
SyncProf: Detecting, Localizing, and Optimizing
Synchronization Bottlenecks

Tingting Yu
Department of Computer Science

University of Kentucky, USA
tyu@cs.uky.edu

Michael Pradel
Department of Computer Science

TU Darmstadt, Germany
michael@binaervarianz.de

ABSTRACT

Writing concurrent programs is a challenge because devel-
opers must consider both functional correctness and per-
formance requirements. Numerous program analyses and
testing techniques have been proposed to detect functional
faults, e.g., caused by incorrect synchronization. However,
little work has been done to help developers address per-
formance problems in concurrent programs, e.g., because of
inefficient synchronization. This paper presents SyncProf, a
concurrency-focused profiling approach that helps in detect-
ing, localizing, and optimizing synchronization bottlenecks.
In contrast to traditional profilers, SyncProf repeatedly exe-
cutes a program with various inputs and summarizes the ob-
served performance behavior. A key novelty is a graph-based
representation of relations between critical sections, which
is the basis for computing the performance impact of critical
sections, for identifying the root cause of a bottleneck, and
for suggesting optimization strategies to the developer. We
evaluate SyncProf on 19 versions of eight C/C++ projects
with both known and previously unknown synchronization
bottlenecks. The results show that SyncProf effectively lo-
calizes the root causes of these bottlenecks with higher preci-
sion than a state of the art lock contention profiler and that
it suggests valuable strategies to avoid the bottlenecks.

CCS Concepts

•Software and its engineering → Software notations
and tools;

Keywords

Testing, Concurrency, Performance Bottlenecks

1. INTRODUCTION
Developing concurrent programs that are both correct and

efficient is a challenge. On the one hand, a program must
carefully synchronize concurrent accesses to shared data to
avoid concurrency bugs, such as data races and atomicity
violations. On the other hand, the program should avoid

unnecessary or overly conservative synchronization because
each synchronization operation may degrade the performance.
Since these two goals, correctness and performance, are often
contradictory, developers struggle to achieve both. A recent
study reports that more than 25% of all critical sections
(CSs) are changed at some point by the developers, both
to fix correctness bugs and to enhance performance [22].
Another study shows that unnecessary synchronization is a
common root cause for real-world performance problems [26].
Over the past decades, most research has focused on an-
alyzing and debugging the correctness of concurrent pro-
grams, e.g., through detecting data races [7, 16, 29, 34] or
atomicity violations [4,18,54,60,65], schedule exploration [8,
11, 38, 52, 53, 58], test generation [40, 44], and static analy-
sis [19, 28, 39, 59, 63]. In contrast, the problem of detecting
and avoiding concurrency-related performance problems is
currently understudied.

For example, consider a performance problem in the lib-
virt KVM/QEMU driver [31]. A user reports a slowdown
in virtual machine creation when multiple virtual machines
are created in parallel. Figure 1a shows an excerpt of the
execution of the libvirt program with five threads (T1 –
T5) that contend for two locks (L1 and L2) while executing
six CSs (CS1 – CS6). Each lightgray and darkgray horizon-
tal box represents the execution of a CS, where the colors
indicate which lock a thread must acquire to enter a CS. We
illustrate the time a thread waits until obtaining the lock
with a dotted line. After careful manual inspection of the
code, it turns out that CS1 is unnecessarily synchronized
with the other CSs that acquire lock L1. The developers fix
the problem by splitting the lock L1 into two locks.

We call a performance problem due to unnecessary or in-
efficient synchronization a synchronization bottleneck. Such
bottlenecks occur when multiple threads contend to reach a
synchronization point, such as a lock acquisition, or when
a single or multiple threads need to reach a synchroniza-
tion point before other threads can make progress. The root
cause of a synchronization bottleneck is the CS that causes
the bottleneck and that needs to be changed to avoid it.

Unfortunately, synchronization bottlenecks are difficult to
detect, understand, and address for several reasons. First, a
bottleneck may not manifest with a particular test case and
in a particular execution, e.g., because the workload does not
expose the problem or because it is amortized by the rest of
the execution. As developers cannot be expected to pick the
“right” input and execution to reveal synchronization bottle-
necks, one important challenge is to deal with a multitude of
inputs and executions. Second, when a performance problem

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’16, July 18–20, 2016, Saarbrücken, Germany
c© 2016 ACM. 978-1-4503-4390-9/16/07...$15.00

http://dx.doi.org/10.1145/2931037.2931070

389

manifests, it is hard to isolate synchronization bottlenecks
from other problems, such as intensive I/O. Third, even if a
problem is believed to be a synchronization bottleneck, it is
non-trivial to locate its root cause. Complex multi-threaded
programs may contain several dozens of CSs that involve
dozens of locks, making it difficult to check all of them man-
ually. Finally, not all synchronization-related performance
problems can be easily optimized. For example, a CS may
be needed because the program must synchronize concur-
rent accesses to shared data. To identify bottlenecks that
can be optimized, developers must carefully reason about
the behavior of all expensive CSs and filter those that can
be modified without breaking the semantics of the program.

A promising way to address the above challenges is pro-
filing, but existing approaches only partially address the
problem. For example, Visual Studio’s Concurrency Visu-
alizer [10] provides a time profile that shows the time spent
in different kinds of code segments, such as synchronization,
I/O, and memory management. While effective at reveal-
ing symptoms of synchronization bottlenecks, such as heavy
use of a lock, such approaches fail to link symptoms to their
root causes. For the example in Figure 1a, a profiler based
on idleness measurement reports CS5 as the most problem-
atic CS, because it takes the longest time to be acquired.
However, CS5 is not the root cause, and optimizing it does
not improve performance. A profiler that measures the time
spent inside each CS reports CS2 is the most expensive CS,
because it is the CS in which the most time is spent. Again,
optimizing CS2 does not improve the performance, as CS3
still must wait for CS1 to finish. Another problem is that
profiling is based on individual executions. Manually exam-
ining the profiles of multiple executions is not an effective
way to understand the overall performance because each pro-
file may show different results for the same code segment.
Finally, existing profiling approaches quantify the cost of
synchronization but do not suggest possible optimizations.

This paper presents SyncProf, a profiler that detects syn-
chronization bottlenecks, pinpoints their root cause, and
suggests potential optimization strategies to address them.
Given a program and tests to execute it, the approach dy-
namically analyzes multiple executions of the program and
selects inputs where an increased workload increases the ex-
ecution time while decreasing the CPU utilization. A key
component of the approach is a novel graph representation
of wait relationships between CSs. SyncProf generates a
graph from executions and computes several metrics that
summarize the impact of individual CSs on the overall exe-
cution time. Finally, SyncProf reports a ranked list of likely
root causes of synchronization bottlenecks, along with their
descriptions (e.g., code locations). Furthermore, SyncProf
identifies instances of known bottleneck patterns that are
amenable to particular optimizations, such as removing an
unnecessary lock or splitting a lock, and suggests a specific
optimization strategy for reported bottlenecks. The pre-
sented approach provides several benefits:

• SyncProf considers multiple inputs and executions, au-
tomatically selects those that are likely to expose a
concurrency-related performance problem, and sum-
marizes them into a set of synchronization bottlenecks.

