
Continuous Test Suite Failure Prediction
Cong Pan∗

The Key Laboratory on Reliability and Environmental
Engineering Technology

School of Reliability and Systems Engineering
Beihang University

China
cong_pan@buaa.edu.cn

Michael Pradel
Department of Computer Science

University of Stuttgart
Germany

michael@binaervarianz.de

ABSTRACT
Continuous integration advocates to run the test suite of a project
frequently, e.g., for every code change committed to a shared reposi-
tory. This process imposes a high computational cost and sometimes
also a high human cost, e.g., when developers must wait for the
test suite to pass before a change appears in the main branch of the
shared repository. However, only 4% of all test suite invocations
turn a previously passing test suite into a failing test suite. The
question arises whether running the test suite for each code change
is really necessary. This paper presents continuous test suite failure
prediction, which reduces the cost of continuous integration by
predicting whether a particular code change should trigger the test
suite at all. The core of the approach is a machine learning model
based on features of the code change, the test suite, and the devel-
opment history. We also present a theoretical cost model that de-
scribes when continuous test suite failure prediction is worthwhile.
Evaluating the idea with 15k test suite runs from 242 open-source
projects shows that the approach is effective at predicting whether
running the test suite is likely to reveal a test failure. Moreover, we
find that our approach improves the AUC over baselines that use
features proposed for just-in-time defect prediction and test case
failure prediction by 13.9% and 2.9%, respectively. Overall, continu-
ous test suite failure prediction can significantly reduce the cost of
continuous integration.

CCS CONCEPTS
• Software and its engineering Software testing and debug-
ging.

KEYWORDS
continuous test suite failure prediction, continuous integration, cost
model, machine learning

ACM Reference Format:
Cong Pan andMichael Pradel. 2021. Continuous Test Suite Failure Prediction.
In Proceedings of the 30th ACM SIGSOFT International Symposium on Software

∗Parts of this work were done while visiting University of Stuttgart.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464840

Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464840

1 INTRODUCTION
Continuous integration automates compiling, building, and test-
ing of software. In recent years, continuous integration has been
widely adopted to increase code quality and to release often [17, 54].
The key idea is to perform tests automatically and frequently, e.g.,
triggered by a fixed schedule or by each commit, allowing develop-
ers to identify mistakes after being introduced. The popularity of
continuous integration, combined with the huge volume of code
and code changes, leads to a significant cost imposed by continu-
ously executing test suites. For example, a project at Microsoft has
nearly 65,000 regression test cases, which take about three days
to fully execute [1]. As another example, Facebook’s mobile code
base has tens of thousands of code changes per week that each
potentially trigger tens of thousands of tests [30]. Even smaller
projects contribute heavily to this cost, simply because there is a
substantial overall number of projects, as evidenced by over 205
million projects on GitHub alone.1 Besides computational costs,
continuously executing test suites may also slow down develop-
ment, e.g., when developers must wait for the test suite to finish
before a code change shows up in the main branch of the shared
repository.

Existing work on reducing the testing cost in continuous inte-
gration focuses on four ideas [1, 56]: (1) Test case selection tries to
identify a subset of all available test cases that potentially trigger
failures, e.g., based on coverage information [38], dependency anal-
ysis [10], or predictive models [1, 30]. (2) Test case prioritization
aims at ordering test cases so that failing ones are executed first, e.g.,
based on coverage information [6]. (3) Test case failure prediction
aims at predicting individual test cases as pass or failure [1, 30]. A
weakness of these three approaches is to reason about each test
case individually, which itself imposes a cost, e.g., to gather cover-
age information. (4) Test suite selection tries to identify a subset
of multiple test suites associated with a code base [8, 49], which
assumes that different modules in the code base are associated with
different test suites. A weakness of all four existing ideas is that
even after selecting and prioritizing tests, about one third of the
test cases [30] and 30%–80% of the test suites [8] still remain to be
run.

While the cost of continuously executing test suites is high, most
of these executions do not reveal any problems. In a dataset we
gather from 242 open-source projects, only 4.21% of all 15k test
suite invocations turn a previously passing test suite into a failing
1https://github.com/search, January 2021

https://doi.org/10.1145/3460319.3464840
https://doi.org/10.1145/3460319.3464840
https://github.com/search

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

test suite. This cost-benefit ratio raises a question: Do we really have
to run the test suite for all code changes? Intuitively, different kinds
of code changes are more or less likely to trigger a test suite failure,
e.g., based on what code elements are changed, how experienced
the developer is, and how often the test suite has failed in the past.
If it is acceptable to occasionally detect a test failure slightly later
than immediately after the code change that triggers it, there is a
potential for significant cost savings.

This paper presents continuous test suite failure prediction, an ap-
proach to use this potential through a model that predicts whether
executing the test suite of a project is worthwhile at all. The predic-
tion model uses features of the code change, the test suite, and the
development history. Once trained, the model can be hooked into
continuous integration to decide when to trigger the execution of
the test suite. To better understand if and when our approach will
reduce the overall cost, we also present a theoretical cost model of
continuous test suite failure prediction. The cost model estimates
the overall cost reduction depending on three project-specific pa-
rameters: the cost of running a test suite, the cost of late detection
of a failure-inducing code change, and the test suite failure rate.

We apply our work to a newly gathered dataset of 15k test suite
executions in 242 open-source projects. Our results show that the
approach effectively predicts whether the test suite will fail, with
an AUC of 0.836. A comparison with baselines that use features
proposed for test case failure prediction and just-in-time defect
prediction shows that our approach outperforms them by 13.9% and
2.9%, respectively. Finally, our cost model quantifies the theoretical
reduction in cost, showing that the approach is worthwhile in a
wide range of scenarios.

We envision our approach to be useful both for large-scale orga-
nizations with a centralized continuous integration infrastructure,
such as Google and Facebook, and for continuous integration plat-
forms that offer their services to open-source and other projects,
such as Travis CI. Because there is not publicly available dataset of
test suite executions with the features our model learns from, our
empirical results focus on open-source projects hosted at Travis CI.
Applying and evaluating the approach in a large-scale organization
with a centralized continuous integration infrastructure is left for
future work.

In summary, the main contributions of this paper are:

• The problem of continuous test suite failure prediction, i.e., a
new take on the old problem of reducing the cost of contin-
uous integration.

• An effective predictionmodel to address this problem based on
a combination of features from past work and new features.

• A theoretical cost model that helps decide if and when the
approach will reduce the overall cost in a specific project or
organization.

• A large-scale dataset gathered from hundreds of open-source
projects, to fuel future research on the problem.2

2Our dataset and other supplementary information are available at https://zenodo.org/
record/4742337.

Table 1: Comparison with related problems.

Problem Goal Prediction

Continuous test suite
failure prediction

Reduce testing cost by skip-
ping code changes

Whether the entire
test suite will fail

Test case failure pre-
diction [1, 30]

Reduce testing cost by skip-
ping test cases

Whether a specific
test case will fail

Just-in-time defect
prediction [20, 32]

Find potentially bug-
inducing code changes

Whether the changed
code later gets fixed

Build outcome pre-
diction [14, 19]

Reduce continuous integra-
tion cost by skipping builds

Whether a specific
build will fail

Test suite selec-
tion [8, 49]

Reducing testing cost by
skipping test suites

Whether a test suite
(out of many) will fail

2 APPROACH
2.1 Terminology and Problem Statement
We start by defining the problem of continuous test suite failure
prediction and by distinguishing it from related problems. Given a
code change 𝑐 and a test suite 𝑠 , the problem is to predict whether
triggering 𝑠 as part of continuous integration upon 𝑐 will pass or
fail 𝑠 .

A code change is the result of one or more commits into a shared
code repository. We consider the combination of all commits be-
tween two invocations of the continuous integration system as a
code change. Moreover, we focus on changes that delete, add, or
modify at least one source code file, excluding changes that affect
only configuration files, third-party libraries, and so forth.

The problem is to predict the test suite outcome, summarized as
passing or failing the test suite. The entire process triggered by
the continuous integration system is called a build, which usually
includes running the test suite. The build fails if the test suite fails,
but it may also fail due to other reasons, e.g., a compilation error,
a broken external service, or a broken dependency. We focus on
predicting the test suite outcome only and do not attempt to predict
any other kind of build failures, in which the test suite may not be
executed at all. We also focus on test failures that occur after the
previous test suite execution was passing, rather than all test suite
failures, because we aim to predict code changes that trigger a new
test failure, not code changes that fail to fix an existing test failure.

Table 1 compares continuous test suite failure prediction to four
problems studied in prior work. Test case failure prediction also
aims at reducing the cost of continuous testing, but by predicting for
each possibly executed test case whether it is likely to fail. Instead,
we predict whether the entire test suite passes or fails. When our
approach successfully predicts a test suite pass, the developers
can immediately move on. In contrast, a typical rate of test cases
that need to be run with test case failure prediction is one third
of all test cases [30], i.e., the developers will still have to wait
for at least some minutes, and often much longer [34]. Of course,
test case failure prediction and test suite failure prediction can be
combined to further reduce costs: When our approach predicts a
test suite failure, then querying a test case failure prediction model

https://zenodo.org/record/4742337
https://zenodo.org/record/4742337

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 1: Overview of the approach.

can further reduce the testing effort. We leave combining both
techniques for future work.

