beyond the sequence sm extracted from m if the

last token of sm, tn = (lex, t, ltn) has ltn < lw. In other

words, it could be that a warning flagged at some method by

the oracle occurs at a line beyond the extracted sequence of

that method because we limit the sequence length to n tokens.

In such a case, we remove this example from the set of buggy

examples of bug kind k and we use it as a non-buggy example.

D. Learning Bug Detection Models

The remaining step in our neural bug finding approach is

training the ML model. Based on the vector representation

of buggy and non-buggy examples of code sequences, we

formulate the bug finding problem as binary classification.

Definition 3 (Bug Finding Problem): Given a previously

unseen piece of code C, the problem Pk : C → [0, 1] is to

predict the probability that C suffers from bug kind k, where

0 means certainly not buggy and 1 means that C certainly has

a bug of kind k.

We train a model to find a bug of kind k in a supervised

setup based on two types of training examples: buggy exam-

ples (vbug, 1) and non-buggy examples (vnBug, 0), where vbug
and vnBug are the vector representations of buggy and non-

buggy code, respectively. During prediction, we interpret a

predicted probability lower than 0.5 as “not buggy”, and as

“buggy” otherwise.

Since we model source code as a sequence of tokens,

we employ recurrent neural networks (RNNs) as models. In

particular, we use bi-directional RNN with Long Short Term

Memory (LSTM) [34] units. As the first layer, we have an

embedding layer that reduces the one-hot encoding of tokens

into a smaller embedding vector of length 50. For the RNN,

we use one hidden bi-directional LSTM layer of size 50. We

apply a dropout of 0.2 to the hidden layer to avoid overfitting.

The final hidden states of the RNN are fed through a fully

connected layer to an output layer of dimension 1, using the

sigmoid activation function. For the loss function, we choose

binary cross entropy, and we train the RNN using the Adam

optimizer. Finally, we use a dynamically calculated batch size

based on the size of the training data (10% of the size of the

training set with a maximum of 300).

E. Different Evaluation Settings

We study four different ways of combining training and

validation data, summarized in Table II. These four ways are

combinations of two variants of selecting code examples. On

the one hand, we consider balanced data, i.e., with an equal

number of buggy and non-buggy examples. On the other hand,

we consider a stratified split, which maintains a distribution

of buggy and non-buggy examples similar to that in all the

collected data, allowing us to mimic the frequency of bugs

in the real-world. For instance, assume the total number of

samples collected for a specific warning kind is 200 samples,

of which 50 (25%) are buggy and 150 (75%) are not buggy.

If we train the model with 80% of the data and validate on

the remaining 20%, then a stratified split means the training

set has 160 samples, of which 40 (25%) are buggy and 120

(75%) are not buggy, and the validation set has 40 samples,

of which 10 (25%) are buggy and 30 (75%) are not buggy.

Evaluation setups BS and BANNS correspond to the sce-

nario of using balanced data for training and stratified split

for validation. In setup BS, we randomly sample the non-

buggy examples to build a balanced training set, while in

setup BANNS we use our novel approximated nearest neighbor

(ANN) search for non-buggy examples (Section II-C). Since

for many of the kinds of warnings the number of collected

buggy examples is relatively small for a deep learning task,

we additionally evaluate a third setup, SS, where we utilize

TABLE II
SETUPS USED TO EVALUATE THE NEURAL BUG FINDING MODELS.

Experiment Training Validation

BS Balanced Stratified
BANNS Balanced (ANN sampling) Stratified
SS Stratified Stratified
BB Balanced Balanced

all non-buggy data available by doing a stratified split for

training and validation. Finally, setup BB represents the most

traditional setup for binary classifiers, which uses balanced

training and balanced validation sets.

III. IMPLEMENTATION

We use the JavaParser3 to parse and tokenize all Java

methods in the Qualitas corpus. Tokenized methods, warnings

generated by Error Prone, their kinds, and locations are stored

in JSON files for processing by the models. Python scikit-

learn4 is used to compute the TD-IDF of all examples and

NearPy5 is used to find the ANN of each buggy example. To

implement the recurrent neural networks, we build upon Keras

and Tensorflow6.

IV. RESULTS

We study the potential of neural bug finding by posing the

following research questions:

• RQ1: How effective are neural models at identifying

common kinds of programming errors?

• RQ2: Why does neural bug finding sometimes work?

• RQ3: Why does neural bug finding sometimes not work?

• RQ4: How does the composition of the training data

influence the effectiveness of a neural model?

• RQ5: How does the amount of training data influence the

effectiveness of a neural model?

• RQ6: What pitfalls exist when evaluating neural bug

finding?

A. Experimental Setup

For each experiment, we split all available data into 80%

training data and 20% validation data, and we report the results

with the validation set. Each experiment is repeated five times,

and we report the average results. For the qualitative parts

of our study, we systematically inspected at least ten, often

many more, validation samples from each warning kind. All

experiments are performed on a machine with 48 Intel Xeon

E5-2650 CPU cores, 64GB of memory, and an NVIDIA Tesla

P100 GPU.