• SyncProf isolates synchronization-related performance
problems from other kinds of performance problems,
providing concurrency-savvy developers a technique to

address these particularly intricate issues.

• SyncProf pinpoints the root cause of bottlenecks, re-
lieving the developer from manually reasoning about
the interactions between multiple locks and CSs. In-
stead, developers can focus on those CSs that will ben-
efit most from optimization.

• SyncProf simplifies the task of optimizing bottlenecks
by suggesting bottleneck-specific optimization strate-
gies. The approach does not fully automatically im-
prove the performance, but it leaves the final decision
if and how exactly to address a synchronization bot-
tleneck to the developer.

We envision the approach to be used in at least two us-
age scenarios. First, a developer that is not aware of any
concurrency bottlenecks in a program may profile the pro-
gram with SyncProf to check if any such bottleneck exists.
Second, a developer that knows that a program suffers from
a concurrency-related bottleneck can use SyncProf to local-
ize the problem. These usage scenarios are similar to tra-
ditional testing and fault localization, respectively, but for
performance problems.

To evaluate the effectiveness of SyncProf, we apply the
approach to popular benchmarks and real-world C/C++
programs with both known and previously unknown syn-
chronization bottlenecks. Our results show that SyncProf
effectively identifies the root causes of these bottlenecks and
suggests profitable optimization strategies. Compared to a
state of the art lock contention profiler, Valgrind’s DRD
tool, SyncProf pinpoints the root cause of a bottleneck with
higher precision: SyncProf summarizes many executions and
requires the developer to inspect between 1 and 3 CSs, whereas
DRD requires the developer to inspect various execution
profiles, most of which rank the root cause at a significantly
lower rank than SyncProf. Addressing the bottlenecks pin-
pointed by our approach yields performance improvements
between 17% and 160%.

In summary, this paper contributes the following:

• A concurrency-focused profiler that detects synchro-
nization bottlenecks, pinpoints their root cause, and
suggests bottleneck-specific optimization strategies.

• A novel graph representation of interactions between
CSs. The graphs provide a generic basis for comput-
ing metrics that summarize the performance impact
of individual CSs on the overall execution time and
for suggesting synchronization bottleneck-specific op-
timization strategies.

• A practical implementation and empirical evidence that
the approach effectively pinpoints performance prob-
lems in real-world C/C++ programs.

2. APPROACH
This section presents SyncProf, a profiling approach that

helps developers to identify, localize, and optimize synchro-
nization bottlenecks. Figure 2 gives an overview of the ap-
proach. The input to the approach is a program and test
cases to exercise the program. Each test case is assumed to
have a parameter to increase its workload, e.g., by increasing
the input size or the number of threads. The approach con-
sists of four parts. First, SyncProf executes the program’s
tests and identifies tests and workload sizes that expose a
synchronization bottleneck. Second, the approach measures

390

T1

T2

T3

T4

T5

2 4 6 8 10

L1

L2 L1

L1

L1

L2

CS1

CS2 CS3

CS4

CS5

CS6

(a) A real-world example

T1

T2

T3

T4

2 4 6 8 10 12 14 16 18 20 22

CS1 CS2

CS3 CS4

CS5 CS6

CS7

(b) Another example

T1 T2 T4

Logical
Clock

1

2

3

4

5

6

7

8

9

10

2/2

4/2

2

[d1, 1] [d2, 2]

[d3, 3]

[d5, 5]

0

11

(c) Nested critical section for (a).

Figure 1: Examples of synchronization bottlenecks and a partial synchronization dependence graph for (a).

Bottleneck detection

Performance impact analysis

Root cause analysis

Suggesting optimization strategies

Program Test cases

Root causes & optimizations

Selected test cases

Impact of critical sections and locks

Likely root causes

Figure 2: Overview of the SyncProf approach.

[d4, 4]

T1 T2 T3 T4

Logical
Clock

2

4

6

8

10

12

14

16

18

20

22

4/4

8/4
4

2/2

4/2

6/2

2
2

[d1, 1]

[d2, 2]

[d3, 3]

[d5, 1]

[d6, 4]

2

[d7, 5]

0

Figure 3: Synchronization dependence graph for
Figure 1b.
the performance impact of CSs and summarizes the impact
of individual CSs across multiple inputs and executions into
a graph. Third, SyncProf uses this summary to identify bot-
tlenecks and their likely root causes. Finally, the approach
matches each identified bottleneck against common bottle-
neck patterns and, if the matching is successful, suggests
an optimization strategy that is likely to address the per-
formance problem. The output of SyncProf is a ranked list
of CSs that are the likely root cause of a synchronization
bottleneck, along with a suggested optimization strategy for
some of the CSs.

2.1 Bottleneck Detection
The first part of SyncProf identifies test cases that expose

synchronization bottlenecks. A test case Tw has a program-
specific parameter w that specifies the size of the workload.
For example, in a file compression program, possible work-

load parameters are the file size and the number of threads;
in a server-side web application, a typical workload parame-
ter is the number of requests per time [3,13,37]; in a database
system, workload parameters may include a variety of at-
tributes, such as the number of database queries per time,
the number of tables, and the number of threads [5].

Given a set of parametrized test cases, SyncProf executes
each test case with an increasing workload size. Identify-
ing synchronization bottlenecks based on these executions is
non-trivial because an increasing execution time is not a suf-
ficient criterion. One reason is that increasing the workload
size is expected to increase the execution time. Another
reason is that synchronization bottlenecks may be hidden
among other time-consuming behavior, especially among ex-
pensive but necessary behavior [66], such as I/O-intensive
operations.

To address this challenge, SyncProf analyzes two symp-
toms of suboptimal performance: execution time and CPU
usage. The approach identifies test cases where increasing
the workload size leads to an increased execution time while
the CPU usage is below a configurable threshold (default:
90%). We perform the following steps for each test case.
At first, the approach executes the test case N times (de-
fault: N = 20) and obtains a set of execution times M =
{t1, t2, . . . , tN} and CPU usage values U = {u1, u2, . . . , uN}.
Repeating test execution is necessary to deal with the non-
deterministic performance behavior of concurrent programs.
Then, SyncProf increases the workload size for the test case
and again executes the test case N times, giving execution
times M′ and CPU usage values U ′. Now, the approach
checks whether the two required symptoms manifest. To
this end, SyncProf performs statistical analysis that check
(1) whether the execution time inM′ are significantly larger
than the times in M, (2) whether the values in U ′ are not
significantly larger than the values in U , and (3) whether the
mean of U ′ is less than 90%. If these conditions hold, then
SyncProf keeps the test case and the workload size for the
remaining parts of the approach. Otherwise, the approach
continues to increase the workload size. The increments of
the workload size are provided along with the tests. For
example, for a database system, one may increase the table
size by 100 in each round. If the symptoms do not mani-
fest after δmax rounds (default: δmax = 20), the approach
discards the test case.