Our work relates to, but clearly differs from, just-in-time defect
prediction, which tries to predict whether a code change introduces
a bug that later gets fixed. While defect prediction judges whether
a code change leads to a bug at some point in the future, we predict
whether a code change causes an immediate test suite failure.

Our work is also similar to build outcome prediction, which aims
to predict build failures. While build outcome prediction considers
all forms of code changes and all reasons why a build may fail,
we narrow down the scope to source code changes and test suite
failures. By simplifying the problem compared to build outcome
prediction, our approach can find stronger relationships between
source code changes and test failures.

Finally, the problem we address is similar to test suite selec-
tion [8, 49], which aims at predicting which test suites out of multi-
ple test suites in a code base are worth executing. The key difference
is that we assume a project to have a single test suite, and our ap-
proach recommends to either run it or to skip it entirely. In contrast,
test suite selection assumes a code base that is broken down into
modules, which each have their own test suite. Experiments on a
dataset of test executions from Google shows that test suite selec-
tion keeps 30%–80% of all test suites for execution, i.e., it is still
imposing a significant testing effort. Similar to test case failure
prediction, future work could combine both approaches: Our work
can provide a course-grained, first-step decision, following – if tests
should be run at all – by test suite selection to select which modules
to test.

2.2 Overview
Our learning-based approach to the test suite failure prediction
problem is shown in Figure 1. To learn a predictive model, the
approach gathers information from a code repository and a contin-
uous integration service. The information is used to extract a set
of features (Section 2.3) for each pair (𝑐, 𝑠) of a code change 𝑐 and
test suite 𝑠 , and to label the pairs as passing or failing (Section 2.4).
Given the labeled feature vectors, the approach trains a classifica-
tion model, which then predicts for previously unseen (𝑐, 𝑠) pairs
whether the test suite will pass or fail.

2.3 Feature Extraction
Our predictive model uses a set of 44 features listed in Table 2. Some
of these features are adapted from related work on just-in-time
defect prediction [20, 32, 35, 50] and test case failure prediction [1,
30]. We also present 19 new features, which we find to be suitable

Table 2: Features used by the predictive model. The last col-
umn indicates whether the feature has been used in defect
prediction (DP), test case failure prediction (TC), or is newly
proposed in this work (New).

Dimension Name Description Category

Diffusion NS Number of modified subsystems DP
ND Number of modified directories DP
NF Number of modified files DP, TC
Entropy Distribution of modified code across files DP

Size LA Lines of code added DP
LD Lines of code deleted DP
NC Number of commits in a code change TC
LT Lines of code in a file before the change DP

Quality CL Number of comment lines in modified files after
the code change

New

CCN Cyclomatic code complexity of methods in modi-
fied files

New

CCNDelta Change of cyclomatic code complexity New
GC Number of GitHub commits involved in the code

change
DP

AST NClass Number of class-related AST nodes New
NImport Number of import-related AST nodes New
NType Number of type-related AST nodes New
NConFlow Number of control-flow-related AST nodes New
NExc Number of exception-related AST nodes New
Refactor Whether a code change only includes refactoring-

related AST nodes
New

Change CD Number of deleted clusters of code New
clusters CI Number of inserted clusters of code New

CM Number of moved clusters of code New
CU Number of updated clusters of code New
DC Atomic changes count of code deleted New
IC Atomic changes count of code inserted New
MC Atomic changes count of code moved New
UC Atomic changes count of code updated New

Purpose FIX Whether the code change fixes a bug DP
NFIX Number of bug-fixing commits in the code change DP

Experience EXP The number of changes made by the developer
before the current change

DP

REXP Like EXP, but giving higher weight to recent ex-
perience

DP

SEXP Like EXP, but for the subsystems modified in the
code change

DP

Awareness The fraction of all prior changes to the modified
subsystems that the developer has participated in

DP

History NDEV Number of developers that changed the modified
files

DP

AGE Average time interval between the last and the
current change

DP

NUC Number of unique changes to modified files DP, TC

Test TP10 Number of times the test suite passes in the last
10 builds that execute test cases

TC

TF10 Number of times the test suite fails in the last 10
builds that execute test cases

TC

TFR10 Test suite failure rate for the last 10 builds TC
TFR20 Test suite failure rate for the last 20 builds TC
TFR40 Test suite failure rate for the last 40 builds TC
TLOC Lines of code of test files in the test suite TC
TC Number of executed test cases in the test report TC
TF Number of test files in the test report New
TU Whether the change updates a test case New

for the task of continuous test suite failure prediction. The features
are organized into nine categories as below.

Diffusion. The rationale behind these features is that changes
that affect more subsystems, files, etc. are more likely to cause a

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

failure, e.g., because the developer may not know all involved files
well [35]. For details on computing these features, see [20].

Size. These features aremotivated by the observations that larger
code changes are more likely to introduce mistakes [35, 36] and
that changes in larger files contribute more bugs than changes in
smaller ones [23].

Quality. These features measure code quality in terms of com-
ments and code complexity, and how it changes due to a code
change. The rationale is that an increase in complexity correlates
with post-release defects [37] and that high-quality code is less
likely to fail. Both CCN and CCNDelta are calculated as the average
function complexity within a file.

AST. These features encode the number of specific types of AST
nodes involved in a code change. The rationale is that changing
some types of AST nodes is more likely to cause breaking changes
than others. Each feature is a combination of several Java AST node
types and indicates how many of them a code changes contains.

• Class-related nodes NClass: AnonymousClassDeclaration,
ClassInstanceCreation, TypeDeclarationClass

• Import-related nodes NImport: ImportDeclaration
• Type-related nodes NType: ParameterizedType, SimpleType,
WildcardType, ArrayType, PrimitiveType, UnionType

• Control-flow-related nodes NConFlow: SynchronizedState-
ment, ConditionalExpression, EnhancedForStatement, DoState-
ment, ReturnStatement, WhileStatement, IfStatement, Con-
tinueStatement, LabeledStatement, ForStatement

• Exception-related nodes NExc: ThrowStatement, TryState-
ment, AssertStatement

• Refactoring-related nodes Refactor : ImportDeclaration, Emp-
tyStatement, Javadoc, PackageDeclaration

To extract the AST node types, we use GumTree [9], a source
code differencing tool that generates an edit script for a given pair
of old and new code. In total, there are over 100 AST node types,
which we select and combine into the above features using the
RELIEF feature selection method [22].

Change clusters. These features decompose code changes into
atomic changes and cluster them. For example, when deleting two
methods, the value of the CD feature is two because the code dele-
tions are decomposed into two clusters. The value of the DC feature
is the sum of the number of AST nodes within all clusters in CD.
The intuition is that some clusters of code changes are more likely
to cause test suite failures. We use GumTree to compute the atomic
changes and clusters.

Purpose. These features indicate whether and to what extent a
code change attempts to fix a bug. The rationale is that bug-fixing
code changes are more likely to introduce new bugs than other
kinds of code changes [11, 35, 43]. We include the NFIX feature
because code changes may havemultiple commits and attempt to fix
multiple bugs. FIX and NFIX are calculated by searching keywords
related to bug fixes, e.g., “fix”, “patch”, and “bug” [20].

Experience. These features encode the experience a developer has
with the modified code base [20], motivated by the hypothesis that
more experienced programmers may cause fewer test failures [35].

Figure 2: Extraction of labels.

History. These features encode how the files touched in a code
change have been changed in the past [20].

Test. These features represent several properties of the test suite
and its past behavior. The rationale for considering the size of
the test suite is that a larger test suite may be more likely to fail.
The rationale for considering the number of passing/failing test
suite executions is that frequent failures in the past may suggest
frequent failures in the future. We include the TU feature because
code changes that change testing code may be more likely to trigger
a test suite failure.

The selection of features aims at information that is potentially
helpful for the model, yet can be gathered at moderate cost. Another
potentially helpful feature would be the coverage achieved by the
test suite and how the covered code relates to the changed code.
We refrain from including this feature because gathering coverage
information during test executions imposes a cost itself, which
conflicts with our goal of reducing the overall testing cost.

2.4 Label Extraction
In addition to extracting features for each pair (𝑐, 𝑠), we also de-
termine whether the pair is passing or failing the test suite. The
features and the label together provide the dataset for training our
supervised prediction model.

Figure 2 illustrates the label extraction process with a motivating
example. The figure shows two concurrent timelines: the commits
into the shared repository at the top and the builds triggered in
the continuous integration systems at the bottom. Each build cor-
responds to a code change, which consists of one or more commits.
For example, code change 3○ consists of one commit, c3, and it
corresponds to build b3; code change 4○ consists of two commits,
c4 and c5, and corresponds to build b4. We determine the label of
each code change based on the following two criteria.