3http://javaparser.org/
4https://scikit-learn.org/
5http://pixelogik.github.io/NearPy/
6https://keras.io/ and https://www.tensorflow.org/

TABLE III
PRECISION, RECALL, AND F1 OF THE NEURAL BUG FINDING MODELS OF THE TOP 20 WARNINGS REPORTED BY ERROR PRONE. RESULTS ARE OBTAINED

BY TRAINING WITH 80% OF AVAILABLE DATA AND VALIDATING ON THE REMAINING 20%. TABLE ALSO SHOWS THE TOTAL NUMBER OF EXAMPLES

AVAILABLE IN THE DATA SET. WARNINGS ARE IN DESCENDING ORDER BY THEIR TOTAL NUMBER OF BUGGY EXAMPLES.

Experiment BS Experiment BANNS Experiment SS Experiment BB

Nb. of examples Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
Id Warning Buggy nBuggy % % % % % % % % % % % %

1 MissingOverride G 268,304 501,937 69.74 86.05 76.97 73.53 77.70 75.48 79.78 74.97 77.28 82.34 84.25 83.24

2 BoxedPrimitiveConstructor L 3,769 767,112 12.00 96.47 21.23 17.47 93.93 29.20 93.62 92.02 92.67 95.51 94.26 94.85

3 Sync.OnNonFinalField G 2,282 653,856 20.19 98.73 33.18 24.14 97.76 38.57 71.05 79.43 74.88 96.28 99.74 97.97

4 ReferenceEquality G 1,680 746,285 1.48 89.17 2.90 1.55 83.21 3.05 78.94 39.40 52.08 85.01 90.40 87.51

5 DefaultCharset G 1,550 747,192 2.18 95.35 4.27 4.06 80.00 7.69 75.61 60.58 66.57 91.83 94.56 93.13

6 EqualsHashCode G 590 673,446 8.20 99.49 14.91 8.79 85.25 15.89 39.71 5.93 10.06 98.38 100.00 99.17

7 Unsync.OverridesSync. G 517 657,303 0.36 82.14 0.72 0.28 68.93 0.55 61.26 16.89 25.27 85.74 77.05 80.73

8 ClassNewInstance G 486 742,585 0.80 94.23 1.59 2.56 85.36 4.97 88.04 79.59 83.46 91.41 93.97 92.44

9 OperatorPrecedence L 362 716,691 0.51 92.22 1.02 0.49 75.56 0.98 70.10 20.28 30.00 89.91 88.67 89.17

10 DoubleCheckedLocking G 204 297,959 2.80 97.56 5.40 5.05 95.61 9.24 95.80 83.41 88.84 98.30 95.53 96.77

11 NonOverridingEquals L 165 488,094 2.04 93.33 3.94 2.97 77.58 5.61 90.01 87.88 88.63 95.22 97.95 96.49

12 NarrowingCompoundAssign. L 158 660,390 0.29 88.12 0.58 0.34 79.38 0.68 53.04 31.25 38.11 92.72 92.22 92.45

13 ShortCircuitBoolean L 116 616,037 0.09 82.61 0.18 0.10 73.91 0.20 72.22 31.30 39.70 78.21 91.82 83.78

14 IntLongMath L 111 531,502 0.23 79.09 0.47 0.30 81.82 0.59 59.52 7.27 12.60 90.82 100.00 94.95

15 NonAtomicVolatileUpdate G 80 369,501 0.07 71.25 0.15 0.04 71.25 0.08 0.00 0.00 0.00 80.24 83.60 81.00

16 WaitNotInLoop G 77 469,210 0.27 97.33 0.53 0.30 86.67 0.59 83.17 49.33 61.52 89.75 100.00 94.57

17 ArrayToString L 56 554,213 0.07 96.36 0.13 0.04 61.82 0.08 20.00 1.82 3.33 96.36 96.67 96.18

18 MissingCasesInEnumSwitch G 53 430,701 0.10 85.45 0.20 0.05 43.64 0.10 0.00 0.00 0.00 81.97 94.64 87.09

19 TypeParam.UnusedInFormals L 46 321,451 0.41 86.67 0.81 0.69 93.33 1.35 0.00 0.00 0.00 92.70 93.33 92.50

20 FallThrough L 45 615,140 0.08 93.33 0.15 0.43 82.22 0.84 63.33 20.00 30.09 83.44 92.29 87.13

Median 0.46 92.78 0.92 0.59 80.91 1.17 70.58 31.28 38.91 91.12 94.12 92.48

B. RQ1: How effective are neural models at identifying com-

mon kinds of programming errors?

To study the effectiveness of the neural bug finding models,

we measure their precision, recall, and F1-score. For a specific

bug kind, precision is the percentage of actual bugs among

all methods that the model flags as buggy, and recall is the

percentage of bugs detected by the model among all actual

bugs. The F1-score is the harmonic mean of precision and

recall.

We first look at Experiment BANNS, which uses balanced

training data selected using ANN and an imbalanced validation

set. The results of this and the other experiments are shown

in Table III. Across the 20 kinds of warnings we study,

precision ranges between 73.5% down to 0.04%, while recall

ranges between 97.76% and 43.6%. The relatively high recall

shows that neural bug finders find a surprisingly high fraction

of all bugs. However, as indicated by the low precision for

many warnings kinds, many of the models tend to report many

spurious warnings.

In Experiment SS, we use a much larger, but imbalanced,

training set. Table III also shows the results of this experi-

ment. One can observe a clear improvement of precision over

Experiment BANNS for many of the models. This improvement

in precision is due to the richer and larger training set, which

trains the model with many more non-buggy examples than Ex-

periment BANNS, making it more robust against false positives.