An alternative to our approach would be to identify bot-
tlenecks by measuring the percentage of time spent on syn-
chronization. However, this alternative approach requires
to instrument the program, imposing a significant runtime.

391

Instead, our approach is lightweight, enabling the first part
of SyncProf to consider many tests and workload sizes.

2.2 Performance Impact Analysis
Given a set of test cases that are likely to expose syn-

chronization bottlenecks, the second part of SyncProf com-
putes the performance impact of each CS or lock on the
overall execution time. The performance impact analysis
builds upon a graph representation that summarizes the re-
lations of CSs during a particular execution. To obtain this
graph, SyncProf instruments the program and executes the
test cases identified in the first part of the approach.

2.2.1 Synchronization Dependence Graph

SyncProf summarizes the synchronization-related behav-
ior of a test execution into a graph:

Definition 1. A synchronization dependence graph is a
graph (V,E). V is a set of nodes {d1, d2, . . . di}, where di
is a dynamic instance of a CS. E is a set of directed causality
edges E = {di → dj}, implying dj is waiting for di.

To uniquely identify CSs, SyncProf statically computes an
identifier for each CS. The identifier is based on the entry
and exit instructions of a CS, such as pthread_mutex_lock
and pthread_mutex_unlock. Furthermore, to distinguish
different paths through the CS, SyncProf computes a sepa-
rate identifier for each acyclic control-flow path between the
entry and exit instructions.

A SyDG is a connected or disconnected graph that con-
sists of one or more connected subgraphs. Each subgraph
depicts the dependence among dynamic instances of CSs.

The causality edges are constructed in three categories.
A direct waiting edge reflects that a CS attempts to obtain
the lock that is currently held by another CS. An indirect
waiting edge reflects that di, which originally waits for dj ,
now waits for a new dynamic CS dk. A nested waiting edge
reflects that di, which waits for dj , may also wait for another
dynamic CS dk if dk is waited for by a CS nested within dj .

Figure 3 displays a SyDG with two subgraphs from the ex-
ample of Figure 1b. Each node [di, k] represents a dynamic
instance di of a static CS identifier k. For example, nodes
[d1, 1] and [d5, 1] are two dynamic instances of CS1. The
oval and rectangle shapes indicate two different lock objects.
The vertical dotted line in a thread indicates the time this
thread spent waiting for a CS. The solid lines reflect direct
waiting edges and the dotted lines reflect indirect waiting
edges between two CS instances. For example, [d3, 3] is di-
rectly waiting on [d1, 1] and [d5, 1] is indirectly waiting on
[d3, 3]. Each edge is assigned to a cost value (the edge la-
bels are described later in the section). It is possible that a
thread has to wait for one CS while it is executing another
CS (i.e., nested CSs). Figure 1c displays a partial SyDG for
Figure 1a that involves nested CSs, where the dash-dotted
line indicates a nested waiting edge. Since d2 is the outer
CS of d3, a nested waiting edge (the dashed line) is added
from d1 to the waiter of d2 (i.e., d5).

2.2.2 Constructing the Graph

SyncProf constructs the SyDG for an execution by instru-
menting the program and by analyzing the execution trace.
The trace is a sequence if synchronization events, i.e., ac-
quiring a lock, obtaining a lock, and releasing a lock. Al-
gorithm 4 summarizes the interpretation of the execution
trace. A CS is set to be active on the current thread upon

procedure BuildSyDG (trace)
1: V = φ ; E = φ
2: for each synchronization event e in trace
3: switch e
4: case lock acquire:
5: V.addNode(d)
6: if d is blocked by d′

7: E.addEdge(d′, d)
8: c(d′,d) ← d.t
9: case lock obtain:
10: setActive (d.tid) ← true

11: for each d′ ∈ in(d)
12: c(d, d′) ← c(d, d′) - d.t
13: for each d′′ ∈ (out(d′)/(d, d′))
14: E.addEdge(d, d′′)
15: c(d, d′′) ← d.t

16: c(d′, d′′) ← d.t - c(d′, d′′)
17: for each o ∈ active(d.tid)/d
18: for each d′′ ∈ out(o)
19: E.addEdge(d′, d′′)
20: c(d′,d′′) ← c(d′, d)
21: case lock release:
22: setActive (d.tid) ← false

Figure 4: Algorithm to compute SyDG.

obtaining a lock (line 10) and inactive upon releasing a lock
(line 22). When a lock acquire event is encountered, the
algorithm adds into the SyDG a node d, which represents
the dynamic instance of a CS associated with the current
trace event (line 5).

A direct waiting edge is added when a CS d′ attempts to
obtain the lock which is held by a CS d (line 7). The cost of
the edge c(d, d′) is the time d′ that spends on waiting for d.
The c(d, d′) is temporarily set to the current time (line 8)
until d′ obtains the lock (line 9). When d obtains the lock,
the algorithm iterates through in-going edges of d and finds
out the CSs that d was previously waiting on (i.e., waiters
of d); the cost of each edge is updated by subtracting the
current time from the time when d started waiting (line 12).
In the example of Figure 3, when d5 is entered, the cost of
edge (d1, d5) is 8 (shown on the left of the slash).

Next, the algorithm iterates through each CS d′′ that was
previously waiting on d′ (line 13). An indirect waiting edge
is added from d to d′′ (line 14), indicating that d′′ begins
waiting on d instead of d′. As such, the cost of (d, d′′)
is temporarily set to the current time (line 15), and then
updated when d′′ is entered (line 12). In the meantime,
direct waiting edge (d′, d′′) is updated by subtracting the
current time from the old edge cost (line 16). In the example
of Figure 3, when d3 is entered, an indirect waiting edge
(the dotted line) is added from d3 to d5, indicating that d5
becomes a waiter of both d1 and d3. The cost of a direct
waiting edge (d1, d5) is then reduced from 8 to 4 (shown on
the right of the slash).

To construct SyDGs in the case of nested CSs, the algo-
rithm first iterates through all outer CSs of d by locating
each active CS o (excluding d) on the current thread (line
17). The waiters of o are in turn indirectly waiting on d′. In
Figure 1c, when d3 is entered, the cost of (d1, d3) is updated
to 2. The cost of the nested waiting edge is equal to c(d1,
d3). In the meantime, the cost of edge (d2, d5) is reduced
to to 4 − 2 = 2. Thus, the wait time incurred by T4 is
attributed to both CS1 and CS2.

