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ABSTRACT
�e e�ciency of programs o�en can be improved by applying rel-
atively simple changes. To �nd such optimization opportunities,
developers either rely on manual performance tuning, which is
time-consuming and requires expert knowledge, or on traditional
pro�lers, which show where resources are spent but not how to
optimize the program. �is paper presents a pro�ler that provides
actionable advice, by not only �nding optimization opportunities
but by also suggesting code transformations that exploit them.
Speci�cally, we focus on optimization opportunities related to the
order of evaluating subexpressions that are part of a decision made
by the program. To help developers �nd such reordering opportuni-
ties, we present DecisionProf, a dynamic analysis that automatically
identi�es the optimal order, for a given input, of checks in logical
expressions and in switch statements. �e key idea is to assess
the computational costs of all possible orders, to �nd the optimal
order, and to suggest a code transformation to the developer only
if reordering yields a statistically signi�cant performance improve-
ment. Applying DecisionProf to 43 real-world JavaScript projects
reveals 52 bene�cial reordering opportunities. Optimizing the code
as proposed by DecisionProf reduces the execution time of indi-
vidual functions between 2.5% and 59%, and leads to statistically
signi�cant application-level performance improvements that range
between 2.5% and 6.5%.
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1 INTRODUCTION
Optimizing the performance of so�ware is important in various
domains, e.g., for achieving high throughput, energy e�ciency,
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responsiveness, and user satisfaction. Even relatively small perfor-
mance improvements (measured in milliseconds) in applications
such as web sites or search engines can positively in�uence the
page tra�c and user experience.

However, detecting and exploiting optimization opportunities
is a cumbersome task that o�en requires signi�cant human e�ort.
Fortunately, many programs su�er from performance bo�lenecks
where a relatively simple source code change can make the program
signi�cantly more e�cient [19, 34]. �e challenge is to �nd and
exploit such easy to use optimization opportunities.

Currently, there are three kinds of approaches to optimize per-
formance. First, compiler optimizations automatically transform a
program to a semantically equivalent yet more e�cient program.
Despite being very powerful for particular classes of optimizations,
many other promising optimization opportunities are beyond the
capabilities of a typical compiler. �e main reason is that the com-
piler cannot ensure that a transformation preserves the semantics,
a problem that is especially relevant for hard-to-analyze languages,
such as JavaScript. Second, to complement compiler optimizations,
developers use CPU [12] and memory pro�lers [18] to identify those
code locations that use most resources. More recent approaches
identify performance bo�lenecks based on their symptoms, such
as memory bloat [42], ine�cient loops [29], and JIT unfriendli-
ness [11]. While useful to understand why code is slow, these
approaches do not show developers how to optimize the code. Fi-
nally, developers o�en fall back on manual performance tuning,
which can be e�ective but is time-consuming and o�en requires
expert knowledge.

�is paper presents a novel automated approach to support devel-
opers in optimizing their programs, called actionable performance
pro�ling. �e key idea is to not only pinpoint where and why time
is spent, but to also suggest concrete code transformations that
speed up the code. A pro�ler following this idea is actionable in the
sense that the developer can take immediate action based on the
pro�ler’s suggestions, by deciding whether to apply a suggested
transformation. �e reason why the pro�ler does not fully auto-
matically optimize the program, as a compiler would, is that it does
not guarantee to preserve the semantics, enabling it to address
optimizations out-of-reach for compilers.

As motivating examples, Figure 1 shows two non-trivial to detect
but easy to exploit optimization opportunities in popular JavaScript
projects. �e code in Figure 1a checks three conditions: whether a
regular expression matches a given string, whether the value stored
in match[3] is de�ned and whether the value of arg is higher or
equal to zero. �is code can be optimized by swapping the �rst
two checks (Figure 1b) because checking the �rst condition is more
expensive than checking the second condition. A�er this change,
when match[3] evaluates to false, the overall execution time of
evaluating the logical expression is reduced by the time needed
to perform the regular expression matching. �e second example,
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arg = (/[def]/. test(match [8]) &&

match [3] &&

arg >= 0 ? '+'+ arg : arg);

(a) Optimization opportunity.
arg = (match [3] &&

/[def]/. test(match [8]) &&

arg >= 0 ? '+'+ arg : arg);

(b) Optimized code.
switch (packet.type) {

case 'error ':

...

break;
case 'message ':

...

break;
case 'event ':

...

break;
case 'connect ':

...

break;
case 'ack':

...

break;
}

(c) Optimization opportunity.

switch (packet.type) {

case 'message ':

...

break;
case 'event ':

...

break;
case 'ack':

...

break;
case 'connect ':

...

break;
case 'error ':

...

break;
}

(d) Optimized code.

Figure 1: Performance issues from Underscore.string (pull
request 471) and Socket.io (pull request 573).

Figures 1c, shows a performance issue found in Socket.io, a realtime
application framework. �e code encodes a packet and checks its
metadata. �e order of checks in the original code did not re�ect the
likelihood of the cases to be true, leading to suboptimal performance.
�e developers refactored the code into Figure 1d, where the most
common case is checked �rst, which avoids executing unnecessary
comparisons.

A commonality of these examples is that the program takes a de-
cision and that the decision process can be optimized by changing
the order of evaluating subexpressions. We call such a situation a
reordering opportunity. Once detected, such opportunities are easy
to exploit by reordering the checks so that the decision is taken
with the least possible cost. At the same time, such a change o�en
does not sacri�ce readability or maintainability of the code. Be-
yond the examples in Figure 1, we found various other reordering
optimizations in real-world code1, including several reported by
us to the respective developers.2 Unfortunately, manually search-
ing reordering opportunities is di�cult and existing automated
techniques do not support developers in detecting and exploiting
them.

�is paper presents DecisionProf, a pro�ler for detecting reorder-
ing opportunities. �e key idea is to compare the computational
costs of all possible orders of checks in logical expressions and
switch statements, to �nd the optimal order of these checks, and
to suggest a refactoring to the developer that reduces the overall
execution time. DecisionProf dynamically analyzes the cost of each
check and the value it evaluates to. An order of evaluations is opti-
mal for the pro�led executions if it minimizes the overall cost of
making a decision by evaluating those checks �rst that determine
the overall result most of the time.

