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ABSTRACT
When improving their code, developers often turn to interactive
debuggers. The correctness of these tools is crucial, because bugs
in the debugger itself may mislead a developer, e.g., to believe that
executed code is never reached or that a variable has another value
than in the actual execution. Yet, debuggers are difficult to test
because their input consists of both source code and a sequence of
debugging actions, such as setting breakpoints or stepping through
code. This paper presents the first metamorphic testing approach
for debuggers. The key idea is to transform both the debugged code
and the debugging actions in such a way that the behavior of the
original and the transformed inputs should differ only in specific
ways. For example, adding a breakpoint should not change the
control flow of the debugged program. To support the interactive
nature of debuggers, we introduce interactive metamorphic testing.
It differs from traditional metamorphic testing by determining the
input transformation and the expected behavioral change it causes
while the program under test is running. Our evaluation applies the
approach to the widely used debugger in the Chromium browser,
where it finds eight previously unknown bugs with a true positive
rate of 51%. All bugs have been confirmed by the developers, and
one bug has even been marked as release-blocking.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software maintenance tools.
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1 INTRODUCTION
Interactive debuggers are an integral part of software development
since many developers rely on them to understand a program’s
behavior and for finding and fixing bugs. They are a powerful
tool that allows developers to stop execution at points of interest
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through breakpoints, to inspect the intermediate program state such
as the values of local variables, and to closely follow the control-flow
through single stepping.

What happens if this essential development tool is buggy itself?
First, bugs in debuggers make it harder to find and fix bugs in
programs. Consider the case of a variable not shown in the debugger,
although it should be. (We found such a bug with our approach
in the Chromium debugger.1) A developer might assume that the
variable is not present due to a problem in the code, while in fact
this is purely a problem in the debugger. This would clearly slow
down a developer investigating the issue. Second, as a consequence
of a debugger misrepresenting the actual execution of a program,
developers might change the program for the worse, i.e., introduce
“wrong fixes”. Consider the case of a debugger not pausing at a
breakpoint, even though it should. (Another bug we found with
our approach.2) This behavior might lead a programmer to believe
the line with the breakpoint was not executed at all and in turn
incorrectly change the program.

Testing Debuggers. One way to find bugs in debuggers is testing,
specifically automated or random testing. There, test inputs are
randomly generated and a test oracle [2] decides whether the test
was successful or failed. Recent work has introduced an automated
testing technique for debuggers [19]. As the input, it randomly
generates debugging actions (such as setting a breakpoint, resum-
ing execution, or steps) from a grammar and executes them on a
given program-to-debug. For the test oracle, it applies differential
testing to debuggers, which has been very successful in the past at
testing other programmer tooling, such as compilers [22, 29] and
refactoring engines [11]. As the name implies, the oracle in differen-
tial testing comes from comparing two different implementations
against each other. E.g., the JavaScript debuggers in Firefox and
Chromium can be given the same program and debugging actions
and their resulting behavior (e.g., where they pause execution and
which variables are shown) compared against each other.

The main requirement for differential testing is that one needs
those two implementations and that they must be comparable to
each other, i.e., a difference in their outputs should truly point to a
bug, not simply a disagreement that is allowed as per the problem
specification. E.g., in the case of compiler testing, much effort has
to be put into avoiding generating test inputs that are not well-
specified (e.g., C and C++ programs containing undefined behavior).
Similarly, differential testing of debuggers suffers from underspeci-
fied behavior in debuggers. One such instance is breakpoint sliding.
E.g., Firefox’ and Chromium’s debugger might disagree on where
to move a breakpoint that was requested at a comment line, but
neither of them is clearly wrong or right [19].

1https://bugs.chromium.org/p/chromium/issues/detail?id=901816
2https://bugs.chromium.org/p/chromium/issues/detail?id=892622
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1 // 1. paused here
2 // -> action: continue
3 foo();
4 function foo() {
5 stmt; // 2. pauses here
6 } // because of breakpoint

(a) Initial test run.

// 1. paused here
// -> action: step over

foo();
function foo() {

stmt; // 2. pauses here
} // as well

(b) Follow-up test run.

Figure 1: Example of a metamorphic test case for debuggers.

Metamorphic Testing. Some of the problems of differential test-
ing are solved by metamorphic testing [7, 25], another automated
testing technique. The core difference between metamorphic and
differential testing is that instead of giving the same input to two
different implementations (which might have differences simply
due to underspecification) and comparing the results, one gives
two different inputs to the same program and compares the results
of the two different runs. The key realization is that oftentimes a
program P produces similar outputs on inputsA and B if the inputs
are already in a specific relation RI with each other. That is, for a
program under test P , a specific input relation implies a specific
output relation: A RI B ⇒ P(A) RO P(B).

If we have two such inputs that are related by RI , but the outputs
are not related by RO , we have found a potential bug in P . A com-
mon way to obtain two such inputs related by RI , is to transform
the inputA into B such that the relation holds. E.g., in metamorphic
testing of compilers, a transformation could insert dead code into a
given program and one would expect that the produced binaries
(i.e., the compiler output) still behave the same.

Metamorphic testing could also work for debuggers, but to the
best of our knowledge, no existing approach has applied this idea
to them. The closest existing work is testing compilers [12, 17], but
as we show in the following, testing debuggers entails challenges
not present for compilers or other software.

Figure 1 gives an example of a metamorphic test case for debug-
gers. On the left, we see a debugging session, where a continue is
issued at a pause in line 1. This pauses the debugger next in line
5, due to a breakpoint. In the follow-up test run, a metamorphic
transformation has replaced the continue with a step over. Because
of the breakpoint in line 5, the debugger behavior is the same as
before. If the behavior were not equal, the breakpoint in line 5 might
have been ignored, which would constitute a bug in the debugger.

Challenges. We apply the idea of metamorphic testing to inter-
active debuggers, which comes with several interesting challenges.

