Beware of the Unexpected: Bimodal Taint Analysis

Wai Chow¹, Max Schäfer², Michael Pradel¹ ¹ University of Stuttgart, ² GitHub

erc

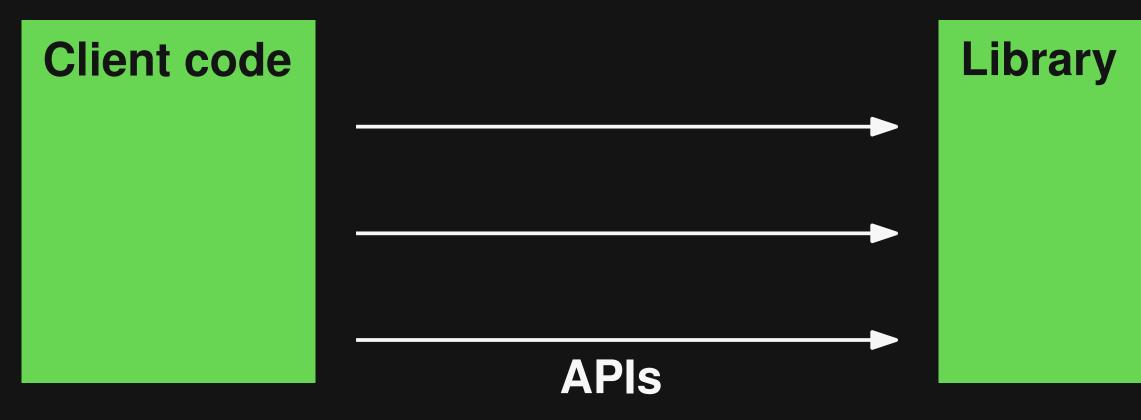
Europea Researc Counci

Motivation

- Static analysis: Only as good as its specs E.g., taint analysis
 - Need policy that specifies insecure source-sink pairs
 - Problematic flow if both
 - data flows from source to sink and
 - the flow is unexpected by developers

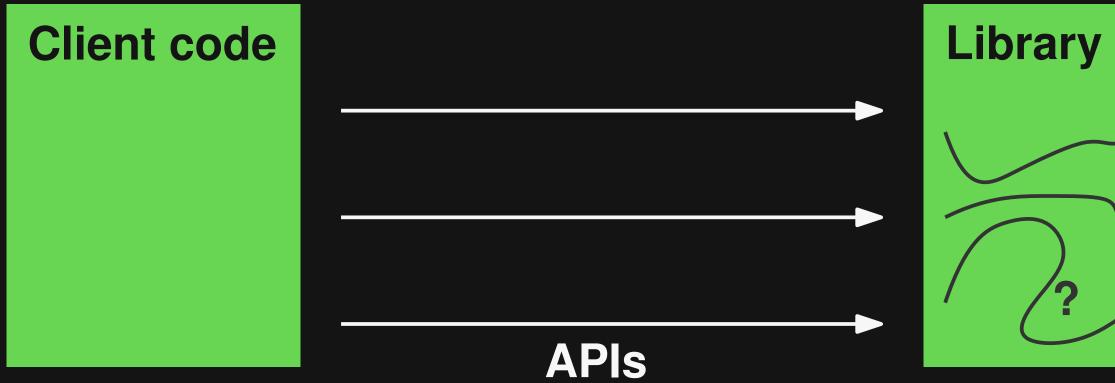
Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)



Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)



exec (

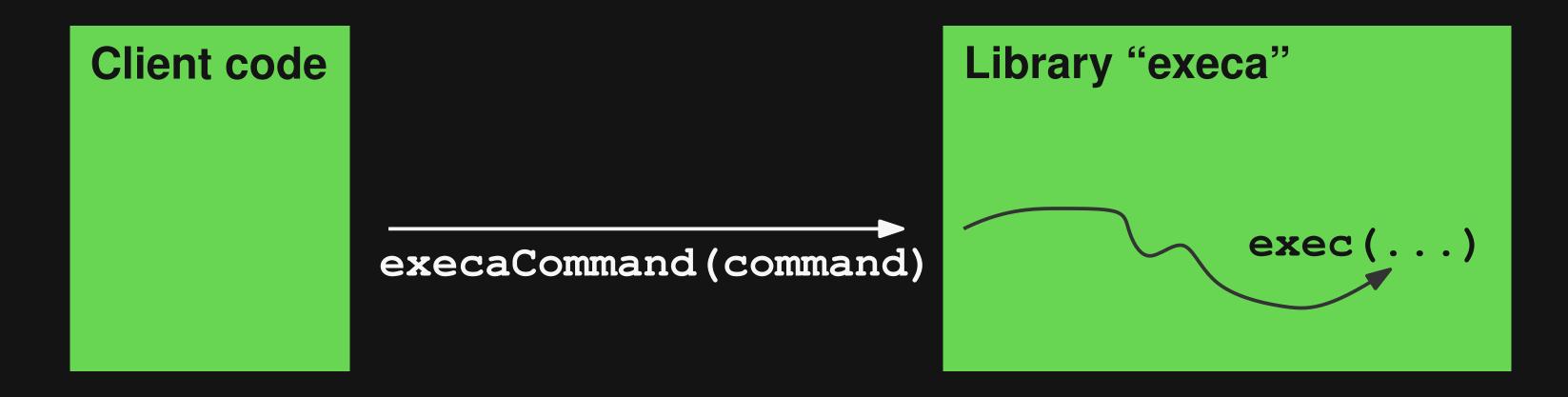
Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)