DecisionProf has four important properties:

1E.g., see j�ery pull request #1560.
2E.g., see Underscore pull request #2496 and Moment pull request #3112.

• Automatically suggested code transformations. Compared to ex-
isting pro�lers, DecisionProf signi�cantly increases the level of
automation involved in optimizing a program. �e approach
fully automatically detects optimization opportunities and sug-
gests code transformations to the developer, which distinguishes
our approach from traditional pro�lers that focus on bo�lenecks
instead of optimization opportunities.

• Guaranteed performance improvement. Before suggesting an op-
timization, DecisionProf applies it and measures whether the
modi�ed code improves the execution time. Only if a change
provides a statistically signi�cant performance improvement,
the suggestion is reported to the developer.

• Soundness of proposed modi�cations. Because DecisionProf does
not guarantee that a suggested code transformation preserves
the semantics, it may, in principle, report misleading sugges-
tions. However, our evaluation shows that all of 52 suggested
optimizations are semantics-preserving.

• Input-sensitivity. As every pro�ler, DecisionProf is input-sensitive,
i.e., it relies on inputs that trigger representative executions. In
this work, we assume that such inputs are available, which o�en
is the case in practice, as evidenced by the wide use of traditional
pro�lers.
While the basic idea of our approach is simple, there are several

interesting challenges. One major challenge for �nding the optimal
order of evaluations is to evaluate every subexpression that is rele-
vant for a decision during pro�ling. A naive approach that always
executes all subexpressions is likely to change the semantics of
the program because of the side e�ects of these evaluations. We
address this challenge with a novel technique for side e�ect-free
evaluation of expressions. During such an evaluation, the approach
tracks writes to variables and object properties. A�erwards, the
approach restores the values of all variables and properties to the
values they had before the evaluation started.

We evaluate DecisionProf by applying it to 43 real-world Java-
Script projects, including popular libraries and benchmarks. Across
these projects, the pro�ler �nds 52 optimization opportunities that
result in statistically signi�cant speedups. Optimizing the order
of evaluations does not change the behavior of the program, and
reduces the execution time of individual functions between 2.5%
and 59% (median: 19%). Even though the optimizations are sim-
ple, they even yield application-level performance improvements,
which range between 2.5% and 6.5%.

In summary, this paper contributes the following:
• Actionable performance pro�ling. We identify a new class of

pro�lers that not only reports where and why resources are
wasted but also how to optimize the code.

• Pro�ling for reordering opportunities. We present the �rst pro-
�ler that detects ine�ciently ordered subexpressions of logical
expressions and switch statements, and that suggests simple
refactorings to optimize the code.

• Empirical evidence. We implement the approach into a practical
tool and show that applying the suggested optimizations leads
to performance improvements in widely used JavaScript projects
and popular benchmarks.

2 PROBLEM STATEMENT
�is section characterizes the problem of ine�ciently ordered eval-
uations and describes challenges for identifying and optimizing
them.
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2.1 Terminology
Real-world programs compute various boolean values, e.g., to make
a control �ow decision. O�en, such decisions are the result of evalu-
ating multiple boolean expressions that are combined in some way.
We call each such an expression a check. For example, Figure 1a
shows a decision that consists of three checks that are combined
into a conjunction. Figure 1c shows a decision that depends on a
sequence of checks, each of which is a comparison operation. A
program speci�es the order of evaluation of the checks that con-
tribute to a decision. �is order may be commutative, i.e., changing
the order of checks does not change the semantics of the program.
For example, the refactorings in Figure 1 are possible because the
checks are commutative.

For decisions where the order of evaluation is commutative, dif-
ferent orders may have di�erent performance. �ese di�erences
exist because the semantics of most programming languages does
not require to evaluate all checks, e.g., due to short-circuit evalu-
ation of boolean expressions. Which order of evaluation is most
e�cient depends on the probability of the checks to yield true and
on the cost of evaluating the checks. For example, suppose that
both checks in a() && b() have the same computational costs. If in
80% of all executions the �rst check evaluates to true and the sec-
ond check evaluates to false, then the evaluation of a() is wasted
80% of the time. To avoid such unnecessary computation, one can
reorder the checks, which yields a logically equivalent but more
e�cient decision. In logical expressions, each check is composed of
one or more leaf expressions, i.e., subexpressions that do not contain
another logical expressions. In this work we consider logical ex-
pressions where leaf expressions are combined by both disjunctive
and conjunctive operators.

2.2 Reordering Opportunities
�e problem addressed in this paper is �nding ine�ciently ordered
evaluations, called reordering opportunities, and suggesting a more
e�cient order to the developer. We consider arbitrarily complex
decision, e.g., decisions that involve nested binary logical expres-
sions. �e goal of DecisionProf is to �nd a minimal order of the
checks involved in a decision. Minimal here means that the total
cost of making the decision is minimal for the pro�led executions.
�is total cost is the sum of the costs of those individual checks
that need to be evaluated according to the semantics of the pro-
gramming language. �e two examples in Figure 1 are reordering
opportunities.

2.3 Challenges For Detecting Reordering
Opportunities

Even though the basic idea of reordering checks is simple, detecting
reordering opportunities in real-world programs turns out to be
non-trivial. We identify three challenges.

• Measuring the cost and likelihood of checks. To identify reorder-
ings of checks that reduce the overall cost of a decision, we must
assess the cost of evaluating individual checks and the likelihood
that a check evaluates to true. �e most realistic way to assess
computational cost is to measure the actual execution time. How-
ever, short execution times cannot be measured accurately. To
compute the optimal evaluation order, we require an e�ective
measure of computational cost, which should be a good predictor

Dynamic analysis

Code transformation

Performance evaluation

Program + input

Optimization candidates

Program1, …, ProgramN

Optimization opportunities

Figure 2: Overview of the approach.

of actual execution time while being measurable with reasonable
overhead.

• Analyze all checks involved in a decision. To reason about all
possible ways to reorder the checks of a decision, we must gather
cost and likelihood information for all checks involved in the
decision. However, dynamically analyzing all checks involved
in a decision may not be necessary in a normal execution. For
example, consider that the �rst check in Figure 1a evaluates
to false. In this case, the overall value of the expression is
determined as false, without executing the other two checks.