1) Predict test suite outcome. In addition to running a test suite, a
build also triggers other processes, e.g., deploying code to a target
server. For our label extraction, only the outcome of the test suite
matters, and we use it as the label. That is, even if a build fails
because of some errors after testing, we extract the label according
to the test suite outcome. If a build fails before testing, it is not
included in our dataset.

2) Count only first test failures. We consider only test failures
that turn a previously passing test suite into a failing test suite, a
concept called “first test failures” by Jin et al.[19]. One reason is
that developers typically strive to fix the build when it fails, and
they will likely want to check whether the new build now passes
the test suite. Therefore, there is no need for predicting the test

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

suite outcome after a build with a failing test suite. Another reason
is that, given two subsequent builds with test suite failures, it is
hard to tell whether the code change of the first or the second build
causes the second test suite failure. Our model aims to reasons
about code changes and whether they are the direct cause of test
suite failures. The dataset would become noisy if we included cases
where a test suite fails, but the failure is not actually caused by the
code change. In the following, the term test failure refers to first
test failure.

Given these two criteria, we label a code change as “Fail” if a test
suite was passing in the previous build, but the test suite fails in
the current build. In contrast, we label a code change as “Pass” if
the test suite has passed in both the previous and the current build.
Any other builds do not obtain a label and are not considered in
our dataset.

For example in Figure 2, code change 2○ is labeled as “Pass”
because b2 and the previous build, b1, have passing test suites. Build
b3 has a failing test suite, and hence, code change 3○ is labeled as
“Fail”. The other two code changes are ignored: 1○ because there is
no known previous build, and 4○ because it follows a build with a
failing test suite.

2.5 Prediction Model
After generating the features as well as the labels, the final step is to
build a prediction model. Our approach can use any classification
model, and Section 5.1 evaluates several commonly used models.
The dataset is split into a training set and a test set, and the model
is trained using the training set. After training, the model is used
to predict whether a code change would trigger a test suite failure.

3 COST MODEL
This section presents a mathematical cost model that theoretically
reasons about the cost effectiveness of continuous test suite fail-
ure prediction. The goal of the cost model is to help understand
the tradeoffs involved in test suite failure prediction and to help
decide whether the approach is beneficial in a specific project or
organization. We first describe the input parameters of the model
(Section 3.1), then present several strategies for handling test suite
executions during continuous integration (Section 3.2), and finally
provide boundary conditions that indicate when one strategy out-
performs another (Section 3.3).

3.1 Input Parameters
The cost model relies on three parameters that are specific to a
project or an organization: (i) the cost 𝑟 of running a test suite, (ii)
the cost 𝑑 of identifying a failure-inducing code change later than
immediately after the change, and (iii) the rate 𝑓 at which code
changes cause test suite failures. While determining concrete values
for these parameters is beyond the scope of this work, we give some
guidelines for determining them and discuss cost estimates given
in the literature.

3.1.1 Cost of Running a Test Suite. One relevant cost is the cost
𝑟 of running a test suite during continuous integration, which is
influenced by several factors:

• The computational cost of running test suites, which de-
pends on the size of the project and its test suite. For large
organizations with millions of lines of code stored in a sin-
gle monolithic repository, the computational costs can be
surprisingly high. Google’s test automation platform (TAP)
is reported to run 800 thousand builds and 150 million test
runs on an average day [34], which amounts to “millions of
dollars just for the computation (not counting the cost of
developers who maintain or use TAP)” [17].

• The human cost of maintaining the hardware and software
infrastructure for test suite execution. For example, a study
reports that about 5% of Facebook engineers are dedicated
to the task of developing, improving, and maintaining con-
tinuous integration tools [47]. Continuous test suite failure
prediction cannot entirely eliminate this cost, but is likely to
reduce it because fewer test suite executions require a less
sophisticated infrastructure for scheduling and performing
tests.

• The human cost of developers who wait for the outcome of
a test suite run, e.g., because a code change appears in the
main branch of a shared repository only after passing the test
suite. Studies on open-source projects report a mean time to
schedule and perform a test suite execution of 34 minutes
and 20 minutes, respectively [2]. At Google, “unacceptably
large delays of up to 9 hours” are not uncommon [34].

3.1.2 Cost of Delayed Detection of a Failure-Inducing Code Change.
Another important cost is that of detecting a code change that
causes the test suite to fail only later than if one would trigger
the test suite immediately after the code change. We represent the
overall cost of detecting a single test failure late as a parameter 𝑑 .
This cost is influenced by at least two factors:

• The increased difficulty to localize and fix the root cause of
a test suite failure, which may take longer when developers
have forgotten the specific context of a code change.

• The negative impact on other developers who are indirectly
affected by some not yet diagnosed misbehavior.

A cost estimate about bugs missed during regression testing as-
sumes a cost of 1.5 to 22 person-hours, depending on the severity
of the bug [5]. The cost relevant for our model is likely lower, as
test suite failures are not completely missed but only found later.
Reports of costs experienced during several large software projects
state that finding a bug later than immediately during coding can
increase the time needed to fix the bug by factors between 2 and
100 [51]. To bound the cost 𝑑 in practice, developers can run the test
suite in regular intervals, and always before releasing the software,
to make sure all known test failures are identified and handled.

3.1.3 Test Suite Failure Rate. The third parameter of our cost model
is the rate at which the test suite fails on average. We refer to this
rate as 𝑓 . In a dataset gathered from 242 open-source projects
(Section 4.1), 𝑓 is 4.21%.

By focusing on these three input parameters, our model ignores
some other costs. For example, we ignore the cost of introducing
continuous test suite failure prediction into the continuous inte-
gration infrastructure. The reason is that this is a one-time effort
for a larger organization or a centralized continuous integration

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

service. We also ignore the cost of model training and inference,
because it is negligible compared to the cost of executing the test
suite (Section 5.1).

3.2 Strategies
We use the cost model to reason about five strategies for answering
the question if and when to run the test suite during continuous
integration. These strategies run the test suite (i) when suggested
by our prediction model, (ii) for each code change, (iii) for no code
change at all, (iv) periodically based on a fixed schedule, and (v)
based on a random decision. The following describes each strategy
and what costs it imposes. The description is based on the usual
terminology for true positives (𝑇𝑃), false negatives (𝐹𝑁), etc., where
𝑇𝑃 (𝑇𝑁) means the test suite is correctly predicted to fail (pass), and
𝐹𝑃 (𝐹𝑁) means the test suite is predicted to fail (pass) but actually
passes (fails). The values 𝑇𝑁 , 𝐹𝑁 , etc. are the absolute numbers of
code changes that are true negatives, false negatives, etc. according
to the prediction model. We refer to the overall number of all code
changes as 𝑁 = 𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 . The failure rate is 𝑓 = 𝐹𝑁+𝑇𝑃

𝑁
.

3.2.1 MODEL Strategy. The MODEL strategy uses the classifica-
tion model introduced in Section 2 to decide whether to run the
test suite for a code change. Specifically, if the classifier predicts the
test suite to pass, then running the test suite is skipped. In contrast,
if the classifier predicts a failure, then the test suite is executed to
enable the developers to debug the test failure as soon as possible.
Intuitively, the MODEL strategy tries to balance the two costs 𝑟
and 𝑑 .

The overall cost of this strategy is composed of two parts. On
the one hand, there is the cost of running the test suite for each
predicted failure, i.e., 𝐹𝑃 + 𝑇𝑃 times. On the other hand, there is
the cost of detecting test failures late whenever the model predicts
“Pass” but the test suite would actually fail, which happens 𝐹𝑁
times.

𝑐𝑜𝑠𝑡𝑀𝑂𝐷𝐸𝐿 = 𝑟 · (𝐹𝑃 +𝑇𝑃) + 𝑑 · 𝐹𝑁 (1)

3.2.2 ALL Strategy. This strategy runs the test suite for each code
change and is the strategy currently adopted by the majority of
continuous integration practitioners. The strategy avoids the cost
𝑑 but always imposes the cost 𝑟 .

𝑐𝑜𝑠𝑡𝐴𝐿𝐿 = 𝑟 · 𝑁 (2)

3.2.3 NEVER Strategy. This strategy does not run the test suite
for any code change. In practice, using the NEVER strategy boils
down to no testing during continuous integration, but only, e.g.,
before each release. This strategy always imposes the cost 𝑑 while
avoiding the cost 𝑟 .

𝑐𝑜𝑠𝑡𝑁𝐸𝑉𝐸𝑅 = 𝑑 · (𝐹𝑁 +𝑇𝑃) (3)

3.2.4 PERIOD Strategy. A simple way to balance the costs 𝑟 and
𝑑 is to invoke the test suite periodically every 𝑘 code changes. In
this strategy, the cost 𝑟 occurs inversely proportional to 𝑘 because
a larger 𝑘 means that the test suite runs less often. The cost 𝑑 is
𝑁 times the probability that a failure does not coincide with the
periodic test suite execution, i.e., 𝑁 · 𝑓 · (1 − 1

𝑘
). Hence, the overall

cost of this strategy is:

𝑐𝑜𝑠𝑡𝑃𝐸𝑅𝐼𝑂𝐷 = 𝑟 · ⌈𝑁
𝑘
⌉ + 𝑑 · 𝑁 · 𝑓 · (1 − 1

𝑘
) (4)

3.2.5 RANDOM Strategy. As a trivial baseline for a classifier that
predicts whether to run the test suite for a given code change, we
consider a random decision. The decision follows the distribution
of failing and passing test suite executions, i.e., it predicts “Fail”
with probability 𝑓 and “Pass” with probability 1 − 𝑓 . A well trained
classifier should outperform this random decision, and we include
it here as a lower bound on what our approach could achieve.