exec(...)

Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)



Expected \rightarrow No need to warn developer

Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)

Library "moment" exec(...)

Want: Untrusted data does not flow to exec()

(Otherwise, command injection vulnerability)

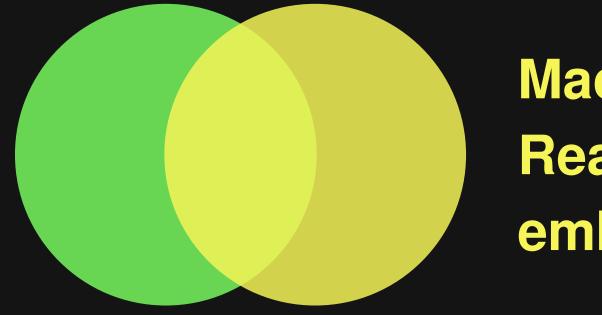
Unexpected \rightarrow **Should warn developer**

Library "moment" exec(...)

This Talk

Bimodal program analysis

Program analysis: Reason about PL semantics

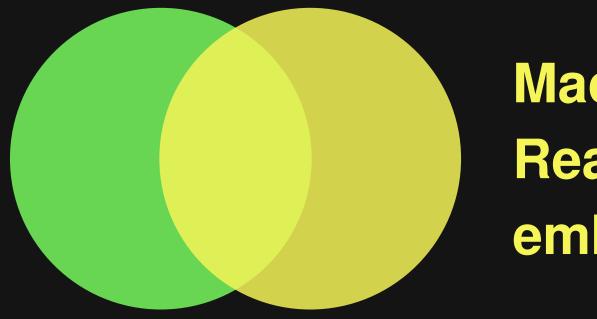


Machine learning: Reason about NL embedded in code

This Talk

Bimodal program analysis

Program analysis: Reason about PL semantics



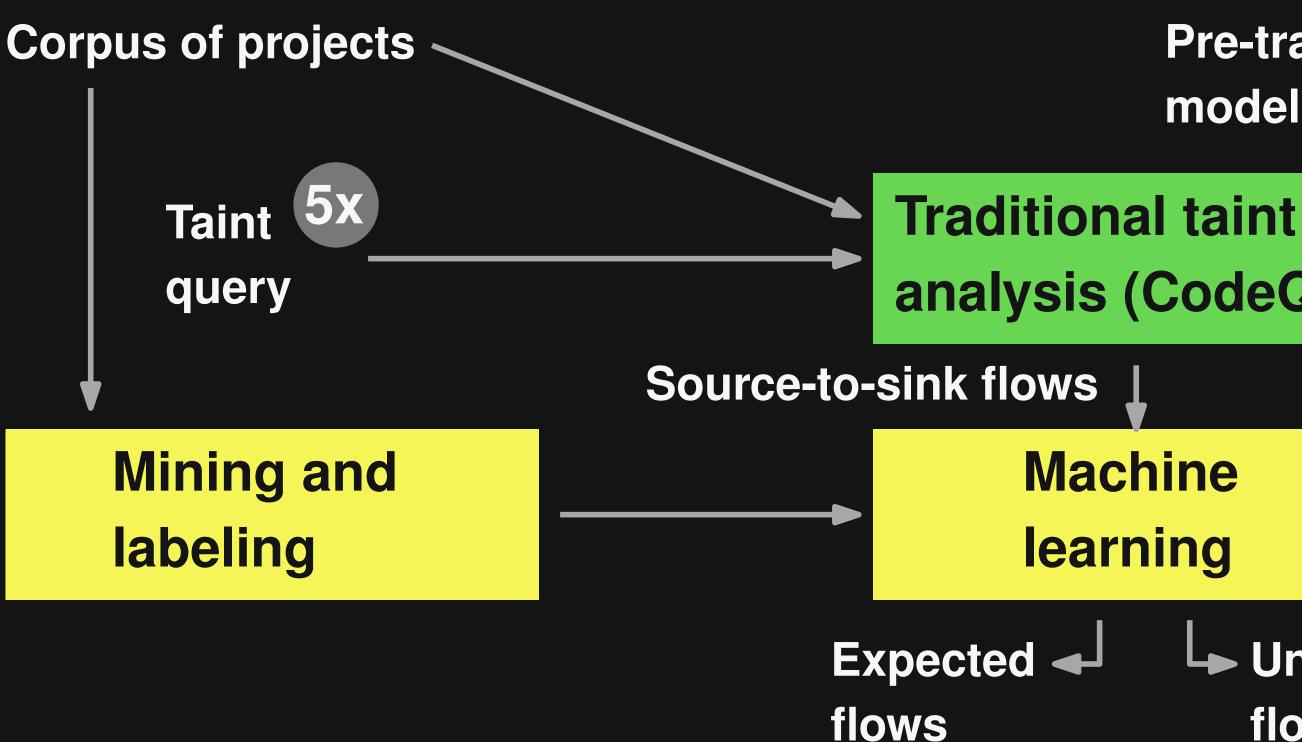
Overapproximate relevant flows

Taint analysis

Fluffy = Flagging unexpected flows for better security

Machine learning: Reason about NL embedded in code

Identify
unexpected
flows



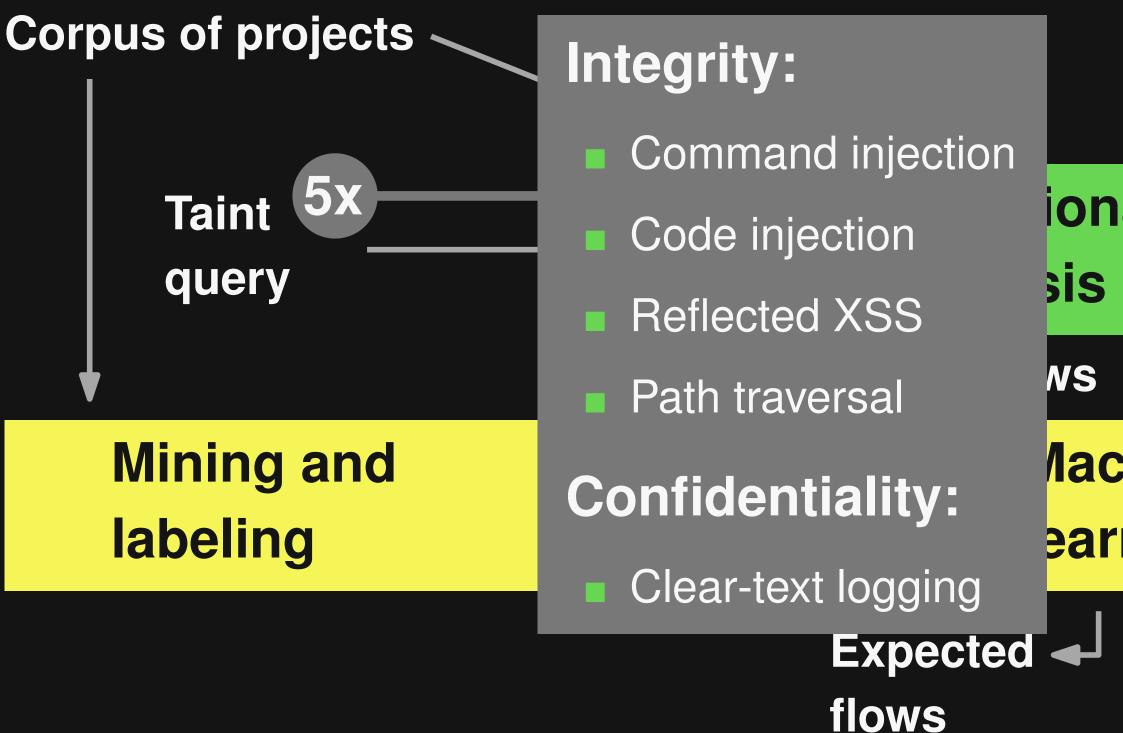
Pre-trained models of code

analysis (CodeQL)