• Side e�ect-free evaluation of check. Evaluating checks may have
side e�ects, such as modifying a global variable or an object
property. �erefore, naively evaluating all checks, even though
they would not be evaluated in the normal program execution,
may change the program’s semantics. To address this issue, we
need a technique for evaluating individual expressions without
permanently a�ecting the state of the program.

3 ANALYSIS FOR DETECTING
REORDERING OPPORTUNITIES

In this section, we describe DecisionProf, a pro�ling approach that
automatically �nds reordering opportunities at runtime and pro-
poses them to the developer. Figure 2 gives an overview of the
approach. �e input to DecisionProf is an executable program.
First, the pro�ler executes the program while applying a dynamic
analysis that identi�es optimization candidates. Second, for each
candidate, the approach applies the optimization via source-to-
source transformation. �ird, for the modi�ed version of the pro-
gram, DecisionProf checks whether the optimization reduces the
execution time of a program. If and only if the changes lead to a
performance improvement, the approach suggests them as reorder-
ing opportunities to the developer. �e remainder of this section
details each component of the approach.

3.1 Gathering Runtime Data
�e �rst step of DecisionProf is to analyze the execution of the
program to identify candidates for reordering opportunities. We
gather two pieces of information about every dynamic occurrence of
a check involved in a decision: �e computational cost of evaluating
the check and the value of the check, i.e., whether the boolean
expression evaluates to true or false. DecisionProf gathers these
runtime data in two steps. At �rst, it statically pre-processes the
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startDecision;

startCheck; /[def]/. test(match [8])); endCheck;

startCheck; match [3]; endCheck;

startCheck; arg >= 0; endCheck;

undoSideEffects; endDecision;

arg = (/[def]/. test(match [8]) &&

match [3] &&

arg >= 0 ? '+'+ arg : arg);

Figure 3: Preprocessed logical expression from Figure 1a.

startDecision;

switch (packet.type) {

startCheck; packet.type ==='error '; endCheck;

case 'error ':

...

startCheck; packet.type ==='message '; endCheck;

case 'message ':

...

startCheck; packet.type ==='event '; endCheck;

case 'event ':

...

startCheck; packet.type ==='connect '; endCheck;

case 'connect ':

...

startCheck; packet.type ==='ack'; endCheck;

case 'ack':

...

}

endDecision;

Figure 4: Preprocessed switch statement from Figure 1c.

source code of the analyzed program. �en, it dynamically analyzes
the pre-processed program to collect runtime data.

3.1.1 Pre-processing. DecisionProf pre-processes the program
to ensure that each check involved in a decision gets executed,
even if it would not be executed in the normal execution, and to
introduce helper statements for measuring the cost of each check.
Logical expressions. To ensure that each checks gets evaluated

even if it would not be evaluated in the normal program execution,
the pre-processor copies each leaf expression of a logical expres-
sion in front of the statement that contains the logical expression.
Furthermore, the pre-processor annotates the beginning and end
of a decision, and the beginning and end of each leaf expression
with helper statements. Because always evaluating all checks may
change the program’s semantics, the pre-processor also annotates
the end of a decision with a helper statement undoSideEffects,
which we explain in Section 4. Figure 3 shows the pre-processed
code for the logical expression of Figure 1a. �e underlined helper
statements are interpreted by the dynamic analysis.
Switch statements. �e pre-processor annotates for each switch

statement the beginning and end of the decision, and the beginning
and end of each check. Because evaluating a check in a switch
statement is a comparison without any side e�ects, there is no need
to undo any side e�ects. Figure 4 shows the pre-processed code for
the switch statement of Figure 1c.

3.1.2 Dynamic Analysis. DecisionProf executes the pre-processed
program and dynamically collects the values and the computational
costs of each check involved in a decision. To this end, the approach
associates with each decision a cost-value history:

Table 1: Cost-value histories from executions of Figure 1a.

Check Execution
1st 2nd 3rd

/[def]/.test(match[8]) (3, true) (3, true) (3, false)
match[3] (1, true) (1, false) (1, false)
arg (1, true) (1, true) (1, true)

De�nition 3.1 (Cost-value histories). �e cost-value history h of a
check involved in a decision is a sequence of tuples (c,v ), where v
denotes the value of the check and c represents the cost of evaluat-
ing the check. �e cost-value histories of all checks involved in a
decision are summarized in a history mapH that assigns a history
to each check.

To gather cost-value histories, the analysis reacts to particular
runtime events:
• When the analysis observes a statement startDecision, it pushes

the upcoming decision onto a stack decisions of currently evalu-
ated decisions.

• When the analysis observes a statement startCheck, it pushes
the check that is going to be evaluated onto a stack checks of
currently evaluated checks. Furthermore, the analysis initializes
the cost c of the upcoming evaluation to one.

• When reaching a branching point, the analysis increments the
cost counter c of each check in checks . We use the number of
executed branching points as a proxy measure for wallclock
execution time, avoiding the challenges of reliably measuring
short-running code.3

• When the analysis observes endCheck, it pops the corresponding
check from checks . Furthermore, the analysis appends (c,v ) to
h, where h is the cost-value history of the check as stored in
the history mapH of top (decisions ), c is the cost of the current
check evaluation, and v is the boolean outcome of evaluating
the check.

• When reaching endDecision, the analysis pops the corresponding
decision from decisions .

• When the analysis observes undoSideEffects, it restores the state
of the program to the state before the corresponding startDecision

statement (Section 4).
�e reason for using stacks to represent the currently evaluated

decisions and checks is that they may be nested. For example, con-
sider a logical expression a() || b (), where the implementation
of a contains another complex logical expression.

Our implementation re�nes the described analysis in two ways.
First, the analysis monitors runtime exceptions that might occur
during the evaluation of the decision. If an exception is thrown, the
analysis catches the error, restores the program state, and excludes
the decision from further analysis. Such exceptions typically occur
because the evaluation of one check depends on the evaluation of
another check. Second, the analysis considers switch statements
with case blocks that are not terminated with a break or return

statement. For such case blocks, the analysis merges the checks
corresponding to the cases that are evaluated together into a single
check.