The timestamps used to construct SyDGs are based on a

392

logical clock, which measures the number of executed condi-
tionals (i.e., direct/indirect calls and direct/indirect branches)
instead of actual wall-clock execution time. The rational for
measuring time through this proxy metric, which is inspired
by [46], is twofold. First, accurately measuring the time
span between two events that are close to each other in time
is challenging due to the limited precision of timestamps
provided by the operating system. As a result, measuring
wall-clock time risks to yield inaccurate and potentially mis-
leading values. Second, as the instrumentation added by
SyncProf influences the execution time of the profiled pro-
gram, measurements of wall-clock execution time may be
distorted. In contrast, the number of executed conditionals
is not influenced by instrumentation.

2.2.3 Performance Impact Metrics

Based on the SyDG of an execution, SyncProf quantifies
the performance impact of CSs and locks. The result of this
step is a set of impact values for each test T , denoted by PIT .
We use PIT,CS to denote the cost value associated with a
particular CS, where CS refers to the unique static CS. Un-
like existing contention measurement approaches [9, 27, 56]
that focus on a specific metric, SyDGs provide a generic rep-
resentation that enables SyncProf to compute multiple met-
rics that summarize the performance impact of CSs. Here,
we introduce three metrics used by SyncProf.

All-path Wait Time (APWT). This metric measures the
performance impact of a CS by aggregating the time spent
by all other threads waiting for the CS:

PIT,CS =
∑

(v∈V (SyDGT)∧v.sid=CS)

∑

e∈out(v)

c(e)

V (SyDGT) are all nodes in SyDGT obtained by exercising
test T , v.sid is the CS identifier, out(v) are the outgoing
edges of v, and c(e) is the cost of an outgoing edge of v.

For example, consider the SyDG constructed for the ex-
ample in Figure 3. The performance impact of CS1 is the
sum of performance impacts across all dynamic instances
(i.e., [d1,1] and [d5,1]) of CS1, that is, PIT,1 = 4 + 4 = 8,
Likewise, PIT,2 = 2 + 2 + 2 = 6.

Critical-path Wait Time (CPWT). Considering wait
time can be effective at identifying synchronization bottle-
necks, the results may be misleading when the synchroniza-
tion bottleneck does not impact the completion time of a
program. To address this problem, the CPWD metric con-
siders the critical path1 [6, 9] of an execution while quan-
tifying the performance impact of a CS. Applying CPWT
requires isolating critical path graphs from other subgraphs
in each SyDG:

Definition 3: A critical path graph is a subgraph of a
SyDG, where the last node of each connected component is
from the last finished thread.

In the example in Figure 3, since T4 is the last finished
thread, the critical path graph contains the nodes d2, d4, d6,
and d7. In contrast to APWT, CPWT concludes that CS2
induces the highest performance impact.

SyncProf also enables developers to combine multiple met-
rics. In this case, the performance impact of a CS is the
mean of the impacts computed by multiple metrics.

All-path Lock Time (APLT). The APWT and CPWT
metrics quantify performance impact for individual CSs. In
1
A path that directly impacts the completion time of a program.

some cases, optimization is done for multiple CSs associated
with the same lock. The APLT metric enables developers
to analyze the performance impact for individual locks. The
APLT measures the total time spent by other threads wait-
ing for L, denoted by PIT,L. Specifically, for each lock object
L, SyncProf locates the nodes in a SyDG associated with L,
and adds up the costs of all their outgoing edges.

In the example in Figure 3, where the two SyDGs in-
volve different locks L1 (top subgraph) and L2 (bottom sub-
graph). Thus, PIT,L1 = 4 + 4 + 4 = 12, and PIT,L2 =
2 + 2 + 2 + 2 + 2 + 2 = 12.

2.2.4 Dealing with Non-Deterministic Performance

Different program executions for one input may expose
different performance properties due to the non-deterministic
behaviors of multi-threaded programs. To mitigate such
non-determinism, SyncProf takes additional executions for
each input and considers only performance impact values
that vary within specified bounds. Specifically, SyncProf as-
sumes a fixed testing budget B for executing all test cases.
Let N be the number of times one can repeat a test case
T within B. SyncProf repeatedly executes test T and cal-
culates PIT,CS for each CS (see Section 2.2.3). At the end
of each repetition, SyncProf accumulates PIT,CS using a set
MT,CS , i.e., MT,CS = {PIT,CS1

, PIT,CS2
, . . . , PIT,CSn

},

where n is the nth repetition and n ≤ N . Next, the standard
deviation of MT,CS is calculated, denoted by σ(PIT,CS).
SyncProfstops repeating executions when σ(PIT,CS) is be-
low a specified threshold δstop or when n reaches the max-
imum value N . By default, SyncProf sets δstop to the per-
centage (σp) of the mean of the Mn, that is, MT,CS ·σp [45].
For the evaluation, we use a testing budget B of 12 hours,
δstop = 0.01, and N = 10.

It is possible that the standard deviation σ(PIT,CS) is
above the specified threshold δstop after the number of rep-
etitions reach N . In this case, SyncProf will report the CS
CS as inconclusive [45] and leave it for manual inspection.
However, we did not find any inconclusive test cases in our
study. The final PIT,CS is the mean of MT,CS , excluding
any inconclusive test cases, i.e., PIT,CS = MT,CS .

2.3 Root Cause Analysis
Given the performance impact values of all critical sec-

tions and tests, SyncProf ranks CSs by their likelihood to
be the root cause of a bottleneck. Each CS corresponds to
a set PICS = {M1,CS ,M2,CS , . . . ,MT,CS} of performance
impact values, where T is the index of a test input. Next,
SyncProf ranks the CSs in terms of the mean of each PICS .
Formally, SyncProf considers CS1 to be more critical than
CS2 if PICS1

> PICS2
. Once CSs are prioritized, SyncProf

enables developers to choose which CSs to optimize and sug-
gests optimization strategies.

Another possible approach is to perform a pairwise anal-
ysis between all CSs and to conclude that one CS is more
performance impact than another when there is a statisti-
cally significant difference. We rejected this idea for two
reasons. First, this approach ranks CSs in a partial order,
which could be difficult for developers to understand. Sec-
ond, conducting multiple hypothesis tests might trigger the
multiple comparison problem and therefore compromise the
validity of the ranking.

393

T1 T2 T3 T4

1
1

3

5

(a) SyDG1

T1 T2 T3 T4

1

2

4

5

(b) SyDG2

T1 T2 T3 T4

r

r

r

r

w

w

(L)

(L)

(L)

(L)

(L)

(L)

4

3

2

1

5

1

(c) USyDG

(L1) (L1)

(L2)

(L1, L2)

(L1)

T1 T2 T3 T4

r

r

r

r

w

w

4

3

2

1

5

1

(d) Updated USyDG

Figure 5: Optimization example.