Machine learning

Unexpected flows

4x



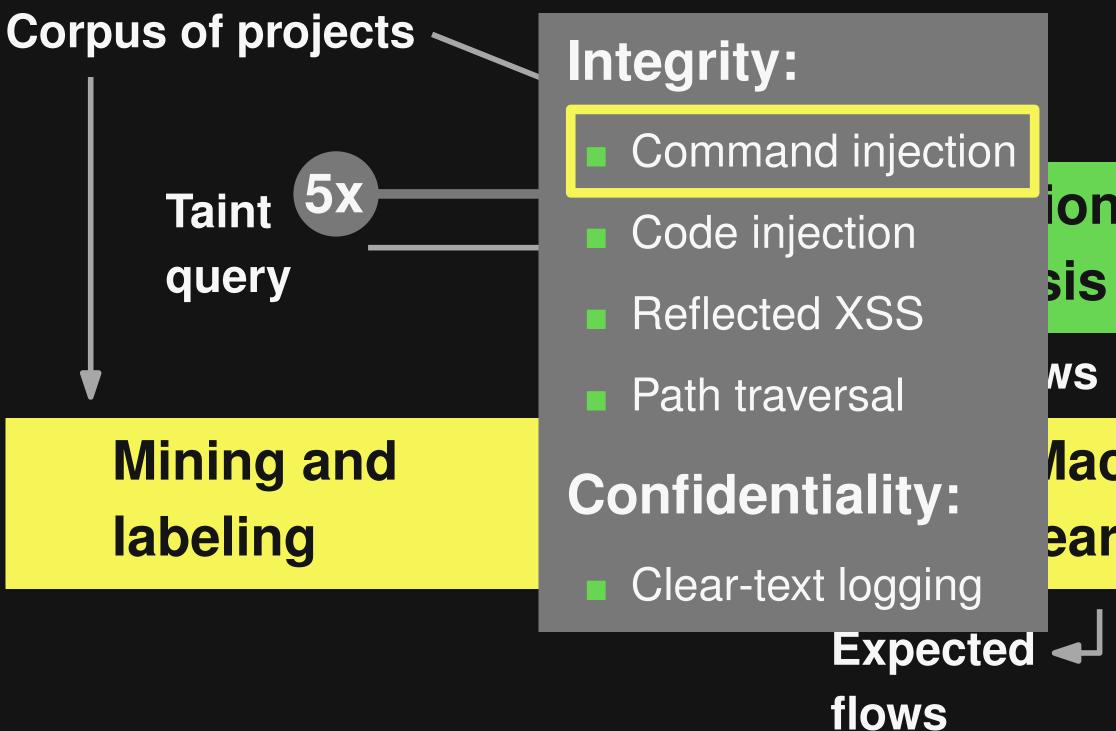
Pre-trained models of code

ional taint sis (CodeQL)

lachine earning

Unexpected flows

4x



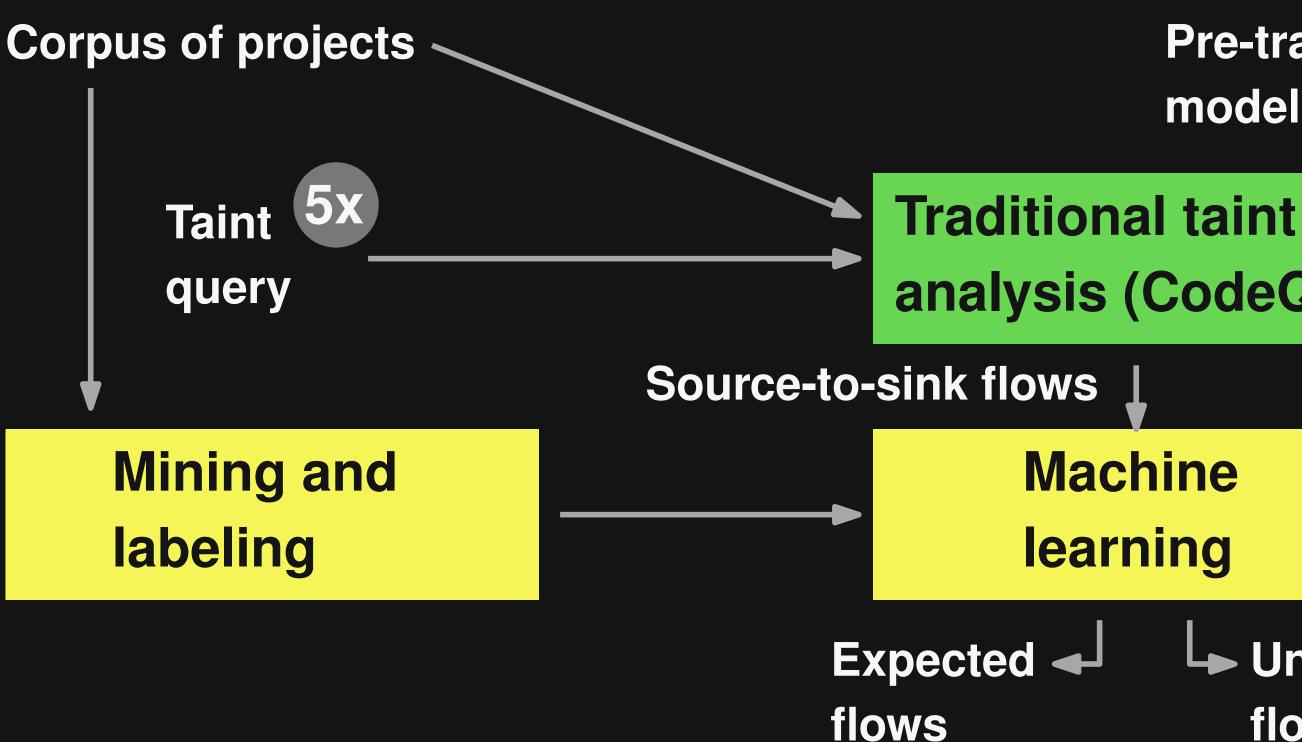
Pre-trained models of code

ional taint sis (CodeQL)