First, debuggers take not just a program as input, but also de-
bugging actions such as breakpoints, steps, and continues. Since
inputs consist of two parts, we also have two separate types of
metamorphic transformations: program transformations and action
transformations. Because debugging actions refer to code locations,
e.g., for setting breakpoints, these two transformations need to be
consistent with each other. E.g., if a program transformation inserts
dead code, the debugging actions have to be updated as well.

Second, whereas metamorphic transformations for programs are
well known from compiler testing, to the best of our knowledge,
nobody has looked into metamorphic transformations for interac-
tive debuggers. E.g., one can safely assume that inserting dead code

does not change the behavior of a program in compiler testing, but
the behavior of a debugger might legitimately change, e.g., because
now more breakpoints can be set than before or because breakpoint
sliding moves previous breakpoint to now different locations.

Finally, unlike compilers and many other programs, debuggers
are inherently interactive. That is, debugging actions are not given
to the debugger once before test execution, but continuously through-
out the debugging session. For a similar reason, metamorphic trans-
formation of the debugging actions sometimes depends on the
current state of the debugger, which precludes transforming the
debugging actions “offline” before the test execution, as in tradi-
tional metamorphic testing. Instead, the debugging actions must be
transformed during the testing itself, i.e., in an interactive fashion.

Approach. This paper presents our approach on interactive meta-
morphic testing of debuggers. Similar to previous work on debugger
testing [19], the input to the debugger under test is a program-to-
debug and initially randomly generated debugging actions, such as
setting breakpoints, continues, and steps. However, unlike in previ-
ous work that used differential testing, we employ metamorphic
testing, i.e., inputs for a follow-up test run are generated by meta-
morphic transformations. Then, our tool compares the debugger
behavior in the initial run with the follow-up run based on debug-
ging traces that were collected during testing. If an unexpected
difference is found, this might indicate a bug in the tested debugger.

As part of our approach, we present program transformations
and new action transformations to test debuggers, e.g., a transfor-
mation that adds breakpoints and matching continues or one that
replaces continues with steps under certain conditions. These inter-
active transformations decide depending on the current state of the
debugger how an action in the initial test input shall be transformed
for the follow-up run.

We implement our approach for the JavaScript debugger in the
widely used Chromium browser and evaluate it on 47,342 JavaScript
programs. Each input program and initial sequence of debugging
actions goes through several iterations of metamorphic transforma-
tions, up to five times or until an unexpected difference is encoun-
tered. In total, our tool has produced 59 warnings, 30 of which we
manually confirmed to be true positives. This results in a true posi-
tive rate of 51%, which we believe to be acceptable for an automatic
approach to find bugs in such an essential tool that debuggers are.
We have also reported nine bugs found by our tool to the Chromium
developers. Eight of those bug reports were confirmed and one of
those is even marked as release-blocking, which we take as an
indication that our approach is useful in practice.

Contributions. In summary, this paper contributes the following:

• We are the first to adapt metamorphic testing to debuggers, for
which we introduce interactive transformations that need to
happen intertwined with test execution (Section 3).

• We present several metamorphic transformations on programs
and actions specific to debuggers in Section 3.2. These transfor-
mations are a step towards specifying the expected behavior of
debuggers, which is currently mostly given informally as part of
user-level documentation.

• We implement and evaluate the approach for a widely used
debugger, where it found eight previously unknown bugs.
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Figure 2: Metamorphic testing overview.

2 BACKGROUND
Before we come to our approach in the next section, we want to
introduce the key concepts behind metamorphic testing and testing
of interactive debuggers.

2.1 Metamorphic Testing
Figure 2 shows the main principle behind metamorphic testing [7,
25]. In the initial test run, shown in the left half of the figure, the
program under test P is executed on a given test input InputA and
produces OutputA. For the follow-up test run, shown on the right
half, we obtain InputB by transforming InputA, such that the two
inputs are related by RI . In the final step of metamorphic testing,
the two outputs OutputA and OutputB are compared against each
other. If relation RO does not hold between the two outputs, meta-
morphic testing has found a potential bug. Note that metamorphic
testing always needs two executions of P (which we call test runs)
and subequent comparison of their outputs to find a bug. In the
remainder of this paper, we call this pair of test runs ametamorphic
test case, or test case for short.

For simple transformations, e.g., the one already shown in Fig-
ure 1, the output relationRO is plain identity. That is, the debugger’s
behavior on the transformed, follow-up inputs should be exactly
equal to the behavior on the initial inputs. However, for more com-
plex input transformations, e.g., when the program-to-debug ismod-
ified, the output relation needs to account for changes introduced by
the input transformation. An example of such changes are locations
referred to by the debugger, e.g., where it is currently paused. If the
input transformation changed the underlying program by inserting
or removing lines, it is expected that these changes reflect in the
debugger’s outputs, namely its reported locations will be offset by
the number of inserted or removed lines. Our comparison between
initial and follow-up run must account for those differences.

2.2 Testing Interactive Debuggers
As described in previous work on automated testing of debug-
gers [19], testing debuggers is different from testing other programs,
such as compilers, in several ways.

First, debuggers take two types of inputs instead of just one: the
program-to-debug (e.g., as JavaScript source code) and debugging
actions, or actions for short. Debugging actions are user commands
that steer the debugging session, such as setting breakpoints and
stepping through the program. For automated testing, these de-
bugging actions need to be generated. In our case, the actions for
the initial test run come from DBDB, an existing approach to au-
tomated debugger testing [19]. As a brief overview of the possible
debugging actions, Figure 3 also gives a grammar. Note that every

(Debugging Actions)

Actions ::= Add breakpoint at Location; DebuggingAction∗

DebuggingAction ::= BreakpointAction | ControlAction

BreakpointAction ::= Add breakpoint at Location |

Remove breakpoint at Location
ControlAction ::= Continue | Step in | Step out | Step over

Trace ::= DebuggerOutput∗ (Debugging Trace)
DebuggerOutput ::= BreakpointOutput | PauseOutput

BreakpointOutput ::= Breakpoint set at Location

PauseOutput ::= Paused at Location with Variable∗

Variable ::= (name, value)

Location ::= line:column (Common Variables)
line ∈ N, line numbers

column ∈ N, column numbers
name ∈ identifiers
value ∈ primitive value or JavaScript object

Figure 3: Grammars for debugging actions and traces.