Table 1 shows a cost-value history gathered from three execu-
tions of the logical expression in Figure 1a. For example, when
3Section 6.4 evaluates the accuracy of the proxy metric.
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Algorithm 1 Find optimal order of logical expression
Input: Logical expression e and history map H
Output: Optimized expression e′

function optimize(e )
if e .le� is not in H then

e .le� ← optimize(e .le�)
if e .right is not in H then

e .right ← optimize(e .right)
e′ ← �ndOptimalOrder (e )
return e′

function �ndOptimalOrder(e )
corig ← computeCost (e .le�, e .right, e .operator )
cswap ← computeCost (e .right, e .le�, e .operator )
if corig ≤ cswap then

e′ ← e
else

e′ ← e with le� and right swapped
he′ ← cost-value history of optimized expression e′

Add e 7→ he′ to H
return e′

function computeCost(ele�, eright, op)
hle� → H (ele� )
hright → H (eright )
c ← 1
foreach i in 0 to length(hle� ) do

cvle� ← hle�[i]
cvright ← hright[i]
if op is && then

if cvle� .value is true then
c ← c + cvle� .cost + cvright .cost

else
c ← c + cvle� .cost

else if op is || then
if cvle� .value is false then

c ← c + cvle� .cost + cvright .cost
else

c ← c + cvle� .cost

return c

the logical expression was executed for the �rst time, the check
/[def]/.test(match[8]) was evaluated to true and obtaining this
value imposed a runtime cost of 3.

3.2 Finding Optimization Candidates
Based on cost-value histories obtained through dynamic analysis,
DecisionProf computes a minimal order of checks for each executed
decision in the program. �e computed order is optimal in the
sense that it minimizes the overall cost of the analyzed executions.
DecisionProf uses two specialized algorithms for computing the
optimal orders of evaluations in logical expressions and switch
statements, respectively.

3.2.1 Optimally Ordered Logical Expressions. To �nd an opti-
mal order of checks in logical expressions, we present a recursive
algorithm that optimizes all subexpressions of a given expression
in a bo�om-up manner. Algorithm 1 summarizes the main steps.
�e algorithm uses the history mapH to keep track of the checks
that have already been optimized. Initially, the map contains his-
tories for all leaf expressions, i.e., expressions that do not contain

Figure 5: Example of �nding the optimal order of checks.

any logical operator. For each such leaf expressions, the history
map contains a cost-value history h gathered during the dynamic
analysis.

Given a logical expression e , the algorithm checks whether its le�
and right subexpressions have already been optimized by check-
ing whether they have an entry in H . If no such entry exists,
the algorithm recursively calls optimize to optimize these subex-
pressions before deciding on their optimal order. Once both the
le� and the right subexpression are optimized, the algorithm calls
�ndOptimalOrder . �is function computes the cost of both possi-
ble orders of the le� and right subexpression and swaps them if
the cost of the swapped order is smaller than of the original order.
A�erwards, the function updates the history mapH by computing
a sequence of cost-value entries for the optimized expression. Each
cost-value entry of the optimized expression is derived based on the
cost-value histories of subexpressions by applying the short-circuit
rules.

Function computeCost summarizes how the algorithm computes
the cost of a particular order of two checks. �e basic idea is to
iterate through the value-cost history and to apply the short-circuit
rules of the programming language. For example, if two checks are
combined with the logical &&-operator, then the cost includes the
cost of the second check only if the �rst check is true.

For example, consider applying the algorithm to the logical ex-
pression in Figure 1a and the cost-value history in Table 1. Figure 5
illustrates the tree of subexpressions for the example and the value-
cost history associated with each check. For space reasons, we
abbreviate the logical expressions as a && b && c. �e leaf ex-
pressions each have an associated history (marked with 1). Based
on these histories, the algorithm computes the optimal cost of
the �rst, innermost logical expression, a && b. �e costs in the
three executions with the original order are 4, 4, and 3. In con-
trast, the costs when swapping the checks are 4, 1, and 1. �at is,
swapping the subexpressions reduces the overall cost. �erefore,
�ndOptimalOrder sets e ′ = b && a and computes the history of this
optimized expression (marked with 2). �e cost-value history of b
&& a is derived from the cost-value histories of b and a. Next, the
algorithm moves up in the expression tree and optimizes the order
of ele�=b && a and eright =c. Comparing their costs shows that
swapping these subexpressions is not bene�cial, so the algorithm
computes the history of the subexpression (marked with 3), and
�nally it returns b && a && c as the optimized expression.
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3.2.2 Optimally Ordered Switch Statements. To optimize the
order of checks in switch statements, DecisionProf sorts checks by
their likelihood to evaluate to true, starting with the most likely
check. To achieve this, DecisionProf instantiates a new order o
with an empty set and sorts entries in cv by their frequency of
being evaluated to true. �en, for each element cases in cv , the
approach checks whether there is an element el in o, such that their
intersection is non-empty. In this case, el is replaced by the union
of el and cases . Otherwise, it adds cases from cv to o. �e rationale
is to preserve the order of cases that can be executed together. For
example, it is possible to have several cases that share the same code
block or blocks that do not contain break statements. A�er iterating
over all checks in cv , the approach returns the optimal order o of
checks. If some checks are not evaluated during the execution of a
decision, they are added to the end of o in their original order.

For example, reconsider the switch statement in Figure 1c. Sup-
pose that the switch statement is executed 10 times as follows:
5 times the “message” case, 2 times the “event” and “ack” cases
and once the “connect” case. Starting from o = [], Decision-
Prof sorts cost-value history of switch statement and computes
o = [messaдe, event ,ack, connect , error ]. �e case “error” is not
evaluated in the analyzed execution and therefore is added to the
end of o.
Based on the results from the pro�ler, DecisionProf identi�es as
optimization candidates all those decisions where the order of eval-
uations in the given program is not optimal. �e following two
subsections describe how DecisionProf assesses whether exploit-
ing these candidates yields a statistically signi�cant performance
improvement.