lachine earning

Unexpected flows

4x



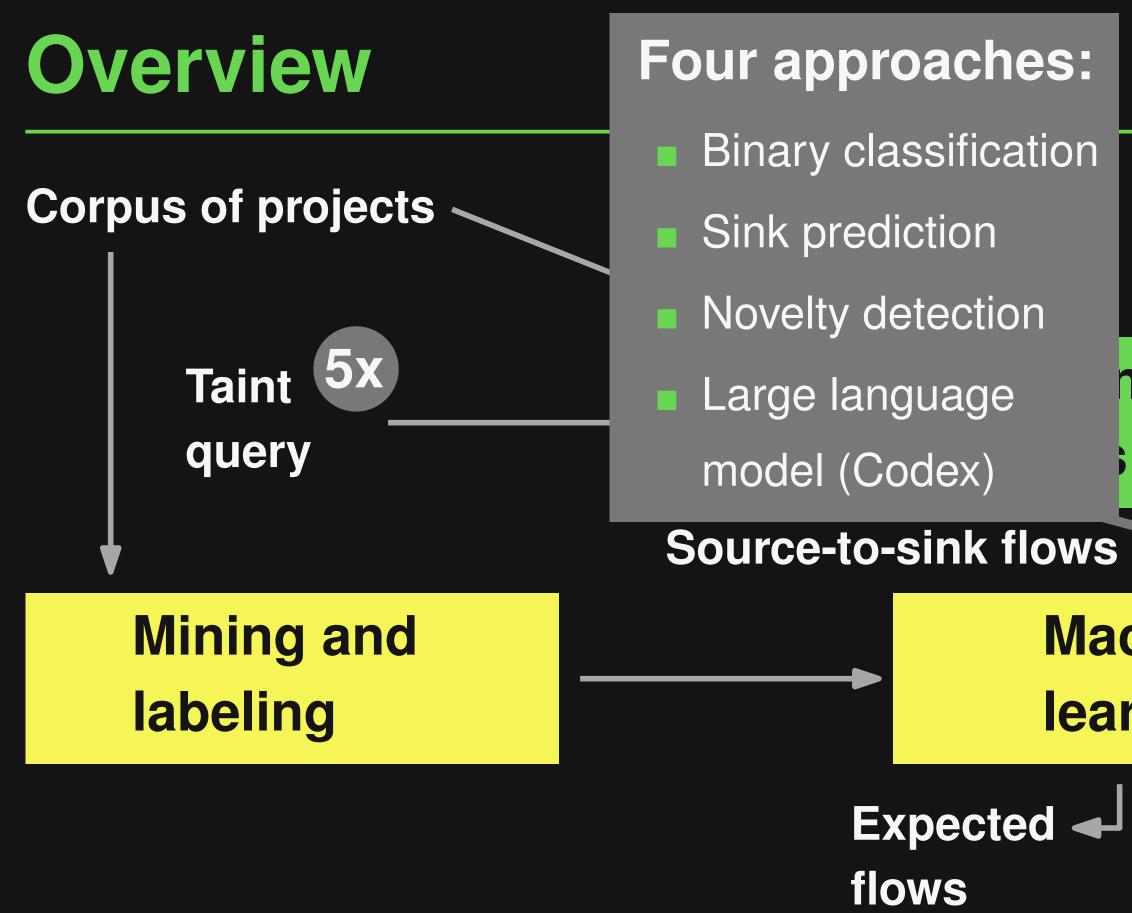
Pre-trained models of code

analysis (CodeQL)