Paused Running

Start debugging session

End debugging session

Add/remove
breakpoint

Continue/
step out/over/in

Breakpoint hit/
step completes

Figure 4: Debugger as a finite state machine with two states.

sequence of Actions must start with adding at least one breakpoint,
otherwise the debugger will never pause during testing.

Second, unlike many programs tested previously by metamor-
phic testing [25], debuggers are interactive. That means during a
debugging session, the debugging actions are issued interleaved
with the execution of the program-to-debug and not all at once
before starting the debugger. For more detail, Figure 4 provides a
“zoomed-in” view of the debugger during testing. We see that the
debugger alternates between two states, paused and running:
• Debugger testing begins and ends in the paused state, where
the program-to-debug is either not yet started, paused in the
middle of execution, or finished. Whenever in this state, we
record the current debugger output and then issue the next de-
bugging action (either from DBDB in the initial test run or from
the transformation in the follow-up run). Adding and remov-
ing breakpoints (BreakpointActions), keep the debugger in the
paused state. Only after a ControlAction, namely a continue or
one of three types of steps, execution resumes and the debugger
transitions to the running state.

• The debugger remains in the running state until either a break-
point is hit, a single step completes, or execution finishes, upon
which it transitions back to the paused state.
Finally, what is the output of a debugger? That is, what is recorded

in the debugger’s pause state and what is compared between the
two test runs? The middle part of Figure 3 gives a grammar for
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Figure 5: Overview of metamorphic testing for debuggers.

what we call the debugging trace. It contains two types of debugger
outputs: First, BreakpointOutput, which is the result of adding a
breakpoint in the debugger. While users can request breakpoints at
arbitrary locations in the source code, not all of those correspond
to meaningful operations. Thus, debuggers usually move the break-
point to the next “appropriate” location, which is called breakpoint
sliding and captured herein. Second, PauseOutput records the state
of the debugger in a pause at a breakpoint or after a step. It contains
the Locationwhere it is paused and local and global variables shown
in the debugger. In principle our approach is independent of the
programming language, so how variables are captured depends
on the implementation. In our case of JavaScript debuggers, we
capture all primitive values and recursively copy objects and their
properties (up to a threshold depth) into the trace.

3 APPROACH
In this section, we describe our approach in more detail. We start
by giving an overview in Section 3.1. Then, Section 3.2 explains
the metamorphic transformations we apply to the program and
debugging actions. Finally, Section 3.3 introduces an extension that
iteratively applies multiple transformations after each other.

3.1 Overview
Figure 5 shows that our approach, as in regularmetamorphic testing,
has two main phases: an initial test run and a follow-up test run,
shown in the left and right half, respectively. Apart from the two
test runs, we also see two transformations (for the program and
debugging actions) and the comparison of the debugging traces
after the test runs. These components execute in the following order:
First, the initial test is run to obtain an initial debugging trace. Then,
the program transformation delivers the first part of the input for
the follow-up run. The follow-up test then runs interlocked with
the action transformation, since the latter depends on the current
debugger state. And finally, the two debugging traces are compared.

The input to our overall approach are the debugger to be tested
and the debugger inputs for the initial test run. In our case, we do
not generate the programs randomly, but instead take them from
a fixed, but large and diverse test set (mostly the official test suite
for ECMAScript compliance, test262, but also some benchmarks
and other sources). For generating the debugging actions, we build
on previous work on automated testing of debuggers [19]. This
tool, called DBDB, produces a sequence of debugging actions with
configurable length for the initial test run.

Table 1: Metamorphic transformations for debuggers.

Transformation Short Description

Action Transformations:
Add breakpoint
and continue

Adding breakpoint at line l should have no
influence other than additional pauses at l .

Replace continue
by step

Control actions have a subset relation (con-
tinue ⊂ step out ⊂ step over ⊂ step into)
based on where they pause. Thus, sometimes,
a continue can be replaced by a step.

Breakpoint
sliding

Setting breakpoint at line l and sliding to l ′
should be equal to directly setting it at l ′.

Program Transformations: (Actions are transformed accordingly.)
Insert dead code Insertion of statically dead code should have

no influence on pauses or program state.
Remove dead code Removal of dynamically dead code should

have no influence.
Add parameter Additional formal parameter should have no

influence other than appearing as undefined
in the function’s scope.

Add no-operation Insertion of x = x;, where x is in scope,
should have no influence.

Integer literal to
expression

Replacing n by (n1+n2), where n = n1 + n2
should have no influence.

Boolean literal to
expression

Replacing true by (x == x) should have no
influence. Analogous for false.

The overall output of our metamorphic testing tool is the result
of the comparison of the debugging traces. If there is an unexpected
difference, our tool reports a warning to the user and saves the
two debugging traces, the two programs-to-debug, and additional
logging information for further analysis to disk. Although evalua-
tion will show that the number of false positives is comparatively
low, unfortunately not every warning means a clear debugger bug.
Also, multiple warnings found by automated testing can point to
the same root cause. Thus as the final step, we manually inspect
each warning and in case of a bug, report an issue to the debugger
developers (with a reduced example from the recorded traces).

3.2 Metamorphic Transformations for
Interactive Debuggers

The input transformation in metamorphic testing of debuggers
consists of two parts: a transformation of the program-to-debug
and a transformation for the debugging actions. While in principle
it is possible to do complex transformations on both at the same
time, we instead chose metamorphic transformations that focus
on one of the two parts of the input and transforms the other one
only in so far, as to keep program and action consistent with each
other (e.g., if there is a change in line numbers). More complex
interactions between program and debugging action changes can
still be obtained by combining multiple transformations in iterative
metamorphic testing (Section 3.3). Table 1 gives an overview of our
transformations, grouped by their main focus (program vs. actions).
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1 function foo() {
2 bar(); // paused here
3 // -> step out
4 stmt;
5 }
6
7 foo(); // pauses here

(a) Initial test run.

function foo() {
bar(); // paused here

// -> step out
stmt; // interrupted!