The overall cost of RANDOM is computed similarly to MODEL.
The difference is that the predictions are random, and hence, the
numbers of true positives, false positives, etc. differ.

𝑐𝑜𝑠𝑡𝑅𝐴𝑁𝐷𝑂𝑀 = 𝑟 · (𝐹𝑃𝑟𝑎𝑛𝑑 +𝑇𝑃𝑟𝑎𝑛𝑑) + 𝑑 · 𝐹𝑁𝑟𝑎𝑛𝑑 (5)

Whether the predictions match the actual test suite outcomes
depends only on the failure rate of the test suite: 𝐹𝑃𝑟𝑎𝑛𝑑 = 𝑁 · 𝑓 ·
(1 − 𝑓) because the probability that the random model produces a
false positive is the product of the probability of predicting a failure,
𝑓 , and the probability of seeing an actual success, 1− 𝑓 . In a similar
vein, 𝑇𝑃𝑟𝑎𝑛𝑑 = 𝑁 · 𝑓 2 and 𝐹𝑁𝑟𝑎𝑛𝑑 = 𝑁 · (1 − 𝑓) · 𝑓 .

3.3 Comparing Strategies with Boundary
Conditions

Expressing the five strategies in our cost model allows for compar-
ing strategies with each other. We compute boundary conditions
that express for which fractions 𝑑

𝑟 one model has less overall cost
than another model. For example, the MODEL strategy is benefi-
cial over the ALL strategy when 𝑐𝑜𝑠𝑡𝑀𝑂𝐷𝐸𝐿 − 𝑐𝑜𝑠𝑡𝐴𝐿𝐿 < 0. Using
Equations 1 and 2, this is equivalent to:

𝑑

𝑟
<

𝐹𝑁 +𝑇𝑁
𝐹𝑁

(6)

Given this boundary condition, one can instantiate the cost
model with concrete values to check which strategy is best for
the costs 𝑟 and 𝑑 and the 𝐹𝑁 , 𝑇𝑁 , and 𝐹𝑁 values in a specific
project or organization.

Similar, we can compute the boundary condition for MODEL out-
performing the other strategies. We find that MODEL outperforms
NEVER when:

𝑑

𝑟
>

𝐹𝑃 +𝑇𝑃
𝑇𝑃

(7)

The MODEL strategy outperforms PERIOD when:

𝑑

𝑟

<

⌈𝑁 /𝑘 ⌉ − 𝐹𝑃 −𝑇𝑃

𝐹𝑁 − 𝑁 · 𝑓 · (1 − 1/𝑘) if 𝐹𝑁 − 𝑁 · 𝑓 · (1 − 1/𝑘) > 0

>
⌈𝑁 /𝑘 ⌉ − 𝐹𝑃 −𝑇𝑃

𝐹𝑁 − 𝑁 · 𝑓 · (1 − 1/𝑘) if 𝐹𝑁 − 𝑁 · 𝑓 · (1 − 1/𝑘) < 0
(8)

Finally, MODEL outperforms RANDOM when:

𝑑

𝑟

<

𝑁 · 𝑓 − 𝐹𝑃 −𝑇𝑃

𝐹𝑁 − 𝑁 · 𝑓 · (1 − 𝑓) if 𝐹𝑁 − 𝑁 · 𝑓 · (1 − 𝑓) > 0

>
𝑁 · 𝑓 − 𝐹𝑃 −𝑇𝑃

𝐹𝑁 − 𝑁 · 𝑓 · (1 − 𝑓) if 𝐹𝑁 − 𝑁 · 𝑓 · (1 − 𝑓) < 0
(9)

The above boundary conditions compare one strategy with an-
other. By combining the boundary conditions of one strategy 𝑆

compared to all other strategies, we compute the optimality interval
of 𝑆 . The interval defines the lowest and highest possible value of 𝑑𝑟
where 𝑆 imposes less overall costs than any other strategy. When
instantiating our cost model with concrete values for 𝑑 and 𝑟 , one
can hence tell whether a strategy is beneficial. Section 5.3 instanti-
ates the cost model based on a real-world dataset to assess under
what cost parameters 𝑑 and 𝑟 the MODEL strategy is beneficial.

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

4 EXPERIMENTAL SETUP
4.1 Data Collection
We apply the predictive model (Section 2) and our cost model (Sec-
tion 3) to a dataset gathered from 242 open-source projects. The
workflow for gathering this dataset consists of three steps: 1) Travis
CI information collection, 2) GitHub information collection, and 3)
information integration.

We initially considered using existing datasets like TravisTor-
rent [3] and RTPTorrent [31], which are the most related datasets
we are aware of. Because our dataset targets continuous test suite
failure prediction we perform a more stringent filtering of builds
to include. For example, we remove duplicated builds triggered by
the same commits (around 50% builds removed) and only count
first failures (around 40% builds removed), whereas neither Travis-
Torrent nor RTPTorrent perform such filtering. After our filtering
process only around 2k data samples remain from the TravisTorrent
dataset, which, given the imbalanced nature of the data, is insuffi-
cient for training an effective model. Instead, our dataset contains
15k samples, i.e., it is an order of magnitude larger than the best
available dataset.

1) Travis CI information collection. We target Travis CI as our data
source because it is among the most popular continuous integration
services [17]. In Travis CI, a project includes many builds, and each
build is triggered to run a series of tasks to determine whether
the build passes or fails. A build consists of several jobs, which
are usually executed in parallel, targeting the same software un-
der different configurations, e.g., programming language versions
and third-party package versions. If any job fails, the overall build
will fail. A job consists of several phases, which typically include
installation, building, testing, and deploying phases.

We consider only Travis CI projects with more than 100 builds
to ensure that developers and organizations are experienced in
continuous integration. We then check the build status and filter
out builds that are skipped or cancelled. Next, we check each job
status from job logs and exclude jobs that do not run tests. For each
job that runs tests, if there are failed test cases, the test result for
the job will be a failure. Otherwise, the result will be a pass. We also
collect some information on testing, including test time and the
number of test cases. After that, we label each build as “Pass” if all
jobs of the build have passing test results, and as “Fail” otherwise.
Finally, we remove data samples where several builds targeting
the same commit are executed with different results to avoid flaky
builds/tests [29].

2) GitHub information collection. We target GitHub as our data
source for code changes because it is well-integrated with Travis CI.
We focus on projects developed in Java, but our method could also
be applied to other programming languages. Then, we identify the
code changes on all branches that trigger the Travis CI builds, as
well as the commits that constitute the code changes. By inspecting
the commit logs and diff logs, we further exclude code changes that
constitute a merge commit. A merge commit could be huge, and the
intention could be scattered, which makes further analysis difficult.
Finally, we retrieve the source files that are touched by the code
change, excluding code changes that do not affect any code file.

3) Information integration. One challenge when integrating the
data from Travis CI and GitHub is that some commits recorded to

Table 3: Statistics of the dataset

Projects 242 Avg. changed lines 147
Period 07/2016–01/2020 Avg. test cases 12,041

Commits 23,720 Avg. build time 31 min
Samples 14,999 Avg. test time 21 min

Test suite failures 631 (4.21%) Total failed test cases 15,874

trigger a build in Travis CI can no longer be found in local Git logs.
There are several possible reasons, e.g., the branch including the
recorded trigger commits has been removed and can no longer be
accessed, or the commits have been re-organized into the master
branch and the commit ID has been updated. To resolve such miss-
ing trigger commits, we search for a valid commit that is committed
on the same day, by the same author, and that affects the same files.
If for the trigger commit in the Travis CI records we cannot find
the corresponding GitHub commit, we ignore the build. Another
challenge is that the same code change content, even in different
branches, can be triggered in Travis CI by different developers. We
identify such cases and remove all duplicates.

Statistics of the generated dataset are shown in Table 3. Our
dataset includes 14,999 data samples, 631 of which are labeled as
failure. That is, our dataset is imbalanced, with a test failure rate of
4.21%, which confirms earlier reports that most test cases pass [1].
The failure rate is much smaller than the 10.3% in Beller et al.’s
study [2], because we only count first test failures (Section 2.4).
Comparing individual projects with each other shows that the test
suite failure rate varies. For example, Apache Druid has almost
24% failing test suite runs, whereas many other projects remain
below 1%.3 As our approach takes the test suite failure rate 𝑓 as a
parameter, it can be adapted to a specific project. Although there is
an option to tolerate test failures and execute all test cases, it is only
adopted by few developers (less than 1%). The “Failed test cases”
include both failed tests, e.g., an assertion violation, and tests with
errors, e.g., an uncaught exception. We count a test case multiple
times if it is executed multiple times. From the statistics, we can
also see that about two-thirds of the overall build time is spent on
testing.