However, the increased precision comes at the cost of decreas-

ing recall compared to Experiment BANNS. For example, the

neural model that predicts double checked locking bugs (Id 10

in Table III) has its recall dropping from 95.6% to 83.4% when

using the full training data available. Yet, the reduced recall

is offset by a huge increase in precision, causing the median

F1-score to grow from 1.17% in Experiment BANNS to 38.91%

in Experiment SS.

The effectiveness of neural bug finders varies heavily

across bug patterns, reaching a precision of up to 95.8%

and a recall of up to 97.76% for some patterns, while

dropping down to almost 0% for others.

C. RQ2: Why does neural bug finding work?

To answer this question and also RQ3, we systematically

inspect true positives, true negatives, false positives, and false

negatives for each model. We discuss our observations by

splitting the warning kinds into two groups, based on whether

the information provided to the neural model is, in principle,

sufficient to accurately detect the kind of bug.

1) Bug Kinds with Sufficient Available Information: The

first group includes all bug kinds where the bug pattern could,

in principle, be precisely and soundly detected based on the

information we provide to the neural model. Recall that we

feed the first 50 tokens of a method into the model, and

no other information, such as the class hierarchy or other

methods in the program. In other words, the model is given

enough information to reason about local bugs, which involve

a property of one or a few statements, one or a few expressions,

or the method signature. We mark all warning kinds in this

group with a L (for local) in Table III. Intuitively, these

warning kinds correspond to what traditional lint-like tools

may detect based on a local static analysis.

We now discuss examples of true positives, i.e., correctly

identified bugs, among the warnings reported by models

trained for warning kinds in the first group.

a) Boxed primitive constructor (Id 2): This bug pattern

includes any use of constructors of primitive wrappers, such

as new Integer(1) and new Boolean(false). The

neural bug finder for this warning achieves high precision

and recall of 93.6% and 92% respectively (Table III, Experi-

ment SS). The following is an instance of this bug, which is

detected by the neural model:

1 public int compareTo(java.lang.Object o) {

2 return new Integer(myX).compareTo(new

Integer(((NodeDisplayInfo)o).myX));

3 }

Inspecting these and other bug kinds shows that, in essence, the

model learns to identify specific subsequences of tokens, such

as ". . . new Boolean . . . " and ". . . new Integer . . . ", as

a strong signal for a bug.

b) Operator precedence (Id 9): This warning is about

binary expressions that either involve ungrouped conditionals,

such as x || y && z, or a combination of bit operators and

arithmetic operators, such as x + y << 2. Such expressions

are confusing to many developers and should be avoided or

made more clear by adding parentheses. The following is a

true positive detected by our neural model.

1 @Override

2 public int nextPosition() {

3 assert (positions != null &&

4 nextPos < positions.length)

5 || startOffsets != null

6 && nextPos < startOffsets.length;

7 ...

8 }

Overall, the neural model achieves 70% precision and 20.28%

recall. The fact that the model is relatively successful shows

that neural bug finders can learn to spot non-trivial syntactic

patterns. Note that the space of buggy code examples for this

warning kind is large, because developers may combine an

arbitrary number of binary operators and operands in a single

statement. Given that the model is trained on very few buggy

examples, 290 (80% of 362), the achieved precision and recall

are promising.

The models learn syntactic patterns commonly corre-

lated with particular kinds of bugs and identify specific

tokens and token sequences, such as calls to particular

APIs.

2) Bug Kinds with Only Partial Information: The second

group of bug kinds contains bug patterns that, in principle,

require more information than available in the token sequences

we give to the neural models to be detected soundly and

precisely. For example, detecting these kinds of bugs requires

information about the class hierarchy or whether a field used

in a method is final. We mark these bug kinds with a G

(for global) in Table III. The bug kinds include bugs that

require type and inheritance information, e.g., missing override

annotations (Id 1), missing cases in enum switch (Id 18),

default Charset (Id 5), and un-synchronized method overriding

a synchronized method (Id 7). They also include bugs for

which some important information is available only outside

the current method, such as synchronized on non-final field

(Id 3) and equals-hashcode (Id 6). Note that although detecting

these bugs requires information beyond the sequence of tokens

extracted from the methods, the bug location lies within the

sequence of tokens. Somewhat surprisingly, neural bug finding

also works for some of these bug patterns, achieving precision

and recall above 70% in some cases, which we describe in the

following.

a) Missing @Override (Id 1): This warning is for

methods that override a method of an ancestor class but that

do not annotate the overriding methods with @Override.

Although the supertype information that is required to accu-

rately detect this problem is not available to the neural model,

the model provides high precision and recall. Inspecting

true positives and training examples reveals that the model

learns that many overriding methods override methods of

common Java interfaces and base classes. Examples include

the toString() method from the Object base class and

the run() method from the Runnable interface. In fact,

both method names appear in the data set as buggy 44,789

and 21,767 times, respectively. In other words, the models

successfully learns to identify common instances of the bug

pattern, without fully learning the underlying bug pattern.

b) Default Charset (Id 5): This warning flags specific

API usages that rely on the default Charset of the Java VM,

which is discouraged for lack of portability. The “pattern”

to learn here are specific API names, which implicitly use

the default Charset. The following instance is a true positive

detected by the neural model:

1 private void saveTraining() {

2 BufferedWriter writer = null;

3 try {

4 writer = new BufferedWriter(new

FileWriter(SAVE_TRAINING));

5 ...