} // -> set tmp bp at 7
// to resync traces
foo(); // -> remove bp

(b) Follow-up test run with addi-
tional breakpoint at line 4.

Figure 6: Add breakpoint and continue transformation is
complex due to steps.

...
ControlAction

Paused at l

(a) Initial actions (left-aligned)
and trace (right-aligned).

Add breakpoint at lnew
...
ControlAction

Paused at lnew
Set temporary breakpoint at l
Continue

Paused at l
Remove temporary breakpoint at l

(b) Follow-up transformed ac-
tions and expected trace.

Figure 7: Full add breakpoint and continue transformation.

3.2.1 Action Transformations. These transformations touch only
the debugging actions and never change the program-to-debug. (Or
in other words, the program transformation here is identity.)

Add breakpoint and continue. We expect that breakpoints are
independent of each other, i.e., that adding a breakpoint to a pro-
gram that already has several breakpoints set, does not modify the
existing breakpoints (e.g., disables them or moves them around),
nor should the new breakpoint change when existing breakpoints
are hit. If there are only continues in the debugging actions, we
also expect that there are only additional pauses at the inserted
breakpoint, not suddenly at other program locations.

We can test this metamorphic relation with the following trans-
formation. Our tool inserts a new action add breakpoint at lnew with
a random location lnew into the actions of the initial test run. Then,
during comparison of the traces between test runs, we ignore all
pauses at lnew in the follow-up trace that are not in the initial trace.

This is the first instance of an action transformation that also
requires runtime information from the debugger to function. What
happens if the requested breakpoint at lnew is moved due to break-
point sliding (e.g., because it is at an empty line)? Then, the com-
parison must ignore pauses at the actual location l ′new , which is
only returned by the debugger during testing.

A second complication is due to step actions. The transformation
so far works for breakpoints and continues. But because steps also
pause at breakpoints, the full transformation needs to be more elab-
orate. Figure 6 gives an example. Assume the debugger is paused
at line 2 in the initial run and performs a step out. This pauses the
debugger at the call site of function foo in line 7, which is recorded
in the initial debugging trace. Now, consider the follow-up test run
in which a breakpoint was added at line 4. Again, assume the debug-
ger is paused at line 2. The step out pauses at the new breakpoint

1 function foo() {
2 bar(); // paused here --> control action
3 stmt; // (b) step over would pause here
4 }
5 function bar() {
6 stmt; // (a) step into would pause here
7 }
8 foo();
9 stmt; // (c) step out would pause here
10 stmt; // (d) continue would pause here

Figure 8: Example for the different ControlActions.

Table 2: Subset relation between the four different debugger
ControlActions supported by most debuggers.

Pauses at: Breakpoints Next statement. . .
Action ↓ . . . in caller in function anywhere
Continue ✓
Step Out ✓ ✓
Step Over ✓ ✓ ✓
Step Into ✓ ✓ ✓ ✓

in line 4, because steps are also interrupted by breakpoints. Our
comparison ignores this pause at the new breakpoint. But later in
the comparison we will detect a difference because the pause at line
7 of the initial test run is missing in the follow-up run. The pause is
missing because the step is already “consumed” by pausing at the
new breakpoint.

How do we make sure the follow-up test run pauses where the
initial one paused in case of a step? Figure 7 shows the full action
transformation abstractly: Whenever we are paused at the inserted
breakpoint in the follow-up run (on the right), we check whether
the last ControlAction was a step (which would be “consumed” by
the new breakpoint). If so, we insert a temporary breakpoint at the
line where the step in the initial run (on the left) went to. Then, we
continue execution, which pauses at the temporary breakpoint and
resyncs the initial and follow-up test run. Finally, the temporary
breakpoint is removed again. Figure 6 also shows this concretely.

Replace continue by step. In this action transformation, we test
an interesting relation between the debugging actions, specifically
the ControlActions. The underlying observation is that each Control-
Action pauses execution at different points in the program, and that
there is a subset relationship between these potential pause points.
Consider Figure 8 for an example. Assume the debugger is paused at
line 2 and we resume execution by a continue, step out, step over, or
step into. The comments show that every action causes execution to
pause at a different line of the program. However, we also see that
some actions pause “earlier” than others. E.g., the step into action
always goes to the next statement, even if that is inside a called
function, whereas the step over action ignores statements that are
deeper in the call tree than the current function. Later pausing
yet again, step out ignores any statement in the current function
and pauses only at the next statement in the caller of the current
function. And finally, a continue will only pause at breakpoints and
not at any statement mentioned earlier.
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1 // requested breakpoint at this comment line...
2 var x = 0; // ...is moved to next statement

Figure 9: Example of breakpoint sliding in debuggers.

Add breakpoint at lrequested
Breakpoint set at lactual

... (more actions)
Paused at lactual

(a) Initial actions (left-aligned)
and trace (right-aligned).

Add breakpoint at lactual
Breakpoint set at lactual

... (more actions)
Paused at lactual

(b) Follow-up transformed ac-
tions and expected trace.

Figure 10: Full breakpoint sliding transformation.

Table 2 summarizes this subset relationship between Control-
Actions. A continue pauses only at breakpoints. Step out pauses at
breakpoints as well but additionally at the next statement of the
caller of the current function. Step over pauses in the previous two
cases and also at any statement in the current function. Finally, step
into pauses at any statement. We can thus order ControlActions by
their set of “pause points”, from least to most: continue ⊂ step out
⊂ step over ⊂ step into. Based on this observation, we see that any
lower-order ControlAction can be replaced by a sequence of one or
more higher-order ones, and no debugger pause will be missed. In
our action transformation, we replace randomly selected continue
by one of the three steps. Then, during comparison, we check that
all pauses from the previous run are still present in the trace.