3.3 Transformation
Based on the list of optimization candidates found in the previous
phase of DecisionProf, the approach generates a variant of the pro-
gram that adapts the order of checks to the optimal order. To this
end, DecisionProf traverses the AST of the program and identi�es
the source code location that implements the decision. �en, the
approach rewrites the AST subtree that corresponds to the deci-
sion into the optimal order of checks, and generates an optimized
variant of the program source code. For our running examples, De-
cisionProf automatically applies the two optimizations illustrated
in Figure 1.

3.4 Performance Evaluation
�e �nal step of DecisionProf is to assess whether applying a re-
ordering increases the performance of the analyzed program. �e
rationale is to suggest optimizations to the developer only if there is
evidence that the change is bene�cial. To measure the performance
impact of a change, DecisionProf runs both the original and the
optimized program in a several fresh instances of the JavaScript
engine while collecting the measurements of the actual execution
time for each program (details in Section 6.1). To determine whether
there is a statistically signi�cant di�erence, the approach applies the
t-test on the collected measurements with a con�dence level of 90%.
Finally, DecisionProf suggests a change as a reordering opportunity
if the change improves the execution time of a program.

3.5 Pruning False Positives
�e approach described so far assumes that all checks are com-
mutative, i.e., can be swapped without a�ecting the program’s
semantics. However, this assumption may not hold, e.g., because
evaluating one check has a side e�ect that is a pre-condition for
another check. One way to deal with this challenge would be to
conservatively overapproximate all side e�ects and dependences
between checks and to suggest reordering opportunities only if
they are guaranteed to preserve the program’s semantics. Unfor-
tunately, this conservative approach is not practical, at least for a
hard-to-analyze language, such as JavaScript (Section 6.5). Instead,
DecisionProf relies on a set of heuristics to prune false positives, i.e.,
reordering opportunities that are spurious because the reordering
would a�ect the program’s semantics. We present these heuristics
in the following.
Static pruning of non-commutative code idioms. DecisionProf

ignores decisions that matches particular code pa�erns, which are
likely non-commutative logical expressions. We identify two such
pa�erns for JavaScript:
• A common idiom is to check whether a variable is de�ned before

accessing its properties, e.g., if (x && x.a). Changing the
order of checks in such an if statement would lead to a runtime
error when x is undefined or null. To avoid such false positives,
DecisionProf excludes any logical expressions where the le�-
hand side checks a reference for undefined or null and where
the right-hand side uses this reference.

• A common idiom for initializing variables is a logical expression
of the form var x = y || "abc", where the literal "abc" is
the default value in case y is not de�ned. Reordering such a
logical expressions would always assign the default value, i.e.,
break the program’s semantics. Instead, DecisionProf excludes
all ||-expressions where the right-hand side is a literal.
Dynamic pruning of dependent checks. �e checks in a logical

expressions may be non-commutative because the side e�ects of
one check in�uences the other check. For example, in a() && b(),
check a() may write to a variable that check b() reads. Finding
such dependences statically is challenging in JavaScript due to its
dynamic features. Instead, DecisionProf identi�es dependences at
runtime and prunes interdependent checks. To this end, the analysis
tracks reads and writes to variables and object properties performed
by each check in a logical expression or switch statement. Based on
these reads and writes, DecisionProf prunes decisions where two or
more checks have read-write, write-read, or write-write con�icts.
Testing-based validation of optimized programs. As a best-e�ort

approach to automatically validate whether optimizing a reordering
candidate preserves the program’s semantics, DecisionProf executes
the optimized program. If the execution terminates without errors,
an opportunity is reported to the developer.

4 SAFE CHECK EVALUATION
�e pro�ling part of DecisionProf (Section 3.1) evaluates all checks
of a decision, even though they may not be evaluated during the
normal program execution. If evaluating a normally not evaluated
check has side e�ects, our pro�ling might cause the program to
behave di�erently than it would without pro�ling. To avoid such a
divergence of behavior, the pro�ling part of DecisionProf evaluates
checks in such way that side e�ects are undone a�er the evaluation,
which we call safe check evaluation.
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1 var a = 0;

2 function foo(){

3 a++;

4 var b=1;

5 if (a===1) return true;
6 else return false;
7 }

8 startDecision;

9 startCheck: foo();

10 startCheck: someExpression;

11 undoSideEffects;

12 if (foo() && someExpression) ...

Figure 6: Changes in program behavior due to side e�ects.

As a motivating example, consider Figure 6. �e pro�ler evalu-
ates foo() before executing the if statement (line 9), which causes a
write to the global variable a. Using a naive approach that continues
the execution a�er this side e�ect, the if statement at line 12 would
evaluate to false, because a gets incremented again at line 3.

To avoid changing the program behavior during pro�ling, we
use a dynamic analysis that tracks writes to object properties
and variables, and undoes these side e�ects when reaching an
undoSideEffects statement.

4.1 Tracking Side E�ects
To track side e�ects, the analysis records writes into the following
two data structures:
De�nition 4.1 (Log of property writes). A log of property writes

propLoд is a sequence of tuples (obj,prop,value ), where obj is an
object, prop is a property name, and value is the value that prop
holds before the evaluation.
De�nition 4.2 (Log of variable writes). A log of variable writes

varLoд is a sequence of pairs (var ,value ), where var is a variable
name and value is the value var holds before the evaluation.

While evaluating checks for pro�ling, the analysis records all
property writes and variable writes into these logs. For variable
writes, the analysis only considers variables that may a�ect code
executed a�er the check. For this purpose, the analysis checks
whether the variable is de�ned in the same or a parent scope of
the currently evaluated decision, and only in this case records the
write into the log.

To �nd the scope of a variable, DecisionProf computes the scope
for every variable declaration and function de�nition in a program
as follows (inspired by [35]):
• When the execution of a program starts, DecisionProf creates

an empty object that represents the global scope and an array
stack , representing the stack of scopes. Initially, stack contains
only one element, the global scope.

• Before the execution of a function body starts, the analysis cre-
ates a new scope and pushes it onto stack . Before the execution
of a function body �nishes, the analysis pops the top element
from stack . �e current scope of a program’s execution is always
the top element of stack .

• When the analysis identi�es a function de�nition or a variable
declaration in a program, it expands the current scope by adding
new properties with the name of the variable or the declared
function.
For Figure 6, consider the evaluation of foo() at line 9. �e

analysis records the write to variable a, along with its original

value 0. In contrast, since the write to variable b is local to foo(),
the analysis does not record it.

