
1

SyncProf: Detecting, Localizing,
and Optimizing Synchronization
Bottlenecks

Tingting Yu
University of Kentucky

Michael Pradel
TU Darmstadt



2

Motivation

Challenge:
Synchronization
bottlenecks

Photo: Jürgen Schoner



2

Motivation

Challenge:
Synchronization
bottlenecks

Profiling tools:
Very limited

Photo: Jürgen Schoner



2

Motivation

Challenge:
Synchronization
bottlenecks

Profiling tools:
Very limited

Finding, understanding, and
fixing synchronization
bottlenecks: Mostly manual

Photo: Jürgen Schoner



3

Example

Synchronization bottleneck in KVM/QEMU driver:

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 Time

Thread 5

.. critical section with time to obtain lock, colors = locks

CS3

CS1



3

Example

Synchronization bottleneck in KVM/QEMU driver:

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 Time

Thread 5

.. critical section with time to obtain lock, colors = locks

CS6

CS5

CS4

CS3CS2

CS1



3

Example

Synchronization bottleneck in KVM/QEMU driver:

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 Time

Thread 5

.. critical section with time to obtain lock, colors = locks

CS6

CS5

CS4

CS3CS2

CS1
Longest
wait time



3

Example

Synchronization bottleneck in KVM/QEMU driver:

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 Time

Thread 5

.. critical section with time to obtain lock, colors = locks

CS6

CS5

CS4

CS3CS2

CS1 Longest
critical
section



3

Example

Synchronization bottleneck in KVM/QEMU driver:

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 Time

Thread 5

.. critical section with time to obtain lock, colors = locks

CS6

CS5

CS4

CS3CS2

CS1
Root
cause



4

Goals & Challenges

Find synchronization bottlenecks

Locate the root cause of a bottleneck

Help optimize the bottleneck



4

Goals & Challenges

Find synchronization bottlenecks

Locate the root cause of a bottleneck

Help optimize the bottleneck

This talk: SyncProf

Actionable performance profiling for
concurrent programs



5

Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies



5

Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies

C
om

pl
ex

ity
&

ov
er

he
ad

C
on

si
de

re
d

pr
og

ra
m

pa
rt

s



5

Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies

C
om

pl
ex

ity
&

ov
er

he
ad

C
on

si
de

re
d

pr
og

ra
m

pa
rt

s



6

Bottleneck Detection

Find inputs that trigger synchronization
bottlenecks

Test 1
Test 2

...

Configurable
workload size s

Program



6

Bottleneck Detection

Find inputs that trigger synchronization
bottlenecks

Test 1
Test 2

...

Configurable
workload size s

Program

For each test t:
� Execute t with increasing s
� If increase of s implies increase of execution

time and CPU usage < threshold: Keep t and s



7

Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies

C
om

pl
ex

ity
&

ov
er

he
ad

C
on

si
de

re
d

pr
og

ra
m

pa
rt

s



8

Graph-based Root Cause Analysis

Synchronization dependence graph

� Nodes: Dynamic instances of critical
sections

� Edges: Waits-for relations

1) Summarize execution into graph

2) Analyze graph to find root cause



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7

Direct waits-for relations



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7

Indirect waits-for relations



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7

Associate cost to each edge



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7

Associate cost to each edge

4

4

4



9

Example

Thread 1

Thread 2

Thread 3

Thread 4

4 8 12 16 Time
.. critical section with time to obtain lock, colors = locks

CS4

CS1 CS2

CS3

CS5 CS6

CS7

Associate cost to each edge

4

2

2
22

2
2

4

4



9

Example

Graph with cost-labeled edges

4

2

2 2
2

2
2

4

4



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 1: All-path wait time
� How long did other critical sections

wait for a particular critical section?



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 1: All-path wait time
� How long did other critical sections

wait for a particular critical section?

4

2

2 22
2

2

4

4



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 1: All-path wait time
� How long did other critical sections

wait for a particular critical section?

4

2

2 22
2

2

4

4
� 4+4=8
� Highest

rank



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through

synchronization dependence graph



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through

synchronization dependence graph

4

2

2 22
2

2

4

4



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through

synchronization dependence graph

4

2

2 22
2

2

4

4



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 2: Critical path wait time
� Consider only critical path through

synchronization dependence graph

4

2

2 22
2

2

4

4
� 2+2+2=6
� Highest

rank



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?

4

2

2 22
2

2

4

4
� 12 vs. 12
� Same

rank



10

Measuring Performance Impact

Rank critical sections based on their
likelihood to be the root cause

Metric 3: All-path lock time
� How long did critical sections wait for

a particular lock?

� One graph, several metrics
� Rank critical sections by one or

more metrics



11

Overview of SyncProf

Program + Inputs

Synchronization bottlenecks and
suggestions for optimizations

Bottleneck detection

Root cause analysis

Find optimization strategies

C
om

pl
ex

ity
&

ov
er

he
ad

C
on

si
de

re
d

pr
og

ra
m

pa
rt

s



12

How to Optimize the Bottlenecks?

Challenge: Bottleneck ; Optimizable

Dynamic analysis of likely root causes:

� Track reads and writes of critical
sections

� Merge information across executions

� Suggest common optimization
patterns



13

Pattern-based Suggestions

Suggest to .. When ..

� eliminate
synchronization

� no shared
memory access

� split lock � critical sections
access disjoint
memory

� use read-writer
lock

� mostly read-only
critical sections



14

Evaluation: Setup

Questions

� Effectiveness
� Efficiency
� Comparison with Valgrind’s lock

contention profiler

Setup

� Firefox, MySQL, 6 benchmarks
� 15 known bottlenecks



15

Detected Bottlenecks

18 bottlenecks (15 known + 3 new)

Rank root cause by critical section

� 8 of 18 ranked first
� All in top 5% (of 27–119 critical sections)

Rank root cause by lock

� 15 of 18 ranked first



16

Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match



16

Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: MySQL
� Remove unnecessary lock for

read-read accesses



16

Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: Splash-2 Radiosity
� Turn shared queue into

non-blocking queue



16

Optimizations

Out of 18 bottlenecks:
� 9 optimizations suggested

� 7 match fix by developers
� 2 false suggestions

� 5 reported as low-degree conflicts
� Application-specific optimizations needed

� 4 without any match

Example: MySQL
� Instead of shared output buffer,

use two buffers



17

Comparison with Valgrind

Valgrind SyncProf

Optimizations Common
patterns

No support

Critical
sections to
inspect Reduced by 55% (avg.)

Rank 1 to 5Rank 1 to 14

Inputs &
executions

Developer
must choose

Automatically
selected and
summarized



18

Efficiency

Runtime overhead

� Root cause analysis: 4x–10x
� Optimization suggestion: 60x–100x

Total time: 13–340 minutes per program



18

Efficiency

Runtime overhead

� Root cause analysis: 4x–10x
� Optimization suggestion: 60x–100x

Total time: 13–340 minutes per program

Acceptable for in-house profiling



19

Conclusion

SyncProf: Actionable performance
profiling for concurrent programs
� Detect bottlenecks
� Identify root causes
� Suggest optimizations

Take-aways for analysis writers
� Multi-stage analysis with increasing complexity
� Generic graph as basis for multiple analyses



19

Conclusion

SyncProf: Actionable performance
profiling for concurrent programs
� Detect bottlenecks
� Identify root causes
� Suggest optimizations

Take-aways for analysis writers
� Multi-stage analysis with increasing complexity
� Generic graph as basis for multiple analyses

Thanks!