4.2 Training and Prediction
Data preprocessing. To address the imbalance of our dataset,

we apply random oversampling, a class balancing technique that
randomly duplicates samples from the minority class until the
training set is balanced, on the training set. As is common with
heterogeneous numeric features, we standardize all features so they
have zero mean and unit variance.

Dataset split and model validation. We use three setups for split-
ting the dataset into training and validation data. On the one hand,
we use 5-fold cross-validation with 10 repetitions of each fold, called
the CV setup. We use stratified sampling to compute each fold. The
results reported in the CV setup are averages over the 5 · 10 = 50
experiments. On the other hand, we also evaluate the approach
with two time-based data splits, called the TIME1 and TIME2 setups,
illustrated in Figure 3. For both time-based setups, we order all data

3All per-project statistics and results are available in the supplementary material.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

(a) Setup TIME1: Use data
from adjacent time steps for
training and testing.

(b) Setup TIME2: Use the first 80% of
the data of a time step for training
and the remaining 20% for testing.

Figure 3: Time-based data splitting. The green boxes repre-
sent training data samples, and the orange boxes represent
test data samples.

points by time and group them into 15 time steps that each have
the same amount of failure samples. In the TIME1 setup, we use
the data at time step 𝑖 to train the model, and then validate with
the data at time step 𝑖 + 1. In the TIME2 setup, we use the first 80%
of the data at a time step for training, and then validate with the
remaining 20% of the data at the same time step. The advantage of
the time-based setups is to be closer to how our approach would
be used in practice, where a model trained at some point is used
for a period of time. However, the relatively small training and
validation datasets of TIME1 and TIME2 cause some fluctuation in
the results. We hence also use CV, which allows us to draw statis-
tically significant conclusions. We use all three setups to evaluate
the effectiveness of our approach (Section 5.1), and the CV setup
to evaluate the features (Sections 5.2) and to apply our cost model
(Section 5.3).

Classification models. We use several off-the-shelf classification
models: decision trees, naive Bayes, support vector machine, lo-
gistic regression, random forest, and multi layer perceptron, all
implemented in scikit-learn [41], and LightGBM, using the imple-
mentation of the authors [21].

4.3 Evaluation Metrics
To measure the prediction results, we use four metrics that have
been used and shown to be important in related work [20, 53]:
AUC, F-measure, G-measure, and MCC. AUC is the area under the
receiver operating curve (ROC). It ranges from 0 to 1, where 0.5
means a random prediction, and 1 means a perfect prediction. We
include this metric because it is robust against data imbalance and
different thresholds. F-measure is the harmonic mean of precision
and recall. It ranges from 0 to 1, and a higher F-measure means more
accurate prediction. Precision is defined as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝑇𝑃 ,
while recall (True Positive Rate, TPR) is defined as 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =

𝑇𝑃
𝑇𝑃+𝐹𝑁 . F-measure is calculated as: F-measure= 2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .
G-measure is the harmonic mean of TPR and true negative rate
𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁+𝐹𝑁 . It aims to measure the influence of mislabeled
positive and negative samples. G-measure ranges from 0 to 1, where
higher is better. G-measure is calculated as: G-measure= 2·𝑇𝑃𝑅 ·𝑇𝑁𝑅

𝑇𝑃𝑅+𝑇𝑁𝑅
.

MCC, orMatthewsCorrelation Coefficient, describes the correlation
between true values and predicted values. It ranges from -1 to 1,
where 1 means perfect prediction, 0 means random prediction, and

Table 4: Effectiveness of different classification models. The
best performance of the models is highlighted in bold.

AUC F-measure G-measure MCC

Decision tree 0.576 0.203 0.333 0.169
Naive Bayes 0.696 0.253 0.349 0.231
Support Vector Machine 0.768 0.267 0.427 0.234
Logistic Regression 0.769 0.271 0.442 0.239
Random Forest 0.813 0.346 0.517 0.318
Multi-layer Perceptron 0.694 0.209 0.399 0.171
LightGBM 0.836 0.386 0.561 0.359

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

0%

10%

20%

30%

40%

50%

60%

F
-m

e
a

s
u

re

Cont inuous test suite failure predict ion

Com binat ion

Test failure predict ion

Software defect predict ion

Figure 4: The effect of different classification thresholds and
different features sets on prediction performance for the
LightGBM model. The vertical line represents the default
threshold.

-1 means that all predictions failed. MCC is calculated as:𝑀𝐶𝐶 =
𝑇𝑃 ·𝑇𝑁−𝐹𝑃 ·𝐹𝑁√

(𝑇𝑃+𝐹𝑃) (𝑇𝑃+𝐹𝑁) (𝑇𝑁+𝐹𝑃) (𝑇𝑁+𝐹𝑁)
. Both G-measure andMCC are

robust against data imbalance and sensitive at different thresholds.

5 RESULTS AND DISCUSSION
5.1 RQ1: How Effective are the Prediction

Models?
5.1.1 Cross-Validation. Table 4 shows the effectiveness of different
classification models measured with the CV setup (Section 4.2).
LightGBM performs best according to all metrics, and we hence use
this model as the default in the remainder of the evaluation. The
results show that continuous test suite failure prediction is effective.
From the view of evaluation metrics that are robust against data
imbalance, the model performs well, with an AUC of 0.836. The
F-measure of 0.386 is relatively low compared to related work on
defect prediction (e.g., 0.43 in [20]) and test case failure prediction
(0.522 in [1]). The main reason is that our data is even more im-
balanced than theirs (12.8% and 10%, respectively), and that the
F-measure is highly impacted by data imbalance. However, our
model clearly outperforms a trivial classifier predicting all samples
as failure, which would get an F-measure of 0.081.

We also explore a suitable classification threshold for the model
(Figure 4). If the predicted probability is less than the threshold,
the prediction result is “Pass”; otherwise, the result is “Fail”. From
the figure, we can see that the F-measure of the LightGBM model

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

(a) Setup TIME1. (b) Setup TIME2.

Figure 5: Prediction effectiveness using time-ordered data
points.

is maximized at a threshold of 0.56, which shows that adjusting
thresholds can achieve better prediction results.

The test suite failure prediction model is effective. The best
studied model, LightGBM, achieves an AUC of 0.836.

5.1.2 Time-Ordered Dataset. Figure 5 shows the effectiveness of
our model with the two time-based splits into training data and
validation data (TIME1 and TIME2, Section 4.2). We observe that
the prediction performance is roughly on par with the results from
cross-validation. For some time steps, the time-based splits slightly
outperforms the earlier results, e.g., getting an F-measure of 0.546
for a specific time step. In general, the time-based splits yield slightly
lower effectiveness, though, which can be attributed to the fact that
the two time-based splitting methods result in less training data
than cross-validation. To validate this hypothesis, we reduce the
training dataset to random samples of 1,000 and 2,000 data points,
which roughly matches the training set sizes for setups TIME1 and
TIME2, respectively. Training with 1,000 data points achieves an
AUC of 0.712 and an F1 of 0.215, and a dataset of 2,000 data points
achieves an AUC of 0.721 and an F1 of 0.308.

With time-based data splitting, the model is still effective, but
provides slightly worse predictions due to the smaller size of
the training data set.

5.2 RQ2: How Effective are the Features?
5.2.1 RQ2a: Comparison with Features Used in Prior Work. Because
this is the first work on skipping all tests for a give code change,
it is not clear a priori which features are most suitable. Table 5
compares our full feature set with different subsets: (i) only those
features used in software defect prediction, (ii) only those features
used in test case failure prediction, and (iii) the combination of (i)
and (ii).4 We choose the best threshold setting for each feature set,
i.e., 0.18 for just-in-time defect prediction, 0.68 for test case failure
prediction, 0.6 for their combination, and 0.56 for continuous test
suite failure prediction. The results show that the full feature set is
most effective. In particular, we find that our approach improves
the AUC compared to each of the two existing baselines by 13.9%
and 2.9%, respectively. To check if this improvement is statistically
significant, we perform a Friedman test with the Holm correction
method on the different train-validate splits during cross-validation.
4See Table 2 for what features belong to what prior work.

Table 5: Features known from prior work vs. full feature set
from Table 2.

AUC F-measure G-measure MCC

Just-in-time defect prediction 0.697 0.186 0.340 0.147
Test case failure prediction 0.807 0.342 0.506 0.313
Combination 0.817 0.347 0.514 0.318
Continuous test suite failure prediction 0.836 0.386 0.561 0.359

With a confidence interval of 0.05, our feature set is significantly
better. A direct comparison of the results also shows that our fea-
tures outperform others in most cases for F-measure (47/50) and
AUC (43/50).

Although the experiments are not designed for a direct compari-
son with build outcome prediction, we can roughly compare our
results with Jin et al.’s results [19], and find that our F-measure
is almost 30% higher. We attribute this difference to the fact that
predicting the outcome of a test suite after a code change is an
easier problem than predicting the outcome of a build, leading to a
more effective model.

Simply reusing features from related domains yields a less ef-
fective model than our full feature set.

