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Motivation

= Static analysis: Only as good as its specs
= E.g., taint analysis
- Need policy that specifies insecure source-sink pairs
o Problematic flow if both
. data flows from source to sink and

. the flow is unexpected by developers



Example: Command Injection

Want: Untrusted data does not flow to exec ()

(Otherwise, command injection vulnerability)

Client code Library

APIs
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Example: Command Injection

Want: Untrusted data does not flow to exec ()

(Otherwise, command injection vulnerability)

Client code Library “execa”

execaCommand (command)




Example: Command Injection

Want: Untrusted data does not flow to exec ()

(Otherwise, command injection vulnerability)

Client code Library “execa”

execaCommand (command)

Expected — No need to warn developer
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Example: Command Injection

Want: Untrusted data does not flow to exec ()

(Otherwise, command injection vulnerability)

Client code Library “moment”

locale (name)




Example: Command Injection

Want: Untrusted data does not flow to exec ()

(Otherwise, command injection vulnerability)

Client code Library “moment”

locale (name)

Unexpected — Should warn developer



This Talk

Bimodal program analysis

Program analysis:
Reason about PL
semantics

Machine learning:
Reason about NL
embedded in code
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Overapproximate Taint Identify .
relevant flows analysis unexpecte
Y \ v flows

Fluffy = Flagging unexpected flows for better security



Overview

Corpus of projects Pre-trained
\ models of code
' Traditional taint

analysis (CodeQL)

Source-to-sink flows

Mining and Machine

labeling learning

Expected I R Unexpected
flows flows



Overview

Pre-trained
models of code

Corpus of projects

Taint jional taint
query 3is (CodeQL)

S

Mining and lachine
labeling 2arning

Xpectec «d L Unexpected
flows flows



Overview

Pre-trained
models of code

Corpus of projects

Taint jional taint
query 3is (CodeQL)

S

Mining and lachine
labeling 2arning

Xpectec «d L Unexpected
flows flows



Overview

Corpus of projects Pre-trained
\ models of code
' Traditional taint

analysis (CodeQL)

Source-to-sink flows

Mining and Machine

labeling learning

Expected I R Unexpected
flows flows



Overview

Pre-trained
models of code

Corpus of projects

nal taint
, (CodeQL)

Source-to-sink flows -

Machine

Mining and
labeling

— =

learning

Expected d L Unexpected
flows flows



Overview

Pre-trained
models of code

Corpus of projects

nal taint
, (CodeQL)

Source-to-sink flows .

Machine

Mining and
labeling

— =

learning

Expected d L Unexpected
flows flows



Approach 1: Binary Classification

Goal: Predict whether a flow is expected

M: N X Ny X D — { Ezpected, Unexpected }
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Approach 1: Binary Classification

Goal: Predict whether a flow is expected

M: N X Ny X D — { Ezpected, Unexpected }

Model:
m Bi-directional RNN with LSTMs
= |Input tokens embedded with pre-trained model

m [Training data: 1,398 manually labeled examples
(total across five taint queries)



Approach 3: Novelty Detection

s Goal: Predict whether a source/sink is unusual

= One-class support vector machine applied to embedded
names of source/sink
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Approach 3: Novelty Detection

s Goal: Predict whether a source/sink is unusual

= One-class support vector machine applied to embedded
names of source/sink

Sink type Seed names

Integrity (names expected to flow to sink):

Command injection execute, command

Code injection eval, execute, compile, render, callback, function, £n
Reflected XSS sent, content
Path traversal file, directory, path, cwd, source, input

Confidentiality (names not expected to flow to sink):

Clear-text logging authkey, password, passcode, passphrase




Evaluation

= Datasets
o 250k JavaScript projects — 7.5M taint flows
1 SecBench.js [ICSE’23] — 131 known vulnerabilities

= Baselines
0 Simple, frequency-based approach

- Regular expressions
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Evaluation

= Datasets

o 250k JavaScript projects — 7.5M taint flows

1 SecBench.js [ICSE’23] — 131 known vulnerabilities | ®

= Baselines
0 Simple, frequency-based approach

- Regular expressions

v v
Ground truth

1,398 manually
labeled flows

Validated by
four external

experts
(a = 0.74)
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Effectiveness

How effective is Fluffy at identifying unexpected flows?
m 81%—97% precision and 80%—100% recall

s 117/131 known vulnerabilities found
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How effective is Fluffy at identifying unexpected flows?
m 81%—97% precision and 80%—100% recall

s 117/131 known vulnerabilities found

Novelty Detection
Precision-Recall curve of balanced set
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Effectiveness

How effective is Fluffy at identifying unexpected flows?
m 81%—97% precision and 80%—100% recall

s 117/131 known vulnerabilities found

Novelty Detection
Precision-Recall curve of balanced set

Effectiveness
varies depending
on taint query and
ML model
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Effectiveness

How effective is Fluffy at identifying unexpected flows?
m 81%—97% precision and 80%—100% recall

s 117/131 known vulnerabilities found

Novelty Detection o Frequency-based
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Real-World Vulnerabilities

= Found and reported 17 previously unknown
vulnerabilities

7 10/17 confirmed and fixed so far

= Example: CVE-2022-24785 in Moment.js

Client code Library “moment”

.
locale (name) W' - - )

10



Key Take-Aways

= Bimodal program analysis

Program analysis:
Reason about PL
semantics

Machine learning:
Reason about NL
embedded in code

= Concrete application: Detecting unexpected taint flows
o Five kinds of vulnerabilities, four machine learning models
0 81%—97% precision, 80%—100% recall
o https://github.com/sola-st/flufty i