As we show in RQ3, this bug is more subtle than it looks.

Correctly detecting this problem requires, in some cases,

information on the type of receiver objects, on which the APIs

are called.

c) Double checked locking (Id 10): This bug is about

a lazy initialization pattern [35] where an object is checked

twice for nullness with synchronization in-between the null

checks, to prevent other threads from initializing the object

concurrently. The following is a true positive reported by our

neural model.7

1 private SimpleName pointcutName = null;

2 ...

3 public SimpleName getName() {

4 if (this.pointcutName == null) {

5 synchronized (this) {

6 if (this.pointcutName == null) {

7 ...

8 return this.pointcutName;

9 }

7Note that our approach extracts the token sequence from the method
body, i.e., starting from line 3. The object declaration at line 1 is shown
for completeness only.

While the method with the bug contains parts of the ev-

idence for the bug, it is missing the fact that the field

pointcutName is not declared as volatile. So how

does the model for this bug pattern achieve the surprisingly

high precision and recall of 95.8% and 83.41%, respectively

(Experiment SS)? We find that the correct pattern of double

checked locking almost never occurs in the data set. Even

the ANN search for non-buggy examples yields sequences

that are indeed similar, e.g., sequences that have a null check

followed by a synchronized block, but that do not exactly

match the lazy initialization pattern. Given the data set, the

model learns that a null check, followed by a synchronized

block, followed by a another null check is likely to be buggy.

In practice, this reasoning seems mostly accurate, because the

idiom of double checked locking is hard to get right even for

experienced programmers [36].

Neural bug finding sometimes works even when only

parts of the information to accurately detect a specific

kind of bug is given. The reason is that models learn to

identify common instances of the general bug pattern or

simply ignore unlikely side conditions.

D. RQ3: Why does neural bug finding sometimes not work?

To answer this question, we systematically inspect false

positives and false negatives for each model. We present one

example for each case and provide insights why the models

mis-classify them.

1) Spurious Warnings: Spurious warnings, i.e. false posi-

tives, occur when a model predicts a non-existing bug.

a) Default Charset (Id 5): In RQ2, we showed that

finding this bug pattern entails learning specific API names,

e.g., FileWriter. Another common API that raises this

warning is String.getBytes(), which also relies on the

platform default Charset. Because this API is strongly present

in the training examples, the model learns that sequences that

have the getBytes token are likely to be buggy. However,

whether an occurence of this token is erroneous depends on the

receiver object on which the method is called. The following

is a false positive for this bug kind, where a method with the

same name is declared for a user defined type.

1 public class UnwovenClassFile implements

IUnwovenClassFile {

2 ...

3 public byte[] getBytes() {

4 return bytes;

5 }

6 ...

2) Missed Bugs: The neural models inevitably have false

negatives, i.e., they fail to detect some instances of the bug

patterns.

a) Non-overriding equals (Id 11): This bug pattern

flags methods which look like Object.equals, but are

in fact different. A method overriding Object.equals

must have the parameter passed to it strictly of type

Object, a requirement for proper overload resolution.

Therefore, any method that looks like boolean

equals(NotObjectType foo) {...} should be

flagged buggy. The following, is an instance of a false

negative for this warning kind.

1 boolean equals(NodeAVL n) {

2 if (n instanceof NodeAVLDisk) {

3 return this == n ||

4 (getPos() == ((NodeAVLDisk) n).getPos());

5 }

6 return false;

7 }

The reason why the model misses this bug is that it fails to

distinguish between “boolean equals(Object” and any

other sequence “boolean equals(NotObjectType”.

We believe that this failure is not an inherent limitation of

the neural model, but can rather be attributed to the scarcity

of our training data. In total, we have 165 examples of this

bug in our data set, and for training the model, we use 80%

of the data, i.e., around 132 examples. Given this amount of

data, the recall for this bug reaches 87.88% (Experiment SS).

E. RQ4: How does the composition of the training data

influence the effectiveness of a neural model?

To answer this question, we compare the results from

Experiments BS, BANNS, and SS. Comparing Experiments BS

and BANNS in Table III shows that using ANN to select non-

buggy samples for training increases the precision of the

trained models in most of the cases. The reason is that having

similar code examples, some of which are labeled as buggy

while others are labeled non-buggy, helps the model to define

a more accurate border between the two classes. Recent work

on selecting inputs for testing neural networks is based on a

similar observation [37]. At the same time, using ANN also

causes a drop in recall, mainly because the model faces a

more difficult learning task. For example, using ANN to train

the model for bug pattern 2 improves precision by 5.5% but

degrades recall by 2.5%.

Comparing Experiments BANNS and SS shows that adding

more non-buggy examples to the training set decreases the

recall by a value between 2% (bug pattern 2) up to a complete

erasure of the recall (bug pattern 19). On the positive side, the

additional data added in Experiment SS significantly improves

the precision of all models. For example, the model of bug

pattern 16 improves precision by 83%.

The composition of the training data has a huge impact.

Balanced training data (Experiments BS and BANNS)

favors recall over precision, while adding more non-

buggy training data (Experiment SS) favors precision.

F. RQ5: How does the amount of training data influence the

effectiveness of a neural model?

Figure 2 addresses this question by plotting precision and

recall of the different models over the number of buggy

examples that a model is trained on. All four plots show a

generally increasing effectiveness, both in terms of precision

and recall, for warning kinds, where more data is available.

