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Motivation

Challenge:
Synchronization
bottlenecks

Profiling tools:
Very limited

Finding, understanding, and
fixing synchronization
bottlenecks: Mostly manual

Photo: Jürgen Schoner
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Example
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Goals & Challenges

Find synchronization bottlenecks

Locate the root cause of a bottleneck

Help optimize the bottleneck

This talk: SyncProf

Actionable performance profiling for
concurrent programs
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Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies
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Bottleneck Detection

Find inputs that trigger synchronization
bottlenecks

Test 1
Test 2

...

Configurable
workload size s

Program
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Bottleneck Detection

Find inputs that trigger synchronization
bottlenecks

Test 1
Test 2

...

Configurable
workload size s

Program

For each test t:
� Execute t with increasing s
� If increase of s implies increase of execution

time and CPU usage < threshold: Keep t and s
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Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies
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Graph-based Root Cause Analysis

Synchronization dependence graph

� Nodes: Dynamic instances of critical
sections

� Edges: Waits-for relations

1) Summarize execution into graph

2) Analyze graph to find root cause
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Example

Thread 1
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Example

Graph with cost-labeled edges
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 1: All-path wait time
� How long did other critical sections

wait for a particular critical section?

4

2

2 22
2

2

4

4
� 4+4=8
� Highest

rank



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through

synchronization dependence graph
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?
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Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?

� One graph, several metrics
� Rank critical sections by one or

more metrics
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Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies
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How to Optimize the Bottlenecks?

Challenge: Bottleneck ; Optimizable

Dynamic analysis of likely root causes:

� Track reads and writes of critical
sections

� Merge information across executions

� Suggest common optimization
patterns
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Pattern-based Suggestions

Suggest to .. When ..

� eliminate
synchronization

� no shared
memory access

� split lock � critical sections
access disjoint
memory

� use read-writer
lock

� mostly read-only
critical sections
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Evaluation: Setup

Questions

� Effectiveness
� Efficiency
� Comparison with Valgrind’s lock

contention profiler

Setup

� Firefox, MySQL, 6 benchmarks
� 15 known bottlenecks
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Detected Bottlenecks

18 bottlenecks (15 known + 3 new)

Rank root cause by critical section

� 8 of 18 ranked first
� All in top 5% (of 27–119 critical sections)

Rank root cause by lock

� 15 of 18 ranked first
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Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match
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Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: MySQL
� Remove unnecessary lock for

read-read accesses
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Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: Splash-2 Radiosity
� Turn shared queue into

non-blocking queue
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Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: MySQL
� Instead of shared output buffer,

use two buffers
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Comparison with Valgrind

Valgrind SyncProf

Optimizations Common
patterns

No support

Critical
sections to
inspect Reduced by 55% (avg.)

Rank 1 to 5Rank 1 to 14

Inputs &
executions

Developer
must choose

Automatically
selected and
summarized
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Efficiency

Runtime overhead

� Root cause analysis: 4x–10x
� Optimization suggestion: 60x–100x

Total time: 13–340 minutes per program
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Efficiency

Runtime overhead

� Root cause analysis: 4x–10x
� Optimization suggestion: 60x–100x

Total time: 13–340 minutes per program

Acceptable for in-house profiling
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Conclusion

SyncProf: Actionable performance
profiling for concurrent programs
� Detect bottlenecks
� Identify root causes
� Suggest optimizations

Take-aways for analysis writers
� Multi-stage analysis with increasing complexity
� Generic graph as basis for multiple analyses
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Conclusion

SyncProf: Actionable performance
profiling for concurrent programs
� Detect bottlenecks
� Identify root causes
� Suggest optimizations

Take-aways for analysis writers
� Multi-stage analysis with increasing complexity
� Generic graph as basis for multiple analyses

Thanks!