Table 1: Example of suggested optimization.
CS ID lock object source location action
1 mutex_enter g_lock foo.c: (1, 10) -> L1
3 mutex_enter g_lock foo.c: (21, 29) -> L2
5 mutex_enter g_lock bar.c: (2, 11) -> Remove
6

2.4 Suggesting Optimization Strategies
The final step of SyncProf heuristically suggests optimiza-

tion strategies for the detected synchronization bottlenecks.
We consider three optimizations: unnecessary synchroniza-
tion elimination, lock split, and reader-writer locks. SyncProf
reports descriptions of suggested optimizations, that each
contain a static CS identifier, locks and objects, code loca-
tions, and suggested actions. Table 1 describes a sample out-
put, which indicates that CS1, CS3 and CS5 are protected
by the same lock (i.e., mutex_enter with object g_lock).
This lock can be split into two locks on CS1 and CS3, and
can be removed on CS5.

To obtain such suggestions, SyncProf performs the follow-
ing steps. First, the approach instruments synchronization
operations, CS entry and exit points, and memory reads and
writes. The tests are exercised against the instrumented
program to generate a new set of SyDGs specific for opti-
mization (denoted as SyDGo). The SyDGo is constructed
in the same way as the original SyDG (Section 2.2), except
that a SyDGo does not record or update timestamps. Every
SyDGo node maintains a read set (CSrd) and a write set(
CSwt) that record all memory locations accessed in the CS.
To mitigate runtime overhead, SyncProf instruments only
the top K CSs in the ranking and the CSs that use the
same lock as the K CSs; this information can be retrieved
by analyzing the original SyDGs. The above process of gen-
erating SyDGos is repeated N times. Thus, the number of
traces is |T | ∗ N , where |T | is the number of tests. We set
K = 5 and N = 20 in the evaluation.

Next, SyncProf transforms all SyDGos into a universal
synchronization dependence graph (USyDG). To do this,
for each thread across all SyDGos, the nodes with common
static CS identifiers are merged on this thread, and their
read and write sets are joined, respectively. The incoming
or outgoing points of the associated edges are merged. Fig-
ure 5a and Figure 5b display two SyDGs from two tests t1
and t2. Figure 5c displays the USyDG by merging SyDG1

and SyDG2, where the two CSs (node 1) in T1 are merged
into one node. In the USyDG, r indicates there exists a
shared variable read in a node (i.e., CSrd = {r}), and w

indicates the same shared variable is written (i.e., CSrd =
{r}). The (L) indicates a CS is protected by a lock L.

Identifying Optimization Patterns. To identify optimiz-
able CSs, SyncProf considers three patterns to match with
each pair of connected nodes (m and n) in the USyDG: (1)
null-shared, (2) read-read, and (3) low-degree-conflicts.

The null-shared pattern happens when there exist no shared
memory accesses between two CSs. Two USyDG nodes
match the null-shared pattern if ((CSrdm∪CSwtm) ∩ (CSrdn

∪ CSwtn)) = φ. The read-read pattern refers to the case
where two CSs protected by the same lock access the shared
variable but none of them is a write. This pattern is matched
if (CSrdm ∩ CSwtn = φ) ∧ (CSrdn ∪ CSrdn 6= φ).

Unnecessary Synchronization Elimination. If a pair of
nodes matches either pattern (1) or (2), and if the static CS
identifiers in the pair are not identical, the edge for the pair
is removed. In the example of Figure 5c, edges (T1:1,T2:2),
and (T1:1,T3:4) are removed (updated in Figure 5d), be-
cause they both match the read-read pattern. The edge
(T1:1,T2:1) is not removed because their node identifiers
are identical. Next, for each standalone node in the updated
USyDG, SyncProf suggests to remove the synchronization in
the node, as the node does not have dependences on other
CS nodes. In Figure 5d, node 2 in T2 is removed.

Lock Split. For the remaining connected USyDG nodes,
SyncProf reconstructs lock dependences to suggest fine-grained
locks that guard disjoint sets of shared variables. To do this,
SyncProf first removes the original locks in each node, and
then uses dummy locks to reconstruct its lock set. Specifi-
cally, SyncProf assigns a dummy lock to every node s that
has only outgoing edges. A node t with incoming edges
should be synchronized by the given lock of its source node
s. Thus, the lock set of t is updated by joining with the lock
set of s. In the meantime, the lock sets of all other nodes
with the same identifiers are updated to ensure consistency.
In the example of Figure 5d, node 1 (on T1) is assigned a
new dummy lock L1 and node 4 is assigned a dummy lock
L2. The lock set of node 1 on T2 is also updated to L1.
Next, node 3 and node 5 are updated by joining the lock set
of node 1 (i.e., L1). In the end, the original lock L is split
into two locks so that node 4 does not acquire the same lock
as node 1.

Reader-writer Locks. SyncProf can further suggest reader-
writer locks. To do this, for each node s with a non-empty
write set, SyncProf finds all undirected simple paths start-
ing from s. If all nodes except s in a path have common
node identifiers, and if the write sets of these nodes are all
empty, the node identifier is a reader of s. In Figure 5d,
<3:T3, 1:T1, 1:T2> is a simple path starting from node 3.

394

In fact, node 1 is a reader of node 3 and can be executed
concurrently. Thus, node 1 and node 3 can be protected by
a reader-writer lock.

The low-degree-conflicts is a special pattern that indicates
that two CSs protected by the same lock both read and write
to a shared memory, but such conflicting accesses occur very
infrequently. To identify the degree of conflicts between two
CSs, SyncProf measures the percentage of two consecutive
executions of a CS pair that matches either pattern (1) or
pattern (2) (i.e., a non-conflicting access pattern) over all
consecutive executions of the pair. If the percentage exceeds
a threshold δdeg, the CS pair matches the low-degree-write
pattern. We set δdeg = 80% as a default.

In practice, it is almost impossible to suggest concrete
optimizations for the low-degree-write pattern, as it often
depends on program design and thus requires developers’
knowledge to optimize the code. For example, developers
may choose to reduce the size of CSs, set flags to enable
synchronizations under certain condition, applying specific
data structures (e.g., non-blocking algorithm [35]). In this
case, SyncProf only reports CSs that match pattern (3), and
leaves them for developers to investigate.

3. IMPLEMENTATION
SyncProf is implemented on top of the PIN instrumen-

tation framework [33]. To obtain CS identifiers, we use
CodeSurfer

2 to perform context-sensitive and flow-sensitive
analysis that enumerates paths enclosed in each CS. The in-
strumentation considers entry and return instructions of all
synchronization operations, event types, identifiers of syn-
chronization objects, and identifiers of thread and memory
accesses. All these events are recorded using APIs provided
by PIN. When a test run completes, a SyDG along with its
runtime information is recorded into a trace file, which is
fed into the analysis modules for further processing.