Similar to the add breakpoint transformation, the inserted steps
themselves may not only pause at breakpoints, but additionally at
their step “pause point”. To re-synchronize the pauses in the traces
of the initial and follow-up run, we thus additionally have to issue
a continue in some cases. Whether this additional continue must be
inserted, again depends on the current state of the debugger, which
makes this an interactive metamorphic transformation. If after
replacing the initial continue with a step, the debugger is paused at
the same location, no additional continue has to be inserted. If the
step did not hit a breakpoint, it paused instead at some previously
unknown location. Then, an additional continue re-sychronizes the
trace of the initial and follow-up run.

Breakpoint sliding. The last action transformation tests a behav-
ior of debuggers known as breakpoint sliding. While users can set
breakpoints at any line of a program, not every line corresponds
to an actual operation at runtime. The simplest case of such lines
are comments or empty lines, but also non-trivial programming
constructs may correspond to no runtime instruction (e.g., types).
As a usability feature, debuggers move the breakpoint to the next
“appropriate” location, instead of simply ignoring it.

Figure 9 shows a simple example of this. It also introduces our
notation for a requested breakpoint that was moved away ( ) and
the final, actual location of that breakpoint ( ). That is, in the
example the debugging action was add breakpoint at 1:1 and the
debugger output was breakpoint set at 2:1. In the GUI, the debugger
shows the actual location of the moved breakpoint, so we expect
that this breakpoint behaves every bit the same as if the user would
directly set a breakpoint at this final location. That is, in this ex-
ample we could replace the original debugging action with add
breakpoint at 2:1.

We can test this relation by transforming every add breakpoint
action that results in a moved breakpoint (i.e., where the actual
location returned by the debugger is not equal to the requested
location), into an add breakpoint actionwhere the location is directly
at the actual location. This is described abstractly by Figure 10.

This transformation is also useful in the presence of iterative
metamorphic testing (Section 3.3) in conjunction with program
transformations. Consider again the example of Figure 9. If a later
metamorphic program transformation inserts code in between line
1 and 2, the breakpoint would no longer be slided to the original
statement. Instead, it could be moved inside the new code, thus no
longer behaving as in the non-transformed program. To counter
this unwanted interaction between breakpoint sliding and code
changes, we implicitly apply this transformation to every slided
breakpoint before applying any program transformation. Since all
breakpoint sliding is eliminated after this transformation, it can no
longer interact badly with subsequent program transformations.

3.2.2 Program Transformations. The second class of transforma-
tions focuses onmodifying the source code of the program-to-debug.
Debugging actions are only changed to keep them consistent with
the modified program.

Add dead code. Here we transform the program by adding dead
code at a randomly selected program location, similar to previous
work on compiler testing [17]. Our inserted code is of the form

1 if (false) {
2 variable = value;
3 }

where variable is randomly chosen from the scopewhere this code is
added to (e.g., a function parameter) and value is a literal. Note that
later program transformations can also increase the complexity
of the dead code, e.g., a false literal might get replaced by an
expression and no-operations or more dead code might be inserted
inside the if’s body.

Because the debugging actions refer to program locations by
lines and columns, this program transformation is additionally ac-
companied by an action transformation that moves the breakpoints
after the insertion point by the number of inserted lines. Other than
that, no changes to the actions are necessary. Because dead code
by definition should have no influence on the execution, we still
expect that continues and steps lead to the same pauses. During
comparison, we simply need to apply a mapping from old lines to
new lines for pause locations, due to the code insertion.

Remove dead code. Intuitively, this transformation is the inverse
of the previous one. During the initial test run, we collect dynamic
coverage information (the Chromium debugger supports this via
Profiler.takePreciseCoverage). Then, we randomly select an
AST node that is dead code as per this coverage information and
remove it from the program, e.g., a whole function that was never
called or block statements that were never executed such as in
conditionals or loops.

As for the debugging actions, we only adapt all locations past the
removal point and remove all breakpoints that were set in the now
removed dead code. Since they could not have been hit previously,
no pauses should appear and disappear in the follow-up test run.
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1 function foo(p1,p2) {
2 // p1, p2 are
3 // in scope
4 }
5 foo();

(a) Initial test run.

1 function foo(p1,p2,fresh) {
2 // now also expect
3 // fresh == undefined
4 }
5 foo();

(b) Follow-up test run.

Figure 11: Add function parameter transformation example.

Add spurious parameter to function declaration. Because of
JavaScript’s relaxed semantics, functions can be called with less
arguements than they are declared with. The formal parameters
of the missing arguments are bound to undefined, but the call is
still valid. In this program transformation we thus add a parameter
to a random function declaration, but do not change any call site.
Figure 11 gives an example. The inserted parameter gets a fresh
name, so that it does not collide with existing identifiers.

As for transforming the actions accordingly, only breakpoints
on the same line as the added parameter need to be moved by
the number of inserted columns. Additionally, for the comparison
between initial and follow-up run, inside the body of the modified
function, we need to expect an additional variable with the freshly
generated name and value undefined.

Add no-op-like statement. This transformation is similar to adding
dead code, only that the code itself shall have no effect instead of
being guarded by a false condition. An instance of such a statement
that shall have no effect are self assignments. Currently, we always
insert code of the form variable = variable; where variable is a
random, non-const variable from the current scope.

Again, locations past the insertion point in debugging actions
have to be changed in order to keep them consistent with the
program. Similarly, the comparison accounts for the changed lines
between the initial and follow-up run.

Replace literal with expression. This program transformation re-
places integer and boolean literals by expressions. In total, it consists
of six individual transformations: four transformations for integer
literals and two for boolean literals. An integer literal n is replaced
by one of the following randomly selected expressions:
• Addition: (n − 1 + 1), e.g., replacing 12 by (11+1).
• Subtraction: (n + 1 - 1), e.g., replacing 12 by (13-1).
• Division: (n / 1), e.g., replacing 12 by (12/1).
• Multiplication: (n * 1), e.g., replacing 12 by (12*1).
For booleans, we replace a literal true by a tautological ex-

pression, namely v == v , where v is a randomly selected vari-
able from the current scope. Special care must be taken because
of IEEE754 not-a-number floating point values. The standard de-
mands that a comparison with NaN is always false, even if compared
against itself. For that reason, a correct replacement for true is
(isNaN(v) ||v ==v) and (!isNaN(v) &&v !=v) for false.