5.2.2 RQ2b: Most Effective Features. To better understand how
important individual features are for the model, we investigate the
most and the least influential features. To this end, we rank the
features according to their importance for training the LightGBM
model, which yields the following:

• Ten most important features: TF10, TC, TP10, TF, REXP,
SEXP, EXP, Awareness, CL, TFR20

• Ten least important features: ND, NClass, TU, NUC, NExc,
NFIX, FIX, NS, Refactor, GC

The top-10 features focus on two categories: test and experience.
Experience features are pervasively used in just-in-time defect
prediction, and they also work well in continuous test suite failure
prediction. Test features represent the historical test results of the
builds, which are effective in test case failure prediction.

The least important features are mainly from the diffusion and
the purpose categories. Refactor and GC only target a very small
fraction of samples, and hence, their overall importance is low.

Information about the developer experience, previous test re-
sults, and abundance of test cases is most important for an
effective prediction model.

5.3 RQ3: (When) Is the Model Cost-Saving?
We instantiate the theoretical cost model (Section 3) with the failure
rate and the confusion matrix values in our real-world dataset
(averaged over cross-validation), i.e., with 𝑓 = 4.21%, 𝐹𝑃 = 82.6,
𝑇𝑁 = 2791.0, 𝑇𝑃 = 49.9, and 𝐹𝑁 = 76.3. Doing so enables us to
assess if and when test suite failure prediction is overall cost-saving.

5.3.1 RQ3a: Comparison with Other Strategies. Instantiating the
cost model yields a boundary condition for each of the five modeled
strategies (Section 3.3). The boundary condition refers to 𝑑

𝑟 , i.e., the

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

Table 6: Boundary conditions for when the MODEL strategy
outperforms the other strategies. ✓ means MODEL always
outperforms the other strategies.

RANDOM ALL NEVER PERIOD

K=5 K=10 K=20 K=40

Boundary
condition

𝑑
𝑟
>0.14 𝑑

𝑟
<37.58 𝑑

𝑟
>2.47 ✓ ✓ ✓ 𝑑

𝑟
>1.31

0.0 0.2 0.4 0.6 0.8 1.0

threshold

0

50

100

150

200

250

300

350

b
o

u
n

d
a

ry
 c

o
n

d
it

io
n

 o
f

d
/r upper bound

lower bound

Figure 6: The upper bound and lower bound of boundary
condition 𝑑

𝑟 for MODEL strategy under different thresholds.

ratio of the cost of running a test suite and the cost of not immedi-
ately seeing a test failure. Table 6 shows the boundary conditions
of each strategy compared to our MODEL strategy. For example,
comparing our model with never running the test suite shows that
𝑐𝑜𝑠𝑡𝑀𝑂𝐷𝐸𝐿 < 𝑐𝑜𝑠𝑡𝑁𝐸𝑉𝐸𝑅 when 𝑑

𝑟 >2.47. For PERIOD with k=5, 10,
and 20, the boundary condition is ✓ to show that these strategies
are always worse than MODEL because the boundary condition is
always true.

By computing the optimality intervals of all strategies, we find
three strategies to provide the overall lowest cost, depending on
the cost parameters 𝑟 and 𝑑 :

• NEVER is optimal for: 𝑑𝑟 ∈ (0, 2.47)
• MODEL is optimal for: 𝑑𝑟 ∈ (2.47, 37.58)
• ALL is optimal for: 𝑑𝑟 ∈ (37.58, +∞)

These intervals show that our predictive model can be cost-
saving for a large range of scenarios. For example, suppose an
organization where the cost 𝑟 of running a test suite as part of
continuous integration is 2 person-hours and the cost of finding out
late about a test suite failure is 20 person-hours, which are values
compatible with existing estimates and reports [5, 34, 51]. In this
organization 𝑑

𝑟 = 10, i.e., MODEL is the best available strategy.

Instantiating the theoretical cost model with real-world data
shows that the predictive model is cost-effective if 2.47 < 𝑑

𝑟 <

37.58. The MODEL, NEVER, and ALL strategies outperform the
other strategies under different optimality intervals.

5.3.2 RQ3b: Influence of Classification Threshold on CostModel. By
default, the classification threshold is 0.56, which we pick because it
maximizes F-measure (see RQ1). However, the threshold may not be
the best threshold for the cost model.We enumerate thresholds with

a step size of 0.01, calculate the boundary conditions of MODEL
versus other strategies for each threshold, and then determine the
lower and upper bounds. The ratio of executed test suites is 50.8%,
4.4%, and 0.34% at a threshold of 0.05, 0.56, and 0.95, respectively.
Figure 6 shows how the optimality interval of the MODEL strategy
changes depending on the threshold.

The figure allows for two observations. First, there is a relatively
large range of 𝑑

𝑟 ratios where MODEL is the best strategy, irre-
spective of the threshold. This differs from Herbold’s observations
in software defect prediction [16]. The reason is that there is al-
ways a tradeoff between the two kinds of costs that our model
considers. Second, one can adapt the classification threshold to
make MODEL beneficial for a given 𝑑

𝑟 ratio. Up to a ratio of 301,
our model outperforms all other strategies when choosing an ap-
propriate threshold. For 𝑑

𝑟 > 301, i.e., a scenario where missing
a test failure is extremely costly, the best threshold is 0, which is
equivalent to always executing the test suite, i.e., the ALL strategy.

The optimality interval of our model is robust w.r.t. the classi-
fication threshold. By adjusting the threshold, our model can
outperform the other strategies in scenarios up to a 𝑑

𝑟 = 301.

5.3.3 RQ3c: Other Costs. Beyond the costs represented in the cost
model, deploying our idea in a realistic setting imposes some ad-
ditional computational costs. One is for gathering the features of
code changes during the evolution of a project. This effort can be
greatly reduced by caching and updating project information lo-
cally for each code change. During feature generation, the most
time-consuming part is the AST-based analysis, which we find to
take less than a second per code change. The computational costs
of training a model, which would likely be done at regular intervals
in practice, is up to several minutes, and the cost of a prediction is
within seconds. All computation times are measured on a standard
laptop. Overall, these costs are negligible compared to the cost of
regularly running large test suites.

6 THREATS TO VALIDITY
We see four threats to the validity of our results. First, flaky tests
may introduce noise into our dataset. We mitigate this threat by
removing test suite runs labeled as flaky in the Travis CI test reports,
which affects a small percentage of all test suite runs (0.067%). We
further check for code changes that trigger multiple test suite runs
(8.6% of all code changes) and remove those that yield different test
results (<10% of the 8.6%). Despite this filtering, there may still be
flaky tests in our dataset, e.g., because the test suite is triggered
only once and thus not identified as flaky. Second, our results may
not generalize to different or larger datasets, or to programs written
in languages other than Java. To partially address this threat, we
gather our own dataset, which is an order of magnitude larger than
the largest available dataset [3]. Third, even though our work is
partially motivated by the immense testing efforts performed at
large-scale organizations, our evaluation focuses on open-source
projects, which have a comparably small scale. We hence do not
claim our empirical results to hold for large-scale organizations
with a centralized continuous integration infrastructure, but leave
applying our idea in such environments for future work. Finally,

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

our cost model is a theoretical abstraction of real costs, which (as
every model) may not accurately represent reality. Instead, we see
the cost model as a way to reason about the advantages of different
continuous testing strategies.

7 RELATEDWORK
7.1 Reducing the Cost of Regression Testing
One popular way to reduce the time required for executing regres-
sion tests is test selection [10, 12, 24, 39, 48]. A related approach
is test case prioritization, which aims at executed those tests first
that are the most likely to reveal faults [7, 15, 33, 40]. Both kinds
of approaches have been studied on industrial systems [38] and
on evolving code repositories [26, 28]. Leong et al. [25] propose a
simulation framework for studying test selection and prioritization,
and apply it at Google. Their results underline the importance of
flaky tests, which our approach ignores and which we try to filter
in our dataset.

Test case failure prediction also aims to identify test cases that
are more likely to fail. Anderson et al. [1] predict each test case
as passing or failing before these tests are executed. Machalica et
al. [30] use change-level, target-level, and other features to predict
test case results, and they also consider the effects of test flakiness.
We adopt some of the features from test case failure prediction, but
also show that our extended feature set is even more effective. Our
newly added code change features are likely to improve stability, as
reported also by Lu et al. [28]. Our work shares with all the above
work the goal of reducing the overall testing effort, and future work
should explore how to combine our work with prior techniques.
E.g., our work could decide whether to run the test suite at all, and
if this decision is positive, existing work could optimize which test
cases to run.

Similar to this work, some prior work also aims at optimizing
which tests to execute at the level of test suites. Google’s test au-
tomation platform [34] schedules test targets to run, where “target”
means a set of related test cases or test scripts. Their approach
decides which test targets to eventually execute based on depen-
dencies, but heuristically postpones test executions to reduce the
overall test execution effort. Test suite selection [8, 49] tries to iden-
tify the most failure-prone subset out of possibly many test suites
associated with a code base. They use three features: the last time
a test suite has triggered a failure, the last time a test suite was
executed, and whether the test suite is newly created. While these
features partially overlap with ours, our analysis of most effective
features (Section 5.2.2) shows that there are also other important
features. Another approach is to combine test selection at several
levels of granularity, e.g., by first selecting tests at the module level
and by then fine-tuning the selection at the class level [49].