Machine learning

Unexpected flows

4x



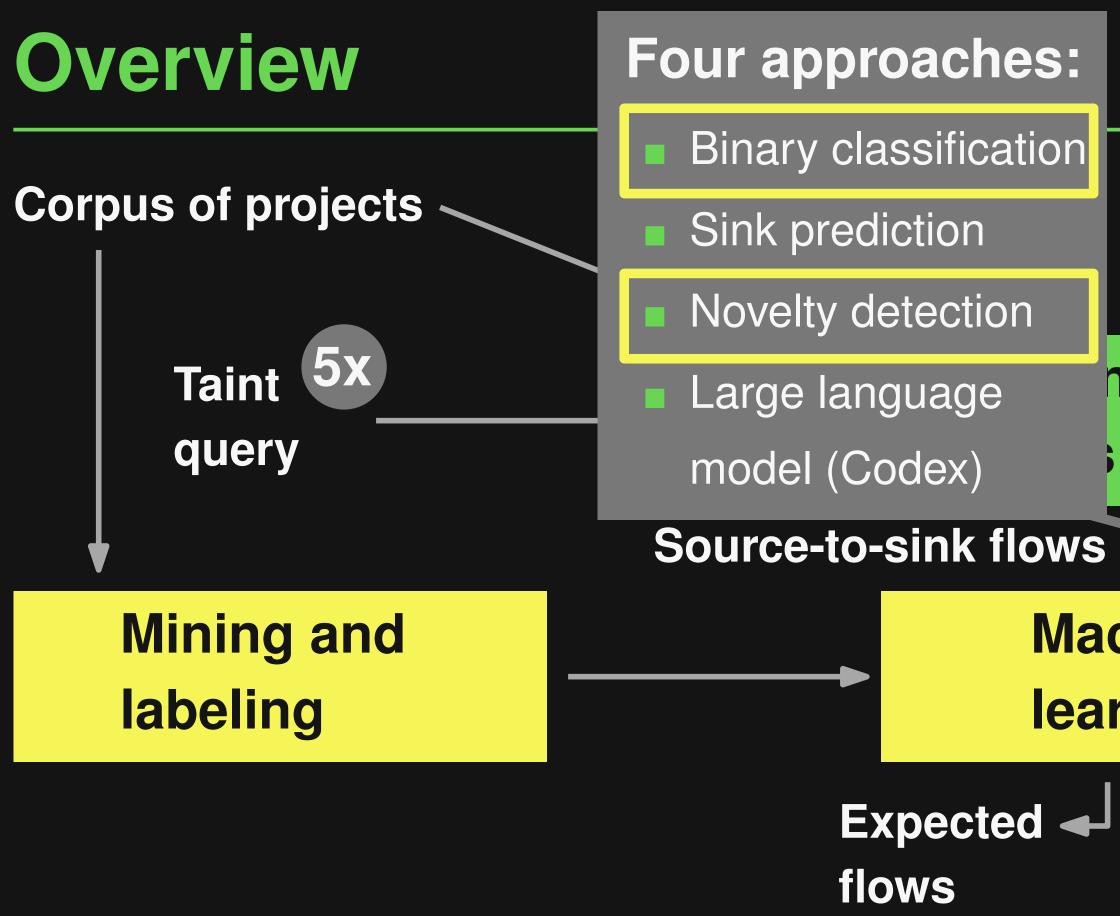
Pre-trained models of code

nal taint ; (CodeQL)

Machine learning

Unexpected flows

4X



Pre-trained models of code

nal taint ; (CodeQL)

Machine learning

Unexpected flows

4x

Approach 1: Binary Classification

Goal: Predict whether a flow is expected

 $M: N \times N_{fct} \times D \to \{Expected, Unexpected\}$

Approach 1: Binary Classification

Goal: Predict whether a flow is expected

$$M: N \times N_{fct} \times D \rightarrow \{Expected, Une$$

Name of the source (e.g., parameter)

Name of the **API** function

$expected \}$

Documentation of the API function

Approach 1: Binary Classification

Goal: Predict whether a flow is expected

$M: N \times N_{fct} \times D \rightarrow \{Expected, Unexpected\}$ Model:

- **Bi-directional RNN with LSTMs**
- Input tokens embedded with pre-trained model
- Training data: 1,398 manually labeled examples (total across five taint queries)

Approach 3: Novelty Detection

- Goal: Predict whether a source/sink is unusual
- One-class support vector machine applied to embedded names of source/sink

Approach 3: Novelty Detection

Goal: Predict whether a source/sink is unusual

One-class support vector machine applied to embedded names of source/sink

Sink type	Seed names
Integrity (names expected to flow to sink):	
Command injection	execute, command
Code injection	eval, execute, compile, render, callb
Reflected XSS	sent, content
Path traversal	file, directory, path, cwd, source, in
Confidentiality (names not expected to flow to sink):	

Clear-text logging authkey, password, passcode, passphrase

back, function, fn

nput

Evaluation

Datasets

- 250k JavaScript projects \rightarrow 7.5M taint flows
- SecBench.js [ICSE'23] \rightarrow 131 known vulnerabilities

Baselines

- Simple, frequency-based approach
- **Regular expressions**

Evaluation

Datasets

- 250k JavaScript projects \rightarrow 7.5M taint flows
- SecBench.js [ICSE'23] \rightarrow 131 known vulnerabilities

