
1
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Motivation

■ Static analysis: Only as good as its specs

■ E.g., taint analysis

□ Need policy that specifies insecure source-sink pairs

□ Problematic flow if both

• data flows from source to sink and

• the flow is unexpected by developers
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Example: Command Injection

Want: Untrusted data does not flow to exec()
(Otherwise, command injection vulnerability)
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Example: Command Injection

Want: Untrusted data does not flow to exec()
(Otherwise, command injection vulnerability)

execaCommand(command)
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Example: Command Injection

Want: Untrusted data does not flow to exec()
(Otherwise, command injection vulnerability)

execaCommand(command)

Client code Library “execa”

exec(...)

Expected → No need to warn developer
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Example: Command Injection

Want: Untrusted data does not flow to exec()
(Otherwise, command injection vulnerability)

Client code

locale(name)

Library “moment”

exec(...)
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Example: Command Injection

Want: Untrusted data does not flow to exec()
(Otherwise, command injection vulnerability)

Client code

Unexpected → Should warn developer

locale(name)

Library “moment”

exec(...)
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This Talk
Bimodal program analysis

Program analysis:
Reason about PL
semantics

Machine learning:
Reason about NL
embedded in code
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Fluffy = Flagging unexpected flows for better security

Identify
unexpected
flows

Taint
analysis

Overapproximate
relevant flows
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Approach 1: Binary Classification

Goal: Predict whether a flow is expected

M : N ×Nfct ×D → {Expected ,Unexpected}
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Approach 1: Binary Classification

Goal: Predict whether a flow is expected

M : N ×Nfct ×D → {Expected ,Unexpected}

Name of the
source (e.g.,
parameter)

Name of the
API function

Documentation of
the API function
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Approach 1: Binary Classification

Goal: Predict whether a flow is expected

Model:

■ Bi-directional RNN with LSTMs

■ Input tokens embedded with pre-trained model

■ Training data: 1,398 manually labeled examples

(total across five taint queries)

M : N ×Nfct ×D → {Expected ,Unexpected}
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Approach 3: Novelty Detection

■ Goal: Predict whether a source/sink is unusual

■ One-class support vector machine applied to embedded
names of source/sink
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Approach 3: Novelty Detection

■ Goal: Predict whether a source/sink is unusual

■ One-class support vector machine applied to embedded
names of source/sink

Sink type Seed names

Integrity (names expected to flow to sink):

Command injection execute, command
Code injection eval, execute, compile, render, callback, function, fn
Reflected XSS sent, content
Path traversal file, directory, path, cwd, source, input

Confidentiality (names not expected to flow to sink):

Clear-text logging authkey, password, passcode, passphrase
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Evaluation

■ Datasets

□ 250k JavaScript projects → 7.5M taint flows

□ SecBench.js [ICSE’23] → 131 known vulnerabilities

■ Baselines

□ Simple, frequency-based approach

□ Regular expressions
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Evaluation

■ Datasets

□ 250k JavaScript projects → 7.5M taint flows

□ SecBench.js [ICSE’23] → 131 known vulnerabilities

■ Baselines

□ Simple, frequency-based approach

□ Regular expressions

■ 1,398 manually

labeled flows

■ Validated by

four external

experts

(α = 0.74)

Ground truth
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Effectiveness

How effective is Fluffy at identifying unexpected flows?

■ 81%–97% precision and 80%–100% recall

■ 117/131 known vulnerabilities found
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Effectiveness

How effective is Fluffy at identifying unexpected flows?

■ 81%–97% precision and 80%–100% recall

■ 117/131 known vulnerabilities found

Effectiveness
varies depending
on taint query and
ML model
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Effectiveness

How effective is Fluffy at identifying unexpected flows?

■ 81%–97% precision and 80%–100% recall

■ 117/131 known vulnerabilities found

Fluffy
outperforms
the baseline
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Real-World Vulnerabilities

■ Found and reported 17 previously unknown
vulnerabilities

□ 10/17 confirmed and fixed so far

■ Example: CVE-2022-24785 in Moment.js

Client code

locale(name)

Library “moment”

exec(...)
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Key Take-Aways

■ Concrete application: Detecting unexpected taint flows
□ Five kinds of vulnerabilities, four machine learning models

□ 81%–97% precision, 80%–100% recall

□ https://github.com/sola-st/fluffy

■ Bimodal program analysis

Program analysis:
Reason about PL
semantics

Machine learning:
Reason about NL
embedded in code