Saff and Ernst [46] propose a form of continuous testing aimed
at reducing the time between introducing a mistake and finding it
via testing, by giving the illusion to developers that regression tests
are continuously running in the background. The approach uses
otherwise idle computational resources on the developer’s machine,
whereas we target a continuous integration system, where tests are
running on some centralized computing infrastructure whenever a
developer commits code.

7.2 Just-in-Time Defect Prediction
Just-in-time defect prediction aims to predict if a code change in-
troduces defects into the code base. Unlike test failures, software
defects are usually not identified in the first place. Kamei et al. [20]
is among the pioneer researchers in just-in-time defect prediction.
They proposed change measures in diffusion, size, purpose, his-
tory, and experience categories. Many researchers follow their
work [18, 27, 32, 53] and make further improvements. Tabassum et
al. [53] studies the impact of training set size on prediction perfor-
mance. McIntosh et al. [32] consider the “moving target” effect in a
longitude just-in-time defect prediction study. We adopt features
from just-in-time defect prediction, which are then used in con-
tinuous test suite failure prediction. Our results show that simply
reusing these features is less effective than our extended feature set,
and we also investigate the influence of a time-ordered dataset [53].

7.3 Build Outcome Prediction
Continuous build outcome prediction [14] aims to predict whether
a build will pass. Zheng et al. [55] proposes a semi-supervised on-
line prediction method, and Rausch et al. [44] find that the recent
build history is the strongest influencing factor. Jin and Servant
[19] and Chen et al. [4] propose build outcome prediction models
that distinguish between “first failures” and subsequent failures.
Our dataset also focuses on “first failures”, i.e., test suite failures
that are preceded by a passing test suite. The key difference to prior
work is that our approach focuses on test suite failures, instead of
all kinds of build failures, which include various other reasons, e.g.,
compilation errors, configuration problems, missing dependencies,
and outages of external services. Compared to build outcome pre-
diction, the test suite failure prediction problems is less complex
and easier to characterize by features, making it a fruitful target for
accurate prediction.

7.4 Cost Models
Herbold [16] proposes a cost model for software defect prediction,
which considers, e.g., quality assurance costs, defect costs, initializa-
tion costs, and execution costs. Our model is similar in spirit to [16],
but is based on a set of assumptions and cost parameters suitable for
continuous test suite failure prediction instead of defect prediction.
Another line of work is on cost estimations for regression test se-
lection [13, 45], which checks whether the cost necessary to select
subsets of the tests is lower than the savings obtained by running
the reduced test suite. There are other domains where the idea of
cost models is adopted, e.g., modeling the costs of releases [42] and
fraud detection [52]. This paper presents the first cost model for
continuous test suite failure prediction.

8 CONCLUSION
This paper introduces the problem of continuous test suite failure
prediction, presents an effective prediction model that addresses the
problem, and evaluates the prediction model with a novel dataset
gathered from 204 real-world projects. The prediction model is
based on nine categories of features, which focus on the code
change, the past behavior of the test suite, and the development
history. Our experiments show these features to yield an effective
classification model. Moreover, we find that our approach improves

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Cong Pan and Michael Pradel

over baselines that use features proposed for just-in-time defect
prediction and for predicting whether to run individual test cases
by 13.9% and 2.9%, respectively. We also present a theoretical cost
model, which reasons about whether using our approach is ben-
eficial depending on the cost of running a test suite and the cost
of not immediately detecting a test failure. Beyond the evaluation
metrics, the cost model helps decide when continuous test suite
failure prediction is worthwhile based on estimates of both costs
for a specific project or organization. We envision continuous test
suite failure prediction to be useful both for large-scale organiza-
tions with a centralized continuous integration infrastructure and
for continuous integration platforms that offer their services to
open-source and other projects.

ACKNOWLEDGMENTS
This work has been supported by the China Sponsorship Council,
by the European Research Council (ERC, grant agreement 851895),
and by the German Research Foundation within the ConcSys and
Perf4JS projects.

REFERENCES
[1] Jeff Anderson, Saeed Salem, and Hyunsook Do. 2015. Striving for failure: an

industrial case study about test failure prediction. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 2. IEEE, 49–58. https:
//doi.org/10.1109/ICSE.2015.134

[2] M. Beller, G. Gousios, and A. Zaidman. 2017. Oops, My Tests Broke the
Build: An Explorative Analysis of Travis CI with GitHub. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). 356–367.
https://doi.org/10.1109/MSR.2017.62

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Syn-
thesizing Travis CI and GitHub for full-stack research on continuous integration.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE, 447–450. https://doi.org/10.1109/MSR.2017.24

[4] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2020. BUILDFAST:
History-Aware Build Outcome Prediction for Fast Feedback and Reduced Cost
in Continuous Integration. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 42–53.

[5] Hyunsook Do and Gregg Rothermel. 2006. An empirical study of regression
testing techniques incorporating context and lifetime factors and improved cost-
benefit models. In Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering. 141–151. https://doi.org/10.1145/1181775.
1181793

[6] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2002. Test
case prioritization: A family of empirical studies. IEEE transactions on software
engineering 28, 2 (2002), 159–182. https://doi.org/10.1109/32.988497

[7] SebastianG. Elbaum, Gregg Rothermel, Satya Kanduri, andAlexeyG.Malishevsky.
2004. Selecting a Cost-Effective Test Case Prioritization Technique. Softw. Qual.
J. 12, 3 (2004), 185–210. https://doi.org/10.1023/B:SQJO.0000034708.84524.22

[8] Sebastian G. Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
improving regression testing in continuous integration development environ-
ments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16
- 22, 2014, Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey
(Eds.). ACM, 235–245. https://doi.org/10.1145/2635868.2635910

[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313–324. https://doi.org/10.1145/
2642937.2642982

[10] Milos Gligoric, Lamyaa Eloussi, andDarkoMarinov. 2015. Practical regression test
selection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 211–222. https://doi.
org/10.1145/2771783.2771784

[11] Philip J Guo, Thomas Zimmermann, NachiappanNagappan, and BrendanMurphy.
2010. Characterizing and predicting which bugs get fixed: an empirical study of
MicrosoftWindows. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering-Volume 1. 495–504. https://doi.org/10.1145/1806799.
1806871

[12] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi.

2001. Regression Test Selection for Java Software. In Proceedings of the 2001 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2001, Tampa, Florida, USA, October 14-18, 2001, Linda M.
Northrop and John M. Vlissides (Eds.). ACM, 312–326. https://doi.org/10.1145/
504282.504305

[13] Mary Jean Harrold, David S. Rosenblum, Gregg Rothermel, and Elaine J. Weyuker.
2001. Empirical Studies of a Prediction Model for Regression Test Selection. IEEE
Trans. Software Eng. 27, 3 (2001), 248–263. https://doi.org/10.1109/32.910860

[14] Ahmed E. Hassan and Ken Zhang. 2006. Using Decision Trees to Predict the
Certification Result of a Build. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE ’06). IEEE Computer Society,
USA, 189–198. https://doi.org/10.1109/ASE.2006.72

[15] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams
(Eds.). ACM, 523–534. https://doi.org/10.1145/2884781.2884791

[16] Steffen Herbold. 2019. On the costs and profit of software defect prediction. IEEE
Transactions on Software Engineering (2019). https://doi.org/10.1109/TSE.2019.
2957794

[17] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 426–437. https://doi.org/10.1145/2970276.2970358

[18] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu
Ubayashi. 2019. DeepJIT: an end-to-end deep learning framework for just-in-
time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34–45. https://doi.org/10.1109/MSR.2019.00016

[19] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building
in Continuous Integration. In International Conference on Software Engineering.
13–25.