For example, the models for bug patterns 2 and 3 reach high

precision and recall in both experiments BANNS and SS due

to the availability of more examples. Perhaps surprisingly,

though, some models are effective even with much a smaller

number of warnings. For example, for bug patterns 11 and 16,

the neural models achieve precision and recall above 77%,

even though only 165 and 77 buggy examples are available,

respectively.

More training data improves the effectiveness of a

learned model, but surprisingly small data sets, e.g., of

only 77 buggy examples, can yield effective models.

G. RQ6: What pitfalls exist when evaluating neural bug find-

ing?

In binary classification problems, the usual setup for training

and validation is to use balanced data sets. However, bugs

of a specific kind are rare in real-world code. Therefore,

evaluating neural bug finding8 using a balanced data setup

yields misleading results, as described in the following.

Table III shows the results of Experiment BB, which uses

balanced data for both training and validation. The first

glimpse at the results is very encouraging, as they show that

neural bug finding works pretty well. Unfortunately, these

numbers are misleading. The reason for the spuriously good

results is that the neural models overfit to the presence, or

absence, of particular tokens, which may not necessarily be

strong indicators of a bug.

As an example, consider bug pattern 6 , which flags classes

that override the Object.equals method but that fail

to also override Object.hashCode. In Table III, Experi-

ment BB, the neural model predicting this warning is almost

perfect with 100% recall and 98.38% precision. However, a

closer look into this model and manual inspection of the train-

ing and validation examples reveal that the neural model has

simply learned to predict that the sequence of tokens "public

boolean equals (Object . . . " is always buggy. This

explains why the model achieves a recall of 100%. But

why is precision also quite high at 98%? It turns out that

randomly sampling 590 non-buggy examples (corresponding

to the number of buggy examples) from 673,446 non-buggy

methods is likely to yield mostly methods that do not contain

the sequence "public boolean equal . . . ". In other

words, the unrealistic setup of training and validation data

misleads the model into an over-simplified task, and hence

the spuriously good results.

Comparing the results from Experiments BS and BB further

reveals the fragility of Experiment BB’s setup. In Experi-

ment BS, the training set is constructed as in Experiment BB,

but the validation set contains a lot more samples, most of

them are actually not buggy. Because the models learned in

Experiment BB do not learn to handle non-buggy examples

similar to the buggy examples, their precision is low. That

is why for the same warning kind, e.g. Id 6, the precision

in Experiment BS is only 8% instead of the 98.38% in

Experiment BB.

8and any bug finding technique

Even though bug detection can be seen as binary classi-

fication tasks, evaluating its effectiveness with balanced

validation data can be highly misleading.

H. Data Availability

All data required to inspect and reproduce our results will

be made publicly available with the final version of the paper.

V. DISCUSSION

A. Lessons Learned

The overall question of this paper is whether neural bug

finding is feasible. Given our results, we give a positive yet

cautious answer. We see empirically that neural models can

learn syntactic code patterns, and hence these models are

indeed capable of finding local bugs that do not require inter-

procedural or type-based reasoning. Moreover, even for the

more difficult bugs, which require information beyond the

sequence of tokens extracted from methods, e.g. type and

inter-procedural information, simple sequence-based learning

surprisingly detects a non-negligible percentage of the bugs.

To make neural bug finding applicable to wider range

of bugs, our work reveals the need for richer ML models

that utilize information beyond the source code tokens, e.g.,

type hierarchy, API-specific knowledge, and inter-procedural

analysis. How to effectively feed such information into neural

models is closely related to the ongoing challenge of finding

suitable source code representations for machine learning.

Finally, our results emphasize another long-standing chal-

lenge in machine learning: data is important. Our results

demonstrate that both the amount of training data as well as

how to sample the training data has a huge influence on the

effectiveness of the learned bug finding models. Collecting

data for neural bug finding remains an open problem, which

seems worthwhile addressing in future work.

B. Threats to Validity

Our training and validation subjects might bias the results

towards these specific projects, and the findings may not

generalize beyond them. We try to mitigate this problem by

using the Qualitas corpus, which consists of a diverse set of

112 real-world projects.

We use warnings reported by a static analyzer as a proxy

for bugs. The fact that some of these warnings may be

false positives and that some actual bugs may be missed,

creates some degree of noise in our ground truth. By building

upon an industrially used static analyzer tuned to have less

than 10% false positives [18], we try to keep this noise

within reasonable bounds. Future research on collecting and

generating buggy and non-buggy code examples will further

mitigate this problem.

Finally, the qualitative analysis of the validation results is

subject to human error. To mitigate this, two of the authors

discussed and validated all the findings.

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0
 4

00
0

P
re

ci
si

on

Number of buggy examples

2
3

45
6

789
1011121314151617181920

(a) Experiment BANNS precision

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0
 4

00
0

R
ec

al
l

Number of buggy examples

2
3

45
6

7

8

9

10

1112
13
14

15

16

17

18

19

20

(b) Experiment BANNS recall

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0
 4

00
0

P
re

ci
si

on

Number of buggy examples

2

3
45

6

7

8

9

10
11

12

13

14

15

16

17

1819

20

(c) Experiment SS precision

 0

 2
0

 4
0

 6
0

 8
0

 1
00

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0
 4

00
0

R
ec

al
l

Number of buggy examples

2

3

4

5

6

7

8

9

10
11

1213

14
15

16

171819

20

(d) Experiment SS recall

Fig. 2. Effect of number of buggy examples on precision and recall for each warning kind. The plots use the ids from Table III. Bug Id 1 is not shown due
to the huge difference in x-axis scale.