4. EVALUATION
We apply SyncProf to several C/C++ programs to ad-

dress four research questions:

RQ1: How effective is SyncProf at identifying synchroniza-
tion bottlenecks?

RQ2: How does SyncProf compare to a state-of-art profiler?

RQ3: How effective is SyncProf at suggesting profitable
optimizations?

RQ4: How efficient is SyncProf?

4.1 Experimental Setup

Benchmark Programs. Table 2 lists the C/C++ programs
we use in the evaluation. We use programs with known bot-
tlenecks to evaluate whether SyncProf identifies them and
suggests profitable optimizations. We also use the latest
program versions to evaluate whether SyncProf detects pre-
viously unknown synchronization bottlenecks.

The first six programs are benchmark programs used by
others to study concurrency and performance [9, 25, 42, 43,
49,64]. Only the first four benchmark programs have previ-
ously known bottlenecks [9,49,64]. The remaining programs
are different versions of popular open source projects. To
obtain known bottlenecks, we searched the project’s issue
trackers for synchronization-related problems and randomly

2
http://www.grammatech.com/products/codesurfer/overview.html

Table 2: Benchmark programs.

Program NLOC Issue T Tsel CS CScov OBJ OBJcov

UTS 4.9K [9] 16 8 17 17 [8, 14] 6 6 [6, 6]
Radio. 8.2K [9] 22 14 54 54 [21, 32] 6 6 [6, 6]
Ocean 2.6K [24] 44 21 44 44 [25, 30] 15 15 [13,15]
Barnes 2.0K [64] 12 9 12 12 [9, 12] 4 4 [4, 4]
Cholesky∗ 3.7k - 21 12 6 6 [5,6] 4 4 [4, 4]
FMM∗ 3.2k - 26 0 28 28 [21, 24] 9 9 [9, 9]

MySQL1 199K 38941 98 31 870 220 [52, 67] 156 25 [17, 19]
MySQL2 236.9K 62018 98 29 264 82 [29, 40] 34 28 [21, 24]
MySQL3 315.5K 73361 94 32 462 118 [35, 48] 67 38 [24, 30]
MySQL4 413.7K 75534 83 21 556 122 [30, 39] 38 23 [17, 22]
MySQL5 398.0K 72829 85 24 322 98 [25, 29] 73 42 [29, 35]
MySQL6 422.8K 76509 91 43 324 105 [32, 42] 38 28 [20, 23]
MySQL7 427.8K 76686 102 25 333 109 [28, 45] 40 28 [20, 22]
MySQL8 315.5K 77094 100 25 329 102 [32, 40] 73 45 [29, 38]
MySQL9∗ 443.1K - 112 28 336 114 [35, 48] 76 49 [31, 39]

Firefox1 1,120K 733277 42 15 87 45 [34, 39] 23 16 [10, 13]
Firefox2 1,258K 488148 40 11 88 40 [29, 36] 31 15 [9, 13]
Firefox3 1,223K 121523 39 12 82 41 [20, 32] 28 15 [8, 12]
Firefox4∗ 2,169K - 45 0 196 90 [39, 71] 35 22 [15, 20]

NLOC=#lines of code. Issue=known synchronization bottleneck, T
and Tsec=#(selected) test cases. CS and CScov=#(covered)
critical sections with 95%-confidence intervals. OBJ and
OBJcov=#(covered) synchronization objects with 95%-confidence
intervals.

selected ten MySQL issues from the latest two major ver-
sions (i.e., 5.6.x and 5.7.x) and three Firefox issues. We
could reproduce eleven issues in our environment (MySQL1
to MySQL8 and Firefox1 to Firefox3). In addition, we also
include the latest versions of MySQL (5.7.10) and Firefox
(44.0b9), listed as MySQL9 and Firefox4. Before applying
SyncProf, we did not know any bottlenecks in these versions,
indicated by ∗.

Test Cases. Table 2 gives the number of test cases for each
program. For the benchmark programs, the workload can be
specified as small, medium, or large. For MySQL, we use two
existing test suites that trigger requests to the database: (i)
mysqlslap, where the workload size is the number of queries,
writes, indexes, and threads; (ii) sysbench, where the work-
load size is the number of tables, the table size, and the
number of threads. For Firefox, we write Selenium tests
that open multiple tabs with popular web sites simultane-
ously. The workload size is the number of requested sites.

Previously Unknown, Optimizable Bottlenecks. To eval-
uate whether SyncProf finds bottlenecks that are not among
those known to us before running the profiler, we manually
inspect reported code locations. If this inspection suggests
that a bottleneck can be optimized, we check whether the
code has been optimized by the developers in a later version
of the program. If not, we patch the program as suggested
by SyncProf and run its test cases. We consider an opti-
mization is valid if it does not fail any test case and if it
improves performance.

Comparison with Valgrind Lock Contention Profiler.
To answer RQ2, we compare SyncProf to the Valgrind lock
profiling tool DRD [14]. We choose DRD as a baseline be-
cause it is available as open source. DRD profiles individual
test executions and does not select tests or summarize their
behavior.

Evaluating Effectiveness of SyncProf in Suggesting Op-
timizations. To answer RQ3, we compare the optimiza-
tion strategy suggested by SyncProf to the known optimiza-

395

tions. We determine whether SyncProf’s suggestion matches
a known optimization by manually comparing the known op-
timization to the suggestion.

Threats to Validity. The primary threat to external va-
lidity for this study involves the representativeness of our
objects and test cases. Other objects and test cases may
exhibit different behaviors and cost-benefit tradeoffs. How-
ever, we do reduce this threat to some extent by using sev-
eral varieties of well studied open source code objects for
our study, and test suites generated by practical approaches.
Though generating performance test cases is not the focus
of this work, it is true that different test cases may cause
the programs to exhibit different behaviors.

The primary threat to internal validity for this study is
possible faults in the implementation of our approach and in
the tools that we use to perform evaluation. We controlled
for this threat by extensively testing our tools and verifying
their results against a smaller program for which we can
manually determine the correct results.

Where construct validity is concerned, it is true that op-
timizing bottlenecks can be subjective. To mitigate this
threat, we used the developers’ fixes for the reported issues
as the ground truth to assess our approach.