4.2 Undoing Side E�ects
When the evaluation of a decision �nishes, the undoSideEffects

statement triggers the analysis to undo all recorded side e�ects.
�e analysis undoes variable writes by dynamically creating and
executing code that writes the original values into each variable.
Speci�cally, for every entry in varLoд, the analysis creates a vari-
able assignment statement where the le�-hand side of the assign-
ment is the variable name and the right-hand side is the original
value. �en, the analysis passes the sequence of assignments to
the eval() function, which evaluates the string as code. For the
example in Figure 6, the analysis creates and executes the following
code: var a = 0; To undo property writes, the analysis iterates
over all entries in propLoд and restores the original value of each
modi�ed property.

5 IMPLEMENTATION
We implement DecisionProf into a pro�ling tool for JavaScript
programs. Static pre-processing and applying optimizations are im-
plemented as AST-based transformations built on top of an existing
parser4 and code generator5. �e dynamic analysis builds on top
of the dynamic analysis framework Jalangi [36]. We believe that
our approach is applicable to other languages than JavaScript, e.g.,
based on existing dynamic analysis tools, such as Valgrind or PIN
for x86 programs, and ASM or Soot for Java.

6 EVALUATION
We evaluate the e�ectiveness and e�ciency of DecisionProf by
applying it to 43 JavaScript projects: 9 widely used libraries and
34 benchmark programs from the JetStream suite, which is com-
monly used to assess JavaScript performance. In summary, our
experiments show the following:

• Does DecisionProf �nd reordering opportunities? �e approach
identi�es 52 previously unknown reordering opportunities (Sec-
tion 6.2)

• What is the performance bene�t of optimizing the order of evalu-
ations? Applying the optimizations suggested by DecisionProf
yields performance improvements between 2.5% and 59%. (Sec-
tion 6.2)

• How e�cient is the approach? Compared to normal program
execution, DecisionProf imposes a pro�ling overhead between
3x and 1,210x (median: 116). (Section 6.3)

• Is counting the number of branching points an accurate approxi-
mation of execution time? We �nd that the measure DecisionProf
uses to approximate execution time is strongly correlated with
actual execution time. (Section 6.4)

• How e�ective would DecisionProf be if it conservatively pruned
all non-commutative checks via static analysis? For 28 of 52
optimizations it is non-trivial to statically show that they are
semantics preserving, i.e., a conservative variant of DecisionProf
would miss many optimizations. (Section 6.5)
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Table 2: Projects used for the evaluation (LogExp = number of logical expressions, Switch = number of switch statements,
StaPru = statically pruned logical expressions, Ev = number of evaluated logical expressions and switch statements, DynPru
= dynamically pruned logical expressions, Cand = reordering candidates, tbase = execution time without pro�ling (seconds),
tprof = execution time with pro�ling (seconds), Overh = pro�ling overhead, Impr (%) = performance improvement.)

Pruning Overhead Opportunities Impr(%)
Project Tests LoC LogExp Switch StaPru Ev DynPru Cand tbase tprof Overh LogExp Switch Total

Libraries:

Underscore 161 1,110 65 3 4 48 1 23 0.17 11.08 65x 2 0 2 3.7 - 14
Underscore.string 56 905 25 2 6 16 0 6 0.70 2.42 3x 1 0 1 3 - 5.8
Moment 441 2,689 116 2 23 88 9 31 1.38 17.20 12x 1 0 1 3 - 14.6
Minimist 50 201 17 0 4 13 0 7 0.05 0.78 15x 1 0 1 4.2 - 6.5
Semver 28 863 33 3 3 30 1 15 0.18 4.45 25x 4 1 5 3.5 - 10.6
Marked 51 928 26 1 3 13 0 4 0.08 1.17 15x 0 1 1 3 - 4.4
EJS 72 549 14 3 4 9 0 7 0.08 1.19 15x 2 0 2 5.6 - 6.7
Cheerio 567 1,396 74 3 12 58 2 22 1.18 15.08 13x 9 0 9 6.2 - 40
Validator 90 1,657 119 2 0 112 1 83 0.1 2.58 26x 3 0 3 3 - 10.9
Total 1,516 10,928 489 21 59 387 14 198 21 2 23
Benchmarks:

�oat-m 3972 119 5 11 23 0 21 1.21 841.2 691x 1 2 3 2.5
crypto-aes 295 3 0 0 3 0 3 0.01 0.84 70x 3 0 3 5.2
deltablue 483 8 1 0 8 0 8 0.02 1.7 90x 2 0 2 6.5
gbemu 9481 142 20 4 67 0 61 0.25 33.73 132x 13 5 18 5.8
Total 14231 272 26 15 101 0 93 19 7 26

6.1 Experimental Setup
Subject Programs and Inputs. We use 9 JavaScript libraries, listed

in the upper part of Table 2. �ey are widely used both in client-
side web applications and in Node.js applications. In addition to
the libraries, we also use 34 programs from the JetStream bench-
mark suite. We choose JetStream because it is, to the best of our
knowledge, the most comprehensive performance benchmark suite
for JavaScript. It includes Octane, Sunspider, benchmarks from
LLVM compiled to JavaScript, and a hand-translated benchmark
based on the Apache Harmony project. �e lower part of Table 2
lists the subset of benchmark programs where DecisionProf detects
bene�cial reordering opportunities.

To execute the libraries, we use their test suites, which consist
mostly of unit-level tests. Tuning the performance at the unit-level
is similar to the wide use of microbenchmarks.6 �e benchmarks
come with inputs to execute the programs. We assume for the
evaluation that these inputs are representative for the pro�led code
base. �e general problem of �nding representative inputs to pro�le
a given program [3, 7, 13] is beyond the scope of this paper.