VI. RELATED WORK

A. Static Bug Finding

Techniques for scanning source code for particular bug pat-

terns go back to the pioneering lint tool [38]. More recent tools

deployed in industry include Error Prone [2], which is used

at Google and serves as an oracle for our study, and Infer [3],

which is used at Facebook. Detailed accounts of deploying

static bug detectors consider a name-based static checker [39],

applying the FindBugs tool [40], [41], and a rule inference-

based static bug detector [42]. Research on static bug finding

includes work on finding API misuses [43]–[45], name-based

bug detection [46], security bugs [47], finding violations of

inferred programmer beliefs [48], and other kinds of anomaly

detection [49]. These approaches involve significant manual

effort for creating and tuning the bug detectors, whereas we

here study bug detectors learned from examples only.

The presence of false positives, a problem shared by both

traditional and learned bug detectors, motivates work on

prioritizing analysis warnings, e.g., based on the frequency

of true and false positives [50], the version history of a

program [51], and statistical models based on features of

warnings and code [52]. These efforts are orthogonal to the bug

detection problem addressed in this paper, and could possibly

be combined with neural bug detectors.

B. Machine Learning and Language Modeling for Bug Find-

ing

Learned models are becoming increasingly popular for bug

finding. DeepBugs exploits identifier names, e.g., of variables

and methods, to find buggy code [14]. Vasic et al. [53] use

pointer networks to jointly find and fix variable mis-use bugs.

Choi et al. train a memory network [54] to predict whether a

piece of code may cause a buffer overrun [15]. A broader set of

coding mistakes that may cause vulnerabilities is considered in

other learning-based work [16]. Harer et at. [17] train a CNN

to classify methods as vulnerable or not based on heuristics

built on labels from a static analyzer. The main contribution

of our work is to systematically study general neural bug

detection and to predict the bug kind.

Instead of classifying whether a piece of code suffers

from a bug, anomaly detection approaches search for code

that stands out and therefore may be buggy. Bugram uses

a statistical language model that warns about uncommon n-

grams of tokens [25]. Salento learns a probabilistic model of

API usages and warns about unusual usages [55]. In contrast

to our work, these techniques learn from non-buggy examples

only. Ray et al. [56] explains why this is possible and shows

that buggy code is less natural than non-buggy code.

Orthogonal to bug detection is the problem of defect predic-

tion [57], [58]. Instead of pinpointing specific kinds of errors,

as our work, it predicts whether a given software component

will suffer from any bug at all. Wang et al. [6] propose a neural

network-based model for this task [6].

C. Machine Learning on Programs

Beyond bug detection, machine learning has been applied

to other programming-related tasks [5], such as predicting

identifier names [8], [10] and types [8], [9], [59]. A challenge

for any learning-based program analysis is how to represent

code. Work on this problem includes graph-based representa-

tions [29], [30], embeddings learned from sequences of API

calls [28], embeddings learned from paths through ASTs [31],

[32], and embeddings for edits of code [7]. Future work should

study the impact of these representations on neural bug finding.

D. Studies of Bug Finding Techniques

A study related to ours applies different learning techniques

to the bug detection problem [60]. Their data set includes

seeded bugs, whereas we use real bugs. Another difference

is that most of their study uses manually extracted features

of code, whereas we learn models fully automatically, without

any feature engineering. Their preliminary results with neural

networks are based on a bit-wise representation of source code,

which they find to be much less effective than we show token

sequence-based models to be.

More traditional bug finding techniques have been subject

to other studies, some of which focus on the recall of bug

detectors [4], [61], while others focus on their precision [62],

[63]. The effectiveness of test generation techniques has been

studied as well [64], [65]. Our work complements those studies

by systematically studying neural bug finding.

E. Defect Prediction and Unbalanced Data

Machine learning models for software defect prediction [66]

suffer from data imbalance [67] (IV-G). Skewed training data

is usually tackled either by sampling techniques [68], cost-

sensitive learning [69], or ensemble learning [70]. Under-,

over-, or synthetic-sampling techniques [68], [71] have been

applied to alleviate data imbalance in software defect pre-

diction. Our approximated nearest neighbor (ANN) sampling

of non-buggy examples (II-C1) is a form of guided under-

sampling.

VII. CONCLUSION

This paper explores the opportunities and challenges of a

novel way of creating bug detectors via deep learning. We

present neural bug finding and systematically study its effec-

tiveness based on warnings obtained from a traditional static

bug detection tool. Studying neural bug detection models for

20 common kinds of programming errors shows that (i) neural

bug finding can be highly effective for some bug patterns but

fails to work well for other bug patterns, (ii) learned models

pick up common code patterns associated with buggy code, as

well as common instances of more general bug patterns, and

(iii) surprisingly small data sets can yield effective models.

Our work also identifies some pitfalls associated with training

and validating neural bug detectors and presents ways to

avoid them. We believe that this work is an important step

into a promising new direction, motivating future work on

more advanced neural bug finding tools and on improving the

process of obtaining training data.

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion to

the Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM, 2004, pp. 132–136.