Locations in the debugging actions and traces are only changed
by the inserted number of columns in the affected line.

3.3 Iterative Testing
In its simplest form, metamorphic testing consists only of an initial
test run and a follow-up test run, where the follow-up inputs are
generated by a transformation from the initial ones. However, in

our case there is no difference between initial inputs and follow-up
inputs. Both consist of a program-to-debug and debugging actions.
We can thus apply the transformations a second time on the follow-
up test run to obtain yet another test input. On these new inputs,
we can apply the program and action transformations yet again,
continuing indefinitely, if necessary. Since themetamorphic relation
should hold between each input and its individual follow-up, each
iteration creates a new metamorphic test case.

We use this iterative metamorphic testing to obtain multiple
follow-up test runs from a single initial test run. There are two
benefits of iterative testing for debuggers. First, since we take the
programs-to-debug from a fixed test set, our initial programs are
limited in size. By applying multiple transformations on them, we
can perform more metamorphic tests per input program than if
we would only apply a single transformation. Second, iterative
testing is interesting because of the complex possible combinations
of program and action transformations. Examples of interesting
combinations are a program transformation that inserts dead code,
followed by a transformation that modifies the inserted code, or
combinations of action transformations that first replace continues
by steps and then insert additional breakpoints.

In our approach, we first randomly select one of the action or pro-
gram transformations from the previous section. If the comparison
on the debugging traces is successful, iterative testing continues by
transforming the inputs of the follow-up test case once more with
a randomly selected transformation. This process continues until
either a metamorphic test case fails (and a potential bug is found) or
until we reach a maximum number of iteration rounds. Continuing
after a failed metamorphic test case does not make sense, as we
have already reached an inconsistent state.

4 IMPLEMENTATION
We implement our approach as a fully automated tool that tests the
Chromium JavaScript debugger. The core of the implementation
is a Node.js application that controls the debugger via its remote
debugging API. This API allows us to trigger debugger actions
and to obtain the debugging trace. Given an initial program and
debugging actions, the implementation performs up to five input
transformations, and it stops as soon as any behavior is observed
that is not compatible with the metamorphic output relation.

While our implementation targets the Chromium JavaScript
debugger, the underlying concept of metamorphic testing of debug-
gers is not tied to any specific language or debugger. E.g., the action
transformations assume a general model of debuggers, and the
program transformations are equally applicable to other languages.

5 EVALUATION
We evaluate the effectiveness and efficiency of the approach by ap-
plying our implementation to a large test set of JavaScript programs.
The evaluation focuses on the following research questions:
• How effective is the approach at detecting bugs? (Section 5.2)
• How important is the interactive nature of our metamorphic
testing approach? (Section 5.3)

• Does iterative metamorphic testing reveal problems missed with
a single iteration of the approach? (Section 5.4)

• What is the runtime of our metamorphic testing? (Section 5.5)
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5.1 Experimental Setup
We apply our tool to a total of 47,342 JavaScript files. The vast
majority of them is from the test262 ECMAScript test suite3, which
contains thousands of short code snippets that test individual fea-
tures of JavaScript. We create multiple variants of the files in the
test suite by running them in strict and non-strict mode, and by
concatenating multiple files into larger test cases. In addition, we
also use files from the Sunspider and Octane benchmark suites4
and a set of JavaScript code puzzles from a university course. For
all files, we automatically replace non-deterministic API calls, e.g.,
to Date.now(), with deterministic code, to make our results repro-
ducible and to avoid spurious warnings.

Given the total of 47,342 JavaScript files, we create an initial
sequence of debugging actions with DBDB, an existing approach
for automated debugger testing [19]. Each of these initial test cases
is executed twice, each time creating and executing a metamorphic
test, which yields a total of 94,684 test executions. We ignore a small
subset of these executions because they failed or reported incorrect
results due to bugs in our implementation.

We apply our tool to find bugs in the JavaScript debugger of the
widely used Chromium web browser. Unless otherwise noted in our
bug reports, all experiments use version 70.0.3538.102 of Chromium.
The experiments are conduced on two standard computers, an AMD
Phenom II 945 with 3GHz CPU and 8GB of RAM, and an Intel i7
CPU with 4.6GHz and 16GB of RAM. On these computers, we run
16 Debian-based virtual machines to parallelize our experiments.

5.2 Effectiveness at Detecting Bugs
While generating and executing 94,684 metamorphic debugger tests,
our tool reports a total of 59 warnings. For each of them, the traces
obtained from the original and the transformed inputs are not in
the expected output relation. We manually inspected and classified
them into true positives and false positives. A true positive is a vio-
lation of the equivalence relation that indeed points to a bug in the
tested debugger. We find 30 of the 59 warnings to be true positives.
The remaining 29 warnings are false positives, i.e., the result of
violating an assumption we make when designing the metamorphic
relations. Typically, such violations are due to corner-cases of the
JavaScript language. Sections 5.2.1 and 5.2.2 give examples of both
kinds of warnings. Overall, we believe a true positive rate of 51% is
acceptable for automatically detecting bugs in a tool (debuggers)
that is both difficult to test and important for many developers.
Refining the metamorphic relations to avoid specific corner-cases
of JavaScript could further increase the true positive rate.

Through manual inspection, we identify a set of unique root
causes for the reported warnings. In the process of our evaluation,
we reported nine unique root causes as bugs to the Chromium
developers. Table 3 lists the bug reports, along with their status as
of June 1, 2019. Eight reports are currently “Assigned” to a developer,
which, as per the Chromium bug reporting guidelines5, means a
developer has inspected our report and confirmed it as a bug. One
of the reported bugs is marked as release-blocking. Another one
of the reported bugs, which is about changed program behavior

3https://github.com/tc39/test262/
4https://webkit.org/perf/sunspider/sunspider.html, https://chromium.github.io/octane/
5https://www.chromium.org/for-testers/bug-reporting-guidelines

Table 3: Bugs reported to the Chromium developers.