4.2 Results and Analysis

4.2.1 RQ1: Effectiveness in Localizing Bottlenecks

To answer RQ1, we compare the ranked list of CSs re-
ported by SyncProf with the critical section CSopt and the
lock Lopt that are improved in the known and previously
unknown but beneficial optimizations. The higher the ap-
proach ranks CSopt and Lopt, the quicker the developer lo-
calizes the program location to optimize. While the size of
CSs may also affect the manual effort required by develop-
ers, CSs are usually short. Based on a calculation on all
programs, the CS size ranges from 2 to 52 lines of code,
with an average of 10. Table 3 lists the bottlenecks identi-
fied by SyncProf (MySQL4-1 and MySQL4-2 indicate two
bottlenecks found in MySQL4 (V 5.7.5)). FMM and Fire-
fox4 are not listed because no synchronization bottlenecks
are detected or have been known. The first block of columns
shows the rank by the three metrics of SyncProf. The num-
bers in parentheses indicate the percentage of CSs (locks)
that the developer would have to inspect among all executed
CSs (locks) in the program.

SyncProf found two previously unknown and valid bot-
tlenecks in Cholesky and MySQL9. We reported the bot-
tleneck to the MySQL developers (bug #80101). SyncProf
found another bottleneck that was previously unknown to
us (MySQL4-2); it has been fixed independently of us in the
next version of MySQL.

For all 18 detected bottlenecks, SyncProf guides the pro-
grammer to the desired CS by examining at most 5% of all
CSs. In fact, for nine of 18 bottlenecks using the CPWT
metric, the root cause is ranked first among all CSs. For
four out of 18 bottlenecks, the CPWT metric is more ef-
fective than the APWT metric. For the other bottlenecks,
the CSs that introduces significant performance impact are
executed in short-execution threads. For 15 of 18 bottle-
necks, the lock is ranked as the first among all locks using
the APLT metric. We conclude that SyncProf is effective
at pinpointing the root cause of synchronization bottlenecks
and that the critical path metrics are particularly effective.

Usefulness of Selecting Bottleneck-exposing Tests. We
also evaluated whether the step of selecting bottleneck-exposing
test cases impacts the effectiveness of SyncProf (“Rank by
SyncProf w/o selection” of Table 3). Without this step,
SyncProf was less effective for twelve out of 18 bottlenecks
using the CPWT metric, showing that the test selection step
is beneficial.

4.2.2 RQ2: Comparison with Existing Profiler

To compare SyncProf with the existing DRD profiler, we
consider the ranked list of CSs that DRD reports as potential
bottlenecks. In contrast to our approach, DRD does not
summarize the profiling results of multiple test cases, leaving
the task of picking the“right” test case to the developer. For
a fair comparison, we run DRD on all test cases and compute
the numberN of CSs to inspect before hitting the desired CS
for each run. Columns “MAX” and “AVG” of Table 3 show
the maximum and average number of CSs over all analyzed
runs, respectively. The next column shows the confidence
interval of N over all analyzed runs, indicating the range in
which N is likely to be.
We compare SyncProf to DRD by comparing how many

CSs a developer must inspect to find the root cause of a bot-
tleneck. For SyncProf, we use a ranking that combines the
performance impacts reported by both APWT and CPWT
(column “AVG” in the first block). For DRD, we consider
the average rank at which the root cause CS appears across
all profiled executions. All rankings provided by SyncProf
are strictly more effective in pinpointing the root cause than
DRD. For example, for MySQL2, SyncProf reports the de-
sired CS at rank one or three (depending on the metric),
whereas DRD is likely to rank the CS at a position between
4.0 and 9.2, with an average rank of 6.8. To summarize the
increase in precision of SyncProf over DRD, we compute for
each program how much SyncProf reduced the number of
CSs to inspect compared to DRD, and compute the geomet-
ric mean across all bottlenecks. Overall, SyncProf reduced
the number of CSs to inspect by an average of 55%.

These results confirm two design decision of our approach.
First, quantifying the wait time of CSs alone, as done by
DRD, is not enough to evaluate the performance impact of
CSs. Second, summarizing performance impact across test
executions simplifies localizing bottlenecks.
4.2.3 RQ3: Effectiveness in Suggesting Optimizations

Table 4 lists the concrete optimizations and their detected
patterns (1. null-shared, 2. read-read, and 3. low-degree-
conflicts) separated by commas. The notation “-” indicates
that a pattern is not found or a concrete optimization cannot
be suggested. The “strikeout” line indicates a change that
breaks the program’s semantics. Column 3 lists the fixes for
the known issues. The notation “X” indicates the suggested
optimization matches with the real fix. The last column
lists the performance improvements after applying the opti-
mizations. The performance improvement is calculated by
averaging the improvements across all bottleneck-exposing
test cases. To mitigate non-determinism, we ran each test
case ten times.

As Table 4 shows, SyncProf finds optimization patterns in
14 out of 18 bottlenecks. For the 14 optimizable bottlenecks,
SyncProf suggested nine concrete optimizations; seven of
them matched the ground truth and were beneficial. Ap-
plying the optimizations led to performance improvements
between 17% and 160%. We further explain these results in

396

Table 3: Effectiveness and efficiency in localizing bottlenecks.

Bottleneck Rank by SyncProf (%) Time Rank by SyncProf w/o selection Time Rank by DRD Time

CPWT APWT APLT AVG (min) CPWT APWT APLT (min) MAX AVG Conf. Int. (min)

UTS 1 (0) 1 (0) 1 (0) 1 (0) 49.5 2 (0.9%) 2 (0.9%) 2 (0.9%) 86.1 3 1.3 [1.2, 2.4] 22.5
Radio. 1 (0) 1 (0) 1 (0) 1 (0) 38.6 1 (0) 1 (0) 1 (0) 64.3 3 1.2 [1.1, 1.5] 20.8
Ocean 1 (0) 2 (2.3%) 1 (0) 1 (0) 13.2 2 (2.3%) 2 (2.3%) 1 (0) 85.2 4 2.5 [1.8, 3.2] 30.3
Barnes. 1 (0) 1 (0) 1 (0) 1 (0) 44.5 1 (0) 1 (0) 1 (0) 50.2 5 3.2 [2.1, 3.6] 19.3
Cholesky∗ 1 (0) 1 (0) 1 (0) 1 (0) 36.0 2 (16.7%) 2 (16.7%) 2 (25%) 52.2 3 1.3 [1.2, 1.5] 15.3