Baselines

- Simple, frequency-based approach
- **Regular expressions**

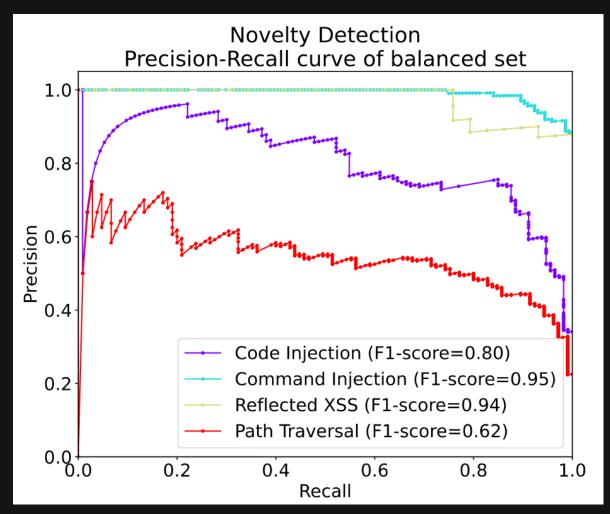
1,398 manually labeled flows Validated by four external experts $(\alpha = 0.74)$

How effective is Fluffy at identifying unexpected flows?

- 81%–97% precision and 80%–100% recall
- 117/131 known vulnerabilities found

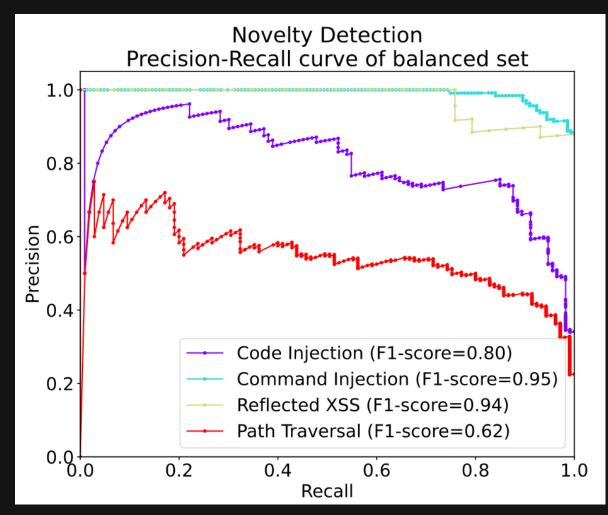
How effective is Fluffy at identifying unexpected flows?

- 81%–97% precision and 80%–100% recall
- 117/131 known vulnerabilities found



How effective is Fluffy at identifying unexpected flows?

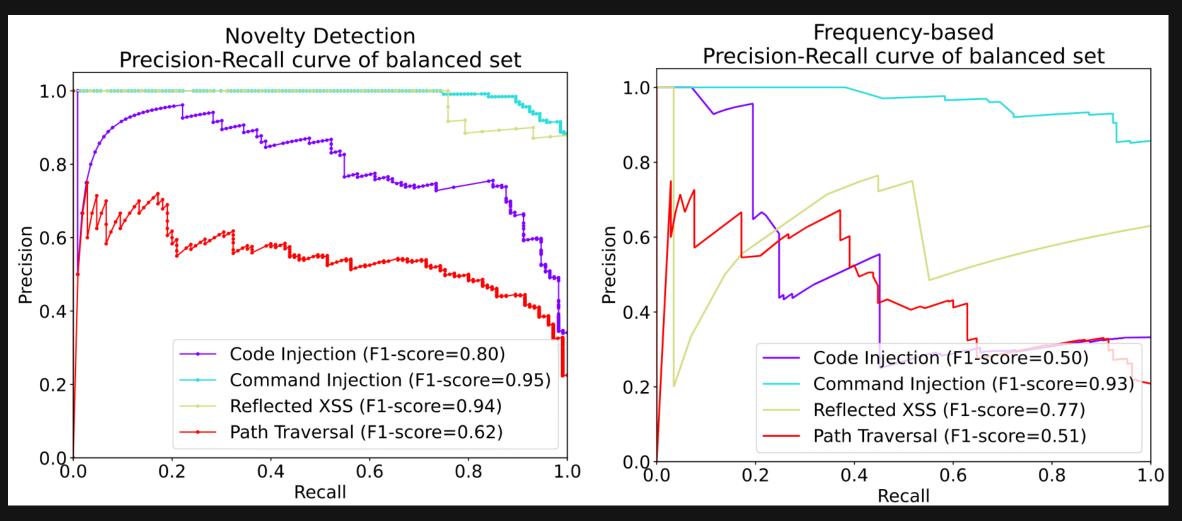
- 81%–97% precision and 80%–100% recall
- 117/131 known vulnerabilities found