[2] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful
program analysis tools using an extensible java compiler,” in 12th

IEEE International Working Conference on Source Code Analysis and

Manipulation, SCAM 2012, Riva del Garda, Italy, September 23-24,

2012, 2012, pp. 14–23.
[3] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods Symposium.
Springer, 2015, pp. 3–11.

[4] A. Habib and M. Pradel, “How many of all bugs do we find? A study
of static bug detectors,” in ASE, 2018.

[5] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing

Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.
[6] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features

for defect prediction,” in ICSE, 2016, pp. 297–308.
[7] P. Yin, G. Neubig, M. B. Miltiadis Allamanis and, and A. L. Gaunt,

“Learning to represent edits,” CoRR, vol. 1810.13337, 2018.
[8] V. Raychev, M. T. Vechev, and A. Krause, “Predicting program proper-

ties from "big code".” in Principles of Programming Languages (POPL),
2015, pp. 111–124.

[9] V. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in FSE, 2018.

[10] R. Bavishi, M. Pradel, and K. Sen, “Context2name: A deep learning-
based approach to infer natural variable names from usage contexts,”
CoRR, vol. arXiv:1809.05193, 2018.

[11] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in European Software Engineering

Conference and International Symposium on Foundations of Software

Engineering (ESEC/FSE). ACM, 2009, pp. 213–222.
[12] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with statis-

tical language models,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, 2014, p. 44.

[13] C. Liu, X. Wang, R. Shin, J. E. Gonzalez, and D. Song, “Neural code
completion,” UC Berkeley, Tech. Rep., 2016.

[14] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based
bug detection,” in OOPSLA, 2018.

[15] M. je Choi, S. Jeong, H. Oh, and J. Choo, “End-to-end prediction of
buffer overruns from raw source code via neural memory networks,”
CoRR, vol. abs/1703.02458, 2017.

[16] Z. Li, S. X. Deqing Zou and, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong, “VulDeePecker: A deep learning-based system for vulnerabil-
ity detection,” in NDSS, 2018.

[17] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood, M. W. McConley, J. M. Opper, S. P. Chin, and T. Lazovich,
“Automated software vulnerability detection with machine learning,”
CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1803.04497

[18] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings of

the 37th International Conference on Software Engineering-Volume 1.
IEEE Press, 2015, pp. 598–608.

[19] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database of existing
faults to enable controlled testing studies for java programs,” in Inter-

national Symposium on Software Testing and Analysis, ISSTA ’14, San

Jose, CA, USA - July 21 - 26, 2014, 2014, pp. 437–440.

[20] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz, “Begbunch: Benchmarking for c bug
detection tools,” in Proceedings of the 2nd International Workshop on

Defects in Large Software Systems: Held in conjunction with the ACM

SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2009). ACM, 2009, pp. 16–20.

[21] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Workshop on the

evaluation of software defect detection tools, vol. 5, 2005.

[22] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas Corpus: A curated collection of Java code for
empirical studies,” in Asia Pacific Software Engineering Conference

(APSEC), 2010.

[23] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the
naturalness of software,” in 34th International Conference on Software

Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp.
837–847.

[24] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal

of machine learning research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[25] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram: bug
detection with n-gram language models,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2016, Singapore, September 3-7, 2016, 2016, pp. 708–719.

[26] S. Bhatia and R. Singh, “Automated correction for syntax errors in
programming assignments using recurrent neural networks,” CoRR, vol.
abs/1603.06129, 2016.

[27] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
C language errors by deep learning,” in AAAI, 2017.

[28] D. DeFreez, A. V. Thakur, and C. Rubio-González, “Path-based function
embedding and its application to specification mining,” CoRR, vol.
abs/1802.07779, 2018.

[29] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” CoRR, vol. abs/1711.00740, 2017.
[Online]. Available: http://arxiv.org/abs/1711.00740

[30] M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov, “Gener-
ative Code Modeling with Graphs,” ArXiv e-prints, 2018.

[31] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in PLDI, 2018.

[32] ——, “code2vec: Learning distributed representations of code,” CoRR,
vol. arXiv:1803.09473, 2018.

[33] H. Babii, A. Janes, and R. Robbes, “Modeling vocabulary for
big code machine learning,” CoRR, 2019. [Online]. Available:
https://arxiv.org/abs/1904.01873

[34] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” 1999.

[35] Lazy initialization. [Online]. Available:
http://www.javapractices.com/topic/TopicAction.do?Id=34

[36] The "double-checked locking is broken" declaration. [Online]. Available:
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1904.01873
http://www.javapractices.com/topic/TopicAction.do?Id=34
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

[37] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” CoRR, vol. abs/1808.08444, 2018.

[38] S. C. Johnson, “Lint, a C program checker,” 1978.
[39] A. Rice, E. Aftandilian, C. Jaspan, E. Johnston, M. Pradel, and

Y. Arroyo-Paredes, “Detecting argument selection defects,” in Con-

ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2017.

[40] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, 2008.

[41] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings

of the Nineteenth International Symposium on Software Testing and

Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, 2010, pp. 241–
252.

[42] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. R. Engler, “A few billion lines
of code later: Using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[43] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” in International Conference on Automated Software
Engineering (ASE). IEEE, 2009, pp. 295–306.

[44] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage patterns,”
in European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE). ACM, 2009, pp.
383–392.