[20] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2012. A large-scale empirical study of
just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757–773. https://doi.org/10.1109/TSE.2012.70

[21] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in neural information processing systems. 3146–3154.
https://doi.org/10.1109/MSR.2019.00016

[22] Kenji Kira and Larry A. Rendell. 1992. A Practical Approach to Feature Selection.
In Machine Learning Proceedings 1992, Derek Sleeman and Peter Edwards (Eds.).
Morgan Kaufmann, San Francisco (CA), 249–256. https://doi.org/10.1016/B978-
1-55860-247-2.50037-1

[23] A Güneş Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. 2008.
An investigation into the functional form of the size-defect relationship for
software modules. IEEE Transactions on Software Engineering 35, 2 (2008), 293–
304. https://doi.org/10.1109/TSE.2008.90

[24] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An extensive study of static regression test selection in
modern software evolution. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong
Su (Eds.). ACM, 583–594. https://doi.org/10.1145/2950290.2950361

[25] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing transition-based test selection algorithms at Google. In
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019,
Helen Sharp and Mike Whalen (Eds.). IEEE / ACM, 101–110. https://doi.org/10.
1109/ICSE-SEIP.2019.00019

[26] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining pri-
oritization: continuous prioritization for continuous integration. In Proceed-
ings of the 40th International Conference on Software Engineering. 688–698.
https://doi.org/10.1145/3180155.3180213

[27] Jinping Liu, Yuming Zhou, Yibiao Yang, Hongmin Lu, and Baowen Xu. 2017.
Code churn: A neglected metric in effort-aware just-in-time defect prediction. In
2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 11–19. https://doi.org/10.1109/ESEM.2017.8

[28] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How does regression test prioritization perform in real-
world software evolution?. In Proceedings of the 38th International Conference on
Software Engineering. 535–546. https://doi.org/10.1145/2884781.2884874

[29] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. 643–653. https:
//doi.org/10.1145/2635868.2635920

[30] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive test selection. In Proceedings of the 41st International Conference on

https://doi.org/10.1109/ICSE.2015.134
https://doi.org/10.1109/ICSE.2015.134
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.24
https://doi.org/10.1145/1181775.1181793
https://doi.org/10.1145/1181775.1181793
https://doi.org/10.1109/32.988497
https://doi.org/10.1023/B:SQJO.0000034708.84524.22
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1145/504282.504305
https://doi.org/10.1145/504282.504305
https://doi.org/10.1109/32.910860
https://doi.org/10.1109/ASE.2006.72
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1109/TSE.2019.2957794
https://doi.org/10.1109/TSE.2019.2957794
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/MSR.2019.00016
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/MSR.2019.00016
https://doi.org/10.1016/B978-1-55860-247-2.50037-1
https://doi.org/10.1016/B978-1-55860-247-2.50037-1
https://doi.org/10.1109/TSE.2008.90
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1145/3180155.3180213
https://doi.org/10.1109/ESEM.2017.8
https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920

Continuous Test Suite Failure Prediction ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Montreal,
QC, Canada, May 25-31, 2019, Helen Sharp and Mike Whalen (Eds.). IEEE / ACM,
91–100. https://doi.org/10.1109/ICSE-SEIP.2019.00018

[31] Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld. 2020. RTPTorrent:
An open-source dataset for evaluating regression test prioritization. In Proceedings
of the 17th International Conference on Mining Software Repositories. 385–396.
https://doi.org/10.1145/3379597.3387458

[32] Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE Trans.
Software Eng. 44, 5 (2018), 412–428. https://doi.org/10.1109/TSE.2017.2693980

[33] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rothermel.
2012. A Static Approach to Prioritizing JUnit Test Cases. IEEE Trans. Software
Eng. 38, 6 (2012), 1258–1275. https://doi.org/10.1109/TSE.2011.106

[34] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). IEEE, 233–242. https://doi.org/10.1109/ICSE-
SEIP.2017.16

[35] Audris Mockus and David M Weiss. 2000. Predicting risk of software changes.
Bell Labs Technical Journal 5, 2 (2000), 169–180. https://doi.org/10.1002/bltj.2229

[36] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In Proceedings of the 27th international
conference on Software engineering. 284–292. https://doi.org/10.1109/ICSE.2005.
1553571

[37] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics
to predict component failures. In Proceedings of the 28th international conference
on Software engineering. 452–461. https://doi.org/10.1145/1134285.1134349

[38] Daniel Di Nardo, Nadia Alshahwan, Lionel C. Briand, and Yvan Labiche. 2015.
Coverage-based regression test case selection, minimization and prioritization: a
case study on an industrial system. Softw. Test. Verification Reliab. 25, 4 (2015),
371–396. https://doi.org/10.1002/stvr.1572

[39] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the 12th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, 2004, Newport
Beach, CA, USA, October 31 - November 6, 2004, Richard N. Taylor and Matthew B.
Dwyer (Eds.). ACM, 241–251. https://doi.org/10.1145/1029894.1029928

[40] David Paterson, José Campos, Rui Abreu, GregoryMKapfhammer, Gordon Fraser,
and Phil McMinn. 2019. An Empirical Study on the Use of Defect Prediction
for Test Case Prioritization. In 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). IEEE, 346–357. https://doi.org/10.1109/ICST.
2019.00041

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[42] Hoang Pham. 2003. Software reliability and cost models: Perspectives, compari-
son, and practice. European Journal of Operational Research 149, 3 (2003), 475–489.
https://doi.org/10.1016/S0377-2217(02)00498-8

[43] Ranjith Purushothaman and Dewayne E Perry. 2005. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engineering
31, 6 (2005), 511–526. https://doi.org/10.1109/TSE.2005.74

[44] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. 2017. An Empirical Analysis
of Build Failures in the Continuous Integration Workflows of Java-Based Open-
Source Software. In 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR). 345–355. https://doi.org/10.1109/MSR.2017.54
[45] David S. Rosenblum and Elaine J. Weyuker. 1996. Predicting the Cost-

Effectiveness of Regression Testing Strategies. In SIGSOFT ’96, Proceedings of the
Fourth ACM SIGSOFT Symposium on Foundations of Software Engineering, San
Francisco, California, USA, October 16-18, 1996, David Garlan (Ed.). ACM, 118–126.
https://doi.org/10.1145/239098.239118

[46] David Saff and Michael D. Ernst. 2003. Reducing wasted development time
via continuous testing. In 14th International Symposium on Software Reliability
Engineering (ISSRE 2003), 17-20 November 2003, Denver, CO, USA. IEEE Computer
Society, 281–292. https://doi.org/10.1109/ISSRE.2003.1251050

[47] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 21–30. https://doi.org/10.1145/2889160.2889223

[48] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing trade-offs in test-suite reduction. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro
Orso, and Margaret-Anne D. Storey (Eds.). ACM, 246–256. https://doi.org/10.
1145/2635868.2635921

[49] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and im-
proving regression test selection in continuous integration. In 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE). IEEE, 228–
238. https://doi.org/10.1109/ISSRE.2019.00031

[50] Emad Shihab, Ahmed E Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An
industrial study on the risk of software changes. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
1–11. https://doi.org/10.1145/2393596.2393670

[51] Forrest Shull, Vic Basili, Barry Boehm, A Winsor Brown, Patricia Costa, Mikael
Lindvall, Daniel Port, Ioana Rus, Roseanne Tesoriero, and Marvin Zelkowitz.
2002. What we have learned about fighting defects. In Proceedings eighth IEEE
symposium on software metrics. IEEE, 249–258. https://doi.org/10.1109/METRIC.
2002.1011343

[52] Salvatore J Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K Chan.
2000. Cost-based modeling for fraud and intrusion detection: Results from the
JAM project. In Proceedings DARPA Information Survivability Conference and
Exposition. DISCEX’00, Vol. 2. IEEE, 130–144. https://doi.org/10.1109/DISCEX.
2000.821515

[53] Sadia Tabassum, Leandro L Minku, Danyi Feng, George G Cabral, and Liyan Song.
2020. An investigation of cross-project learning in online just-in-time software
defect prediction. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 554–565. https://doi.org/10.1145/3377811.3380403

[54] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. 805–816. https://doi.org/10.1145/2786805.2786850

[55] Zheng Xie andMing Li. 2018. Cutting the Software Building Efforts in Continuous
Integration by Semi-Supervised Online AUC Optimization. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, 2875–
2881. https://doi.org/10.24963/ijcai.2018/399

[56] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stvr.430

https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1145/3379597.3387458
https://doi.org/10.1109/TSE.2017.2693980
https://doi.org/10.1109/TSE.2011.106
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1109/ICSE.2005.1553571
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1002/stvr.1572
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1016/S0377-2217(02)00498-8
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1145/239098.239118
https://doi.org/10.1109/ISSRE.2003.1251050
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2635868.2635921
https://doi.org/10.1145/2635868.2635921
https://doi.org/10.1109/ISSRE.2019.00031
https://doi.org/10.1145/2393596.2393670
https://doi.org/10.1109/METRIC.2002.1011343
https://doi.org/10.1109/METRIC.2002.1011343
https://doi.org/10.1109/DISCEX.2000.821515
https://doi.org/10.1109/DISCEX.2000.821515
https://doi.org/10.1145/3377811.3380403
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.24963/ijcai.2018/399
https://doi.org/10.1002/stvr.430

	Abstract
	1 Introduction
	2 Approach
	2.1 Terminology and Problem Statement
	2.2 Overview
	2.3 Feature Extraction
	2.4 Label Extraction
	2.5 Prediction Model

	3 Cost Model
	3.1 Input Parameters
	3.2 Strategies
	3.3 Comparing Strategies with Boundary Conditions

	4 Experimental Setup
	4.1 Data Collection
	4.2 Training and Prediction
	4.3 Evaluation Metrics

	5 Results and Discussion
	5.1 RQ1: How Effective are the Prediction Models?
	5.2 RQ2: How Effective are the Features?
	5.3 RQ3: (When) Is the Model Cost-Saving?

	6 Threats to Validity
	7 Related Work
	7.1 Reducing the Cost of Regression Testing
	7.2 Just-in-Time Defect Prediction
	7.3 Build Outcome Prediction
	7.4 Cost Models

	8 Conclusion
	References