Effectiveness varies depending on taint query and ML model

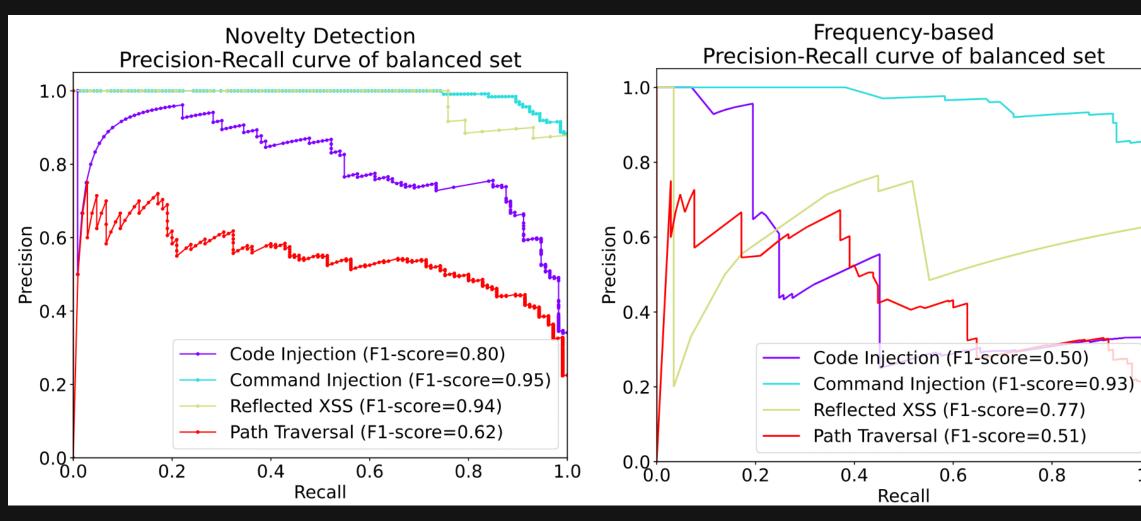
How effective is Fluffy at identifying unexpected flows?

- 81%–97% precision and 80%–100% recall
- 117/131 known vulnerabilities found



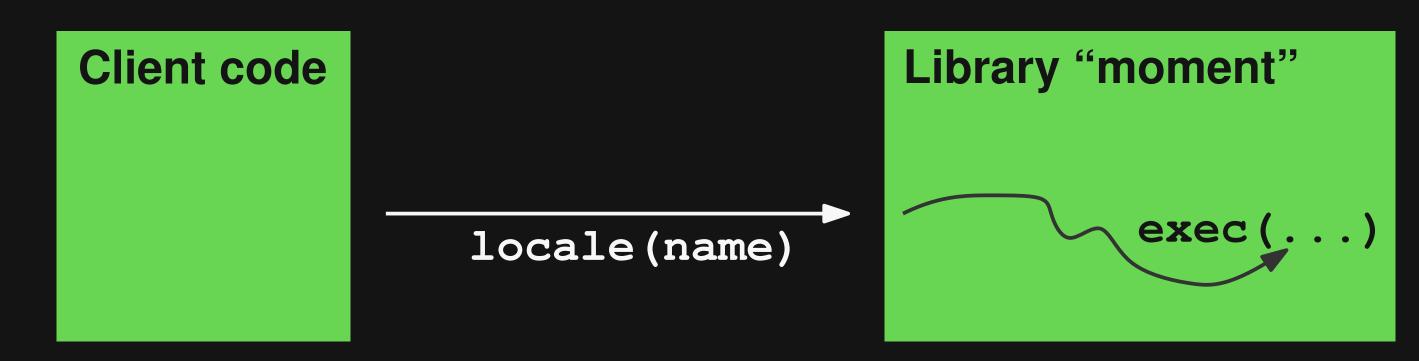
How effective is Fluffy at identifying unexpected flows?

- 81%–97% precision and 80%–100% recall
- 117/131 known vulnerabilities found



Real-World Vulnerabilities

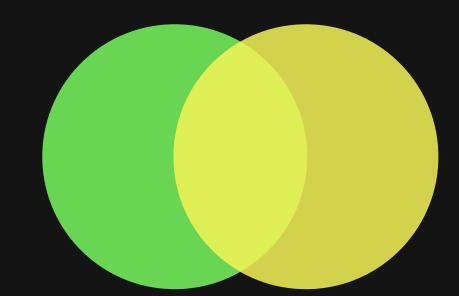
- Found and reported 17 previously unknown vulnerabilities
 - \square 10/17 confirmed and fixed so far
- Example: CVE-2022-24785 in Moment.js



Key Take-Aways

Bimodal program analysis

Program analysis: Reason about PL semantics



Concrete application: Detecting unexpected taint flows

- Five kinds of vulnerabilities, four machine learning models
- 81%–97% precision, 80%–100% recall
- https://github.com/sola-st/fluffy

Machine learning: **Reason about NL** embedded in code