Issue ID Description Status

862978 Cannot set breakpoint Assigned
889481 Debugger does not pause Assigned
892622 Debugger does not pause Assigned,

release-blocking
892653 Pauses at location without breakpoint Assigned
901811 Missing variable in scope Assigned
901814 Step-in does not enter function Assigned
901816 Missing variable in scope Assigned
901819 Debugger does not pause Assigned
908054 Debugging changes program behavior Won’t fix

1 // Original input:
2 var a = 5; // (i) pauses --> continue
3 var slideOverMe;
4 var C = class{};// (ii) pauses --> continue
5 var b = 42; //(iii) pauses --> continue

1 // Transformed input:
2 var a = 5; // (i) pauses --> continue
3 var slideOverMe;
4 var C = class{};// (no pausing)
5 var b = 42; // (ii) pauses

Figure 12: Bug that causes the debugger to not pause at a
breakpoint.

caused by debugging, has been marked as “Won’t fix”. Overall, our
experience reporting these bugs shows that our approach detects
relevant problems in complex, real-world software.

5.2.1 Examples of Detected Bugs.

Debugger does not pause at breakpoint. The following bug has
been reported as issue 889481. Figure 12 shows two JavaScript
code snippets along with their breakpoints. In the code on the top,
our tool sets three breakpoints at lines 2, 3, and 5, respectively.
Because the second breakpoint is on a variable declaration only, the
debugger slides it to line 4. When running the code, the debugger
pauses at all three breakpoints and moves on to the next breakpoint
when triggering the continue action. The code at the bottom is
the same, but the debugging actions differ. Instead of setting a
breakpoint at line 3, which anyway slides to line 4, our tool now
sets the breakpoint directly at line 4. This supposedly harmless
difference causes the debugger to miss the breakpoint during the
execution. After pausing at line 2 and continuing the execution, the
debugger skips line 4 and only pauses again at line 5.

Such misbehavior is very misleading for developers because it
seems that a statement is not executed even though the underlying
JavaScript engine executes it. Our approach detects this bug by
applying two transformations in a row. In the first transformation,
it adds a breakpoint and a continue at line 3. In the second transfor-
mation, it eliminates breakpoint sliding by setting the breakpoint
directly at line 4 instead of line 3. The two code examples in Fig-
ure 12 shows the code before and after the second transformation.

https://github.com/tc39/test262/
https://webkit.org/perf/sunspider/sunspider.html
https://chromium.github.io/octane/
https://www.chromium.org/for-testers/bug-reporting-guidelines


Interactive Metamorphic Testing of Debuggers ISSTA ’19, July 15–19, 2019, Beijing, China

1 // Original input:
2 function *g() {
3 // (i) pauses --> continue
4 var foo = [ x , ...{}[ yield ] ] = [];
5 } // (ii) pauses
6 var iter = g();
7 iter.next();
8 iter.return(); // (iii) pauses

1 // Transformed input:
2 function *g() {
3 // (i) pauses --> step-out
4 var foo = [ x , ...{}[ yield ] ] = [];
5 } // (no pausing)
6 var iter = g();
7 iter.next();
8 iter.return(); // (ii) pauses

Figure 13: Bug that causes the debugger to pausewithout any
breakpoint.

1 // Original input:
2 function * t({x: y}) { // pauses, y is in scope
3 var a = function() {
4 }
5 }
6 t({x: 1});

1 // Transformed input:
2 function * t({x: y}) { // pauses, y is missing
3 var a = function() {
4 if (false) { // dead code
5 y = 5;
6 }
7 }
8 }
9 t({x: 1});

Figure 14: Bug that causes the debugger to show an incorrect
program state.

Debugger pauses at location without breakpoint. Figure 13 shows a
bug reported as issue 892653. The code example uses a combination
of generator functions, marked with *, and the spread syntax ...,
which expands an object expression. The code at the top stops at
the breakpoint in line 4, after which a continue action is triggered.
Surprisingly, the debugger pauses again at line 5, even though this
line does not have any breakpoint. Since continues are supposed
to pause only at locations explicitly chosen by the developer, this
behavior is clearly incorrect.

Our tool transforms the code at the top by replacing the continue
action at line 4 with a step-out action. This kind of change should
not remove any previously existing pause locations, but now the
debugger does not pause at line 5 anymore, but instead moves on
the next breakpoint at line 8. Interestingly, the input before, not af-
ter, applying the transformation, exposes the unexpected behavior
in this example. However, applying the transformation is crucial to
identify the behavior as unexpected, because our tool reports this
warning only because the traces produced by the two executions
are not in the expected output relation (namely equal pauses).

Missing variable in scope. The third example, reported as issue
901816, shows a bug that causes the debugger to show an incorrect

program state to the developer. The code in Figure 14 uses the
object destructuring syntax to unpack an object passed to function t.
When the function gets called, its local variable y gets assigned the
value of property x of the object that is passed as an argument. The
testing tool sets a breakpoint at line 2 just before this assignment
gets executed. At this point in time, the local variable y exists but
still has value undefined. In the example at the top, the debugger
correctly shows that y exists in the local scope of the function when
reaching the breakpoint.

Our approach transforms the code at the top by inserting dead
code into the nested function, as shown in the bottom of Figure 14.
Even though adding dead code should not change any debugger
behavior, variable y is now missing from the scope shown to the
developer when hitting the breakpoint at line 2. Showing an incor-
rect program state can be very confusing for developers, because
they usually use a debugger to understand the program state.

5.2.2 Examples of False Positives. The main cause of false positives
is that some assumption we make when designing the metamorphic
relations does not always hold in practice, e.g., because the relation
does not consider a corner-case of the JavaScript language.