[45] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically checking
API protocol conformance with mined multi-object specifications,” in
International Conference on Software Engineering (ICSE), 2012, pp.
925–935.

[46] M. Pradel and T. R. Gross, “Detecting anomalies in the order of equally-
typed method arguments,” in International Symposium on Software

Testing and Analysis (ISSTA), 2011, pp. 232–242.
[47] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler, R. Jhala, and D. Stefan,

“Finding and preventing bugs in javascript bindings,” in 2017 IEEE

Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May

22-26, 2017, 2017, pp. 559–578.
[48] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as

deviant behavior: A general approach to inferring errors in systems code,”
in Symposium on Operating Systems Principles (SOSP). ACM, 2001,
pp. 57–72.

[49] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and Y. Cai, “Antminer:
Mining more bugs by reducing noise interference,” in ICSE, 2016.

[50] T. Kremenek and D. R. Engler, “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,” in International
Symposium on Static Analysis (SAS). Springer, 2003, pp. 295–315.

[51] S. Kim and M. D. Ernst, “Which warnings should I fix first?” in Euro-

pean Software Engineering Conference and Symposium on Foundations
of Software Engineering (ESEC/FSE). ACM, 2007, pp. 45–54.

[52] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: an
experimental approach,” in International Conference on Software Engi-
neering (ICSE), 2008, pp. 341–350.

[53] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. singh,
“Neural program repair by jointly learning to localize and repair,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=ByloJ20qtm

[54] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” CoRR, vol.
abs/1410.3916, 2014.

[55] V. Murali, S. Chaudhuri, and C. Jermaine, “Bayesian specification
learning for finding api usage errors,” in FSE, 2017.

[56] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. T.
Devanbu, “On the "naturalness" of buggy code,” in Proceedings of the

38th International Conference on Software Engineering, ICSE 2016,

Austin, TX, USA, May 14-22, 2016, 2016, pp. 428–439.

[57] N. E. Fenton and M. Neil, “A critique of software defect prediction
models,” IEEE Transactions on software engineering, vol. 25, no. 5, pp.
675–689, 1999.

[58] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the the 7th joint meeting of

the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 91–100.

[59] R. S. Malik, J. Patra, and M. Pradel, “Nl2type: Inferring javascript
function types from natural language information,” in ICSE, 2019.

[60] T. Chappelly, C. Cifuentes, P. Krishnan, and S. Gevay, “Machine learning
for finding bugs: An initial report,” in 2017 IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE).
IEEE, 2017, pp. 21–26.

[61] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu,
“To what extent could we detect field defects? an empirical study of
false negatives in static bug finding tools,” in Conference on Automated

Software Engineering (ASE). ACM, 2012, pp. 50–59.

[62] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in International Symposium on Software Reliability

Engineering (ISSRE). IEEE Computer Society, 2004, pp. 245–256.

[63] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” in International Conference on

Testing of Communicating Systems (TestCom). Springer, 2005, pp. 40–
55.

[64] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (T),” in 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,
USA, November 9-13, 2015, 2015, pp. 201–211.

[65] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults
in a financial application,” in Proceedings of the 39th International
Conference on Software Engineering: Software Engineering in Practice

Track. IEEE Press, 2017, pp. 263–272.

[66] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE transactions on software

engineering, vol. 37, no. 3, pp. 356–370, 2011.

[67] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–
443, 2013.

[68] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone module
detection,” in First International Symposium on Empirical Software

Engineering and Measurement (ESEM 2007). IEEE, 2007, pp. 196–
204.

[69] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recognition, vol. 40,
no. 12, pp. 3358–3378, 2007.

[70] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning
to improve software defect prediction,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6,
pp. 1806–1817, 2012.

[71] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
“Mahakil: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,” IEEE Transactions on

Software Engineering, vol. 44, no. 6, pp. 534–550, 2018.

https://openreview.net/forum?id=ByloJ20qtm

	I Introduction
	II Methodology
	II-A Gathering Data
	II-B Representing Methods as Vectors
	II-B1 Code as Token Sequences
	II-B2 Representing Tokens

	II-C Buggy and Non-Buggy Examples
	II-C1 Selecting Non-Buggy Examples
	II-C2 Selecting Buggy Examples

	II-D Learning Bug Detection Models
	II-E Different Evaluation Settings

	III Implementation
	IV Results
	IV-A Experimental Setup
	IV-B RQ1: How effective are neural models at identifying common kinds of programming errors?
	IV-C RQ2: Why does neural bug finding work?
	IV-C1 Bug Kinds with Sufficient Available Information
	IV-C2 Bug Kinds with Only Partial Information

	IV-D RQ3: Why does neural bug finding sometimes not work?
	IV-D1 Spurious Warnings
	IV-D2 Missed Bugs

	IV-E RQ4: How does the composition of the training data influence the effectiveness of a neural model?
	IV-F RQ5: How does the amount of training data influence the effectiveness of a neural model?
	IV-G RQ6: What pitfalls exist when evaluating neural bug finding?
	IV-H Data Availability

	V Discussion
	V-A Lessons Learned
	V-B Threats to Validity

	VI Related Work
	VI-A Static Bug Finding
	VI-B Machine Learning and Language Modeling for Bug Finding
	VI-C Machine Learning on Programs
	VI-D Studies of Bug Finding Techniques
	VI-E Defect Prediction and Unbalanced Data

	VII Conclusion
	References