Performance Measurements. Reliably measuring the performance
of executions is non-trivial [25]. DecisionProf follows the method-
ology by Georges et al. [9], both as part of the approach (Sec-
tion 3.4) and for the evaluation. In essence, DecisionProf repeatedly
starts a fresh JavaScript engine (NVM times), repeats the execu-
tion NwarmUp times to warm up the JIT compiler, measures the

4h�p://esprima.org/
5h�ps://github.com/estools/escodegen
6E.g., see h�ps://benchmarkjs.com/ and h�ps://jsperf.com/ for popular microbench-
marking tools.

execution time of Nmeasure further repetitions, and applies statis-
tical signi�cance tests to decide whether there is a speedup. We
use NVM = 5, NwarmUp = 5, Nmeasure = 10. Since very short
execution times cannot be measured accurately, we wrap inputs
that are unit tests into a loop that makes sure to execute for at least
5ms. To measure the performance of benchmarks, we apply the
statistical test on measurements collected from 50 executions of the
original and the modi�ed benchmark. All experiments are done on
a 48-core machine with a 2.2GHz Intel Xeon CPU and an eight-core
machine with a 3.60GHz Intel Core i7-4790 CPU, all running 64-bit
Ubuntu Linux 14.04 LTS. We use Node.js 4.4 and provide it with
the default of 1GB of memory for running the unit tests and 4GB
of memory for running the benchmarks.

Code Transformations. When checking whether an optimization
candidate improves the performance, DecisionProf can either apply
one candidate at a time or all candidates at once. For the unit-level
tests of libraries, we con�gure DecisionProf to consider each candi-
date individually because we were interested in whether a single
change may cause a speedup. For the benchmarks programs, we
con�gure DecisionProf to apply all candidates at once. �e rationale
is that achieving application-level speedups is more likely when
applying multiple optimizations than with a single optimization.
We bound the number of applied optimizations per program to
at most 20 optimized logical expressions and 20 optimized switch
statements, enabling us to manually inspect all optimizations in
reasonable time.

6.2 Detected Reordering Opportunities
In total, DecisionProf detects 52 reordering opportunities. �e
column “Opportunities” in Table 2 shows how many optimizations
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the approach suggests in each project, and how many of them
are in logical expressions and switch statements, respectively. To
the best of our knowledge, none of the optimizations detected by
DecisionProf have been previously reported.
Examples. Table 3 illustrates seven representative examples of

reordering opportunities. �e columns “Original” and “Optimized”
show for each opportunity the original code and the optimized code,
as suggested by DecisionProf. �e “Performance improvement”
columns show for how many tests the optimization improves and
degrades performance, along with the respective improvements. For
example, the �rst opportunity provides performance improvements
for three tests, without degrading the performance of other tests.
�e logical expression checks whether a given input is NaN (not a
number). In most analyzed executions, the �rst check is wasted
because most inputs are numbers that are not NaN. We reported
this opportunity to the developers and they have accepted the
optimization suggested by DecisionProf.7 �e second example
illustrates a case where the optimization degrades the performance
of one test. Because it also improves the performance for three
other tests, DecisionProf reports it as a reordering opportunity.
Performance improvements. Overall, DecisionProf uncovers re-

ordering opportunities that yield speedups between 2.5% and 59%
(median: 19%). �e last column of Table 2 summarizes the speedups.
�e improvement include both speedups of library code, measured
by unit tests, and application-level speedups, measured by the
benchmarks. For the libraries, the approach reports an opportunity
if the number of positively a�ected tests exceeds the number of neg-
atively a�ected tests. In total over all detected opportunities, 67% of
all tests with a performance di�erence are positively a�ected. For
11 of 23 opportunities, all tests are positively a�ected. For opportu-
nities with both positively and negatively a�ected tests, we expect
the developer to decide which test cases are more representative,
and whether the optimization should be applied.
E�ect of pruning. To be�er understand the impact of pruning

likely non-commutative checks, Table 2 shows the number of stat-
ically pruned decisions (“StaPru”), how many of the remaining
decisions are executed by the test suites (“Ev”), and how many of
the executed decisions are pruned dynamically (“DynPru”). �e
“Cand” column shows how many reordering candidates pass the
testing-based validation. Measuring the performance impact of
these potential optimizations prunes most candidates. �is result
shows the importance of the last phase of DecisionProf, which
avoids suggesting code changes that do not improve performance.
False positives. We manually inspect all changes suggested by

DecisionProf to evaluate whether any of them may change the
semantics of the program. We �nd that all suggested optimization
are semantics-preserving, i.e., the approach has no false positives
in our evaluation.

Reported optimizations. To validate our hypothesis that develop-
ers are interested in optimizations related to the order of checks,
we reported a small subset of all detected reordering opportunities.
�ree out of seven reported optimizations got con�rmed and �xed
within a very short time, con�rming our hypothesis.

6.3 Pro�ling Overhead
�e overall execution time of DecisionProf is dominated by the
time to dynamically analyze the program or the test executions,

7Pull request #2496 of Underscore.

and by the time to measure the performance impact of potential
optimizations. To assess the overhead of the dynamic analysis, the
“Overhead” columns of Table 2 illustrate the execution time of the
test suites and benchmarks with and without pro�ling. �e over-
head for test suites ranges between 3x and 65x, which is comparable
to other pro�lers [6, 11, 29, 42]. However, due to the complexity
of some benchmarks, the overhead for these programs ranges be-
tween 16x and 1,210x. �e time spent to measure the performance
impact of optimizations ranges between 1 minute and several hours,
depending on the number of a�ected tests and program’s execution
time. Since running DecisionProf does not any require manual
intervention and reports actionable suggestions, we consider the
computational e�ort to be acceptable for developers.

6.4 Estimated Vs. Actual Cost
To assess whether our proxy measure for execution time, the num-
ber of executed branching points, is an accurate estimate, we mea-
sure the correlation between both values for benchmarks and indi-
vidual tests. To measure the execution time of benchmarks, we run
each program ten times and keep the average value of all executions.
To estimate the actual execution time of individual tests, we run
each test ten times and keep all tests where the average execution
time is above a minimum measurable time (5ms), resulting in 723
tests. �e correlation coe�cient for benchmarks and unit tests is
0.92 and 0.98, respectively, which indicates a strong positive linear
relationship between the number of evaluated branching points and
execution time. We conclude that our proxy metric is an accurate
approximation of execution time.