One example is a warning reported when applying the “re-
place boolean literal with expression” transformation. In this case,
the transformation replaces the literal true with the expression
(!isNan(obj)) && (obj !== obj). While the result of this ex-
pression is indeed always true, calling the built-in isNaN(obj)
function has the side-effect of calling the toString method of obj
as part of an implicit type coercion [23]. By default, toString is
defined through a built-in function. In the specific code example
that produces the false positive, though, the function is overrid-
den with a user-defined function, causing the control flow to enter
this function when isNaN gets called. This change of control flow
causes the debugger to pause at new location inside the user-defined
toString, which our metamorphic relation does not expect.

Another example is a warning caused by a program that in-
spects the source code of a function using the built-in Function.
prototype.toStringAPI and compares it to another string.When
our tool applies a program transformation that changes the code
of this function, this comparison is no longer true and the state
observed by the debugger changes again. Because our metamorphic
program transformations do not expect such a change, a warning
is reported that turns out to be a false positive.

5.3 Influence of Interactive Testing
One of the technical novelties of our approach compared to tradi-
tional metamorphic testing is to interact with the program under
test to determine the metamorphic input transformation and to
determine the expected output relation. To assess the influence of
this feature, we measure how many of the reported 59 warnings
involve at least one interactive transformation, i.e., either “Add
breakpoint and continue” or ”Replace continue by step” (see Ta-
ble 1). For example, finding the bug in Figure 13 involves replacing
a continue action with a step action, which is an interactive trans-
formation. In total, 29 of the 59 reported warnings involve at least
one interactive transformation, showing that the interactive nature
of our metamorphic testing approach is worthwhile.
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Figure 15: Cumulative number of warnings reported by our
tool after N iteratively applied transformations.

5.4 Influence of Iterative Testing
Our testing approach is iterative, i.e., inputs produced through a
metamorphic transformation are used as the starting point for other
metamorphic transformations. We see that iteratively applying
transformations in our approach is useful because four of the nine
reported bugs (i.e., true positives) were found after two iterations
and one more true positive was found only after three iterations.
Additionally, we measure how many warnings are reported after a
given number of applied transformations. The results in Figure 15
show that additional rounds of applying transformations reveal
additional warnings. Since the curve is increasing without any sign
of saturation, it suggests that even more transformations than the
the upper limit of five, which we currently use, could be useful.

5.5 Efficiency
Finally, we evaluate how efficient our tool is in terms of runtime.
Our current implementation takes around 24 hours to generate
and execute the 94,684 tests cases our evaluation is based on. This
time is obtained by running 16 parallel instances in parallel on
two computers. We believe that this amount of required comput-
ing resources is acceptable for a fully automated tool that detects
otherwise missed bugs in a crucial piece of software.

6 RELATEDWORK
Metamorphic Testing. Introduced by Chen et al. [7], metamorphic

testing has been applied to various kinds of software, including im-
plementations of partial differential equations [8], service-oriented
applications [5], and machine learning models [27, 28]. Our work
contributes the first metamorphic testing approach for debuggers,
and it introduces interactive metamorphic testing, which differs
from the traditional approach by determining both the metamor-
phic relation and transformation during the execution of the pro-
gram under test. A study of the selection of useful metamorphic
relations [9] distinguishes blackbox and whitebox approaches. Ac-
cording to this classification, our work is blackbox, as we design
the relations without considering the implementation of the tested
debugger. Liu et al. [20] study the effectiveness of metamorphic
testing. A comprehensive summary of the above and other existing
metamorphic testing work is available in a recent survey [25].

Debugger Testing. Despite the importance of debuggers as widely
used developer tools, automated testing of debuggers has only re-
cently started to receive attention. Lehmann and Pradel [19] pro-
pose a feedback-directed test generator for debuggers, called DBDB,
and apply it via differential testing [22]. Our work builds on DBDB’s

approach for obtaining initial test inputs. The main advantage over
DBDB is that we do not require two supposedly equivalent debug-
ger implementations, but only a single debugger that gets tested
against itself. This difference is particularly important because de-
buggers are notoriously underspecified, i.e., their expected behavior
is only informally known and different debuggers often provide
slightly different behavior, despite their common interface [19].

Automated Testing of Compilers. The problem of testing com-
pilers has received significant attention. Several approaches men-
tion [31] and implement [17, 18, 26] different forms of metamorphic
testing. Other approaches include random program generation [29]
and enumerating all programs for a given code template [30]. Chen
et al. empirically study different compiler testing techniques [6].
To ease the task of understanding warnings from compiler testing,
ranking of warnings [10] and test program reduction, either for a
single language [24] or arbitrary languages [14] has been proposed.

Automated Testing of Other Developer Tools. Beyond compilers,
other developer tools and program analyses are subject to auto-
mated testing, including work on differential testing of refactoring
engines [11], differential testing of symbolic execution engines [16],
and fuzzing to test implementations of abstract interpretation do-
mains [3]. Cadar and Donaldson argue that more effort should be
spend on testing or analyzing program analyzers[4], which our
work is an example of.

Testing of Interactive Applications. Due to the interactive nature
of debuggers, the problem of testing them resembles UI-level testing.
Existing UI-level test generators, e.g., for web applications [1, 13]
or Android [15, 21] can, however, not be easily adapted to debugger
testing. The reason is that UI-level events, such as stepping through
code, are strongly tied to the debugged code – a kind of input not
consider by existing UI-level testing techniques.

7 CONCLUSION
This paper presents the first approach for metamorphic testing of
debuggers. Given a program to debug and a sequence of debugging
actions, the approach transforms both inputs in such a way that
the debugging behavior is expected to change only in particular
ways. To address the dynamic nature of debuggers, we introduce
the concept of interactive metamorphic testing, which differs from
traditional metamorphic testing by determining both the transfor-
mation and the expected output relation during the execution of
the program under test. We show that our approach is effective and
efficient at testing a widely used, real-world debugger, where we
found several previously unknown bugs. Our work contributes a
novel tool for testing debuggers to the stream of work on improv-
ing the quality of developer tools. Beyond debuggers, we envision
interactive metamorphic testing to be applied to other developer
tools, e.g., interactive IDEs.
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