6.5 Guaranteeing �at Optimizations Are
Semantics-Preserving

A conservative variant of our approach could report an optimiza-
tion only if it can statically show the optimization to be semantics-
preserving. To assess how e�ective this approach would be, we
manually analyze whether the detected opportunities are amenable
to a sound static analysis. We identify three critical challenges
for such an analysis, which are at best partly solved in state of
the art analyses for JavaScript. First, several opportunities involve
function calls, which are not easy to resolve in JavaScript due to
its dynamic features, such as dynamically overriding the methods
of objects. Second, several opportunities involve calls of native
functions, which a static analysis would have to model, including
any variants of their implementation that may exist across the
various JavaScript engines. �ird, several opportunities involve
property reads and writes, which might trigger arbitrary code via
ge�er and se�er functions. A sound static analysis would have to
show that properties are not implemented with ge�ers and se�ers,
or analyze the e�ects of them. Out of the 52 bene�cial reordering
opportunities, 28 involve at least one of these challenges, i.e., a
conservative variant of our approach would likely miss these op-
portunities. �ese results con�rm our design decision in favor of
unsoundness, which turns out to be a non-issue in practice.

7 RELATEDWORK
Detecting performance problems. Studies show that performance
problems occur frequently in practice [19], especially for Java-
Script [34], and that they account for a non-negligible amount
of developer time [46]. Various approaches to detect performance
problems have been proposed, including CPU-time pro�ling [12],
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Table 3: Examples of reordering opportunities found by DecisionProf (+ = number of positively a�ected tests, - = number of
negatively a�ected tests, % = percentages of speedups or slowdowns).

Id Project Original Optimized Performance changes in tests
+ % - %

Libraries:
1 Underscore _.isNumber(obj) && isNaN(obj) isNaN(obj) && _.isNumber(obj) 3 19.04, 3.76, 5.02 0

2 Moment hour === 12 && !isPm !isPm && hour === 12 3 4.00, 4.62, 19.62 1 4.37

3 Cheerio isTag(elem) && elems.indexOf

(elem) === -1

elems.indexOf(elem) === -1 &&

isTag(elem)
2 26.84, 34.93 0

4 Validator (0, _isHexadecimal2.default)

(str) && str.length === 24

str.length === 24 &&

(0, _isHexadecimal2.default)(str)
1 10.91 0

5 Minimist !flags.strings[key] && isNumber(val) isNumber(val) && !flags.strings[key] 2 4.23, 6.54 0
Benchmarks:

6 Gbemu
numberType != \'float32\'

&& GameBoyWindow.opera

&& this.checkForOperaMathBug ()

GameBoyWindow.opera

&& numberType != \'float32\'

&& this.checkForOperaMathBug ()

Application-level: 5.8%

7 Deltablue i.mark == mark || i.stay

|| i.determinedBy == null
i.stay || i.mark == mark

|| i.determinedBy == null
Application-level: 6.5%

algorithms to discover parallelizable computations [33], a pro�ler
to detect memoization opportunities [6], an analysis to �nd re-
peated executions of similar behavior in loops [29], an analysis to
detect unnecessary use of duplicate objects [24], analyses for de-
tecting unnecessarily high memory consumption [41–43], pro�lers
for UI-related performance problems [20, 22, 40], an approach for
predicting scalability-related performance problems [28], a sound
static analysis to �nd redundant traversals [30], analyses that empir-
ically estimate the computational complexity [10, 47], and a pro�ler
to detect code locations that are hard to optimize for JavaScript
engines [11]. Our work di�ers from these by considering a dif-
ferent kind of performance problem and by suggesting concrete
optimizations to the developer.

Performance-guided test generation. Some test generators search
performance problems, e.g., by triggering the worst-case complex-
ity of a program [4], generating sequences of UI events to expose
responsiveness problems [32], and automated performance regres-
sion testing [31]. Combining DecisionProf with automatic test
generation may further improve the e�ectiveness of our approach.
Understanding performance problems. Approaches for diagnos-

ing performance bo�lenecks include a pro�ler to diagnose idle
times [2], mining of stacktraces [15] and execution traces [45], a
systematic search for performance anti-pa�erns [39], and statistical
debugging [37]. A recent survey discusses more approaches [17].
In contrast to all of these, DecisionProf addresses the problem of
�nding reordering opportunities, which are missed by the existing
approaches.

Fixing performance problems and automated program repair. Mem-
oizeIt [6] identi�es methods that can bene�t from memoization and
provide hints on how to implement the memoization. Caramel [27]
suggests code transformation that avoid wasting loop iterations.
SyncProf [44] detects, localizes, and optimizes synchronization
bo�lenecks. Orthogonal to performance problems, recent work
focuses on automatically repairing correctness bugs [21, 26, 38].
DecisionProf di�ers by addressing a novel class of performance
problems and by automatically assessing whether an optimization
opportunities improves performance.

Just-in-time compilation. Modern JavaScript engines employ just-
in-time compilers to e�ciently execute JavaScript code. Recent ad-
vances include optimizing code into type-specialized code [8, 14, 23],
an improved object representation [1], and specializing functions
based on previously observed parameters [5]. DecisionProf pro-
poses optimizations that are not addressed by today’s JIT compilers,
as checked in the performance evaluation step of our approach.
Transactional memory. DecisionProf’s safe check evaluation is

inspired by transactional memory [16]. Instead of simplifying con-
current programs, we use the idea to evaluate expressions without
permanent e�ects on the program state.

8 CONCLUSION
�is paper presents DecisionProf, a pro�ler that identi�es optimiza-
tion opportunities related to the order of evaluating subexpressions
involved in a complex decision. �e core idea is to pro�le the com-
putational cost and the value of each check and to compute the
optimal order of evaluating checks. We apply the approach to 9
real-world JavaScript projects and 34 benchmarks, where it �nds
23 previously unreported reordering opportunities that reduce the
execution time in statistically signi�cant ways.

�e opportunities reported by DecisionProf are bene�cial and
actionable: �ey are bene�cial because the approach assesses the
performance impact of every optimization before reporting it, in-
stead of requiring a developer to manually experiment with code
changes. �ey are actionable because a developer must only de-
cide whether to use a suggested optimization, instead of manually
identifying a bo�leneck and �nding an optimization for it. As a
result, our approach further increases the level of automation in
optimizing the performance of a program compared to state of the
art pro�lers.
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