MySQL1 2 (0.5%) 2 (0.5%) 1 (0) 2 (0.5%) 289.3 2 (0.5%) 3 (0.9%) 1 (0) 783.2 7 3.6 [2.9, 5.2] 290.0
MySQL2 1 (0) 3 (2.4%) 1 (0) 3 (2.4%) 288.4 2 (1.2%) 3 (2.4%) 2 (3.5%) 892.2 11 6.8 [4.0, 9.2] 282.4
MySQL3 1 (0) 1 (0) 1 (0) 1 (0) 281.5 1 (0) 1 (0) 1 (0) 832.2 5 1.5 [1.1, 2.9] 285.3
MySQL4-1 2 (0.8%) 2 (0.8%) 1 (0) 2 (0.8%) 240.2 4 (2.5%) 3 (1.6%) 1 (0) 450.4 11 4.3 [2.9, 9.8] 202.7
MySQL4-2 5 (3.3%) 5 (3.3%) 3 (8.7%) 5 (3.3%) 240.2 6 (4.1%) 7 (4.9%) 4 (13%) 450.4 11 8.1 [6.4, 9.9] 202.7
MySQL5 1 (0) 1 (0) 1 (0) 1 (0) 224.5 2 (1%) 2 (1%) 1 (0) 800.3 5 2.9 [2.5, 3.4] 198.6
MySQL6 2 (1%) 3 (1.9%) 1 (0) 3 (1.9%) 221.4 3 (1.9%) 4 (2.9%) 1 (0) 462.5 12 5.2 [3.7, 9.4] 208.7
MySQL7 2 (0.9%) 2 (0.9%) 1 (0) 2 (0.9%) 312.5 3 (1.8%) 3 (1.8%) 1 (0) 1198.4 8 3.3 [2.2, 5.3] 300.0
MySQL8 3 (2%) 3 (2%) 2 (2.2%) 3 (2%) 256.4 3 (2%) 3 (2%) 2 (2.2%) 999.5 14 8.2 [5.5, 11.8] 228.4
MySQL9∗ 3 (1.8%) 3 (1.8%) 2 (2.2%) 3 (1.8%) 340.0 5 (3.5%) 5 (3.5%) 2 (2.2%) 1198.4 14 8.2 [5.5, 11.8] 320.8

Firefox1 1 (0) 1 (0) 1 (0) 1 (0) 239.4 2 (2.2%) 2 (2.2%) 1 (0) 618.5 6 3.0 [1.8, 5.4] 180.3
Firefox2 2 (2.5%) 3 (5%) 1 (0) 3 (5%) 198.5 2 (2.5%) 3 (5%) 1 (0) 600.3 13 9.1 [6.4, 10.2] 182.5
Firefox3 3 (2.2%) 3 (2.2%) 1 (0) 3 (2.2%) 185.2 5 (4.4%) 5 (4.4%) 3 (9.1%) 592.4 13 8.3 [6.4, 10.2] 169.3

Table 4: Effectiveness in suggesting optimizations.

Bottleneck Suggested optimization Ground truth Imp.

UTS -, (3) nonblocking queue 17%
Radio. -, (3) nonblocking queue 20%
Ocean -, - shrinking critical sections 22%
Barnes. -, (3) increase lock array 21%
Cholesky.∗ -, (3) nonblocking queue 19%

MySQL1 -, - replace a random generator 80%
MySQL2 lock split, (1,2) X 160%
MySQL3 lock elimination, (2) X 125%
MySQL4-1 lock split, (1,2) X 140%
MySQL4-2 use reader locks, (2) X 21%
MySQL5 lock split, (1,2) X 40%
MySQL6 locks elimination,(1,2) set conditions 18%
MySQL7 -, (3) partition accesses 21%
MySQL8 -, - add an additional buffer 42%
MySQL9∗ locks elimination,(2) set conditions 22%

Firefox1 lock split, (1,2) X 40%
Firefox2 lock split, (1,2) X 28%
Firefox3 -, (3) partition accesses and CS split 95%

four categories.

Patterns Found and True Optimizations Suggested. For
seven bottlenecks, SyncProf finds optimization patterns and
suggests optimizations that match the ground truth. For ex-
ample, in MySQL3, when a dummy table is created, the CS
protected by the zip_pad.mutex lock is a top synchroniza-
tion bottleneck. SyncProf detected several read-read pat-
terns for this CS, and suggests to remove the lock. Like-
wise, on MySQL4-2, the lock used in the update_on_commit
is suggested to be replaced with a reader lock.

In MySQL2, MySQL4-1, MySQL5, Firefox1, and Fire-
fox2, the optimizations involve splitting the locks for finer-
grained locking. For example, in MySQL4-1, the buffer pool
mutex that protects a number of CSs was suggested to split
into four different mutex objects.

Patterns Found and Optimizations Not Suggested. For
five bottlenecks, SyncProf detected optimization patterns
involving low-degree conflicts but does not suggest optimiza-
tions targeting specific CSs. For example, on UTS, Radiosity
and Cholesky, the shared queue is protected by a lock, but
the conflict accesses rarely happen. This bottleneck can be
optimized with a non-blocking queue algorithm. In Barnes,
a lock array is too small to support fine-grained locking,
which can be optimized by increasing the array index [64].

Suggesting concrete optimizations for the above bottlenecks
requires a deep understanding of the semantics of the pro-
grams.

In MySQL7, the threads waiting for a condition variable
are simultaneously waken up and contend to enter the same
CS. This CS rarely involves conflicting accesses. The real
fix is to use separate condition variables to wake up threads
in multiple phases. In Firefox3, the optimization is to par-
tition the session lock into a bucket of locks, and each lock
is indexed in different sessions. Again, these optimizations
require the developer’s knowledge.

Patterns Found and Optimization Falsely Suggested.
In MySQL6, a CS is used to examine a list of plugins. Since
no plugins are installed in the tested program, SyncProf de-
tected several read-read patterns in this CS. However, con-
flicting accesses may occur when plugins are installed. The
real fix is to use counters to track the loading and unloading
of each plugin and to enable the lock when the counter is
not zero. Suggesting such optimizations requires additional
software components.

In MySQL9, SyncProf detected several read-read patterns
in the CS of the function lock_trx_release_locks. SyncProf
suggests to remove the lock. However, the bottleneck is only
exposed with read-only transactions; conflicts may still oc-
cur for write transactions. After manually examining the
code, we suggested to check whether a transaction is read-
only, and returns without acquiring the lock. We reported
this optimization to the MySQL developers.

Patterns Not Found. For two bottlenecks, SyncProf could
not match any optimization patterns. In Ocean, the real
optimization is to reduce the amount of code in the CS to
eliminate unnecessary lock acquire attempts [24]. The other
case occurred on MySQL8, where the two logging functions
(commit and write) both use the log_sys->mutex lock to
write to a buffer. The real optimization is to use two dif-
ferent buffers, so the commit and write functions execute
concurrently.

Both of the above cases require developer knowledge to
find the optimizations. However, SyncProf is still beneficial
because it identifies synchronization bottlenecks and can re-
lieve developers from manually locating the problems before
getting to specific optimizations.

397

4.2.4 RQ4: Efficiency of SyncProf

The “Time” columns in Table 3 show the total analysis
time of SyncProf, SyncProf without the first step that se-
lects test cases, and DRD. Without the first step of the
approach, the analysis is significantly higher because up to
four times more test cases need to be executed and summa-
rized, whereas selecting test cases accounts for less than 2%
of the overall analysis time. The efficiency of DRD is similar
to that of SyncProf. For some programs, DRD require less
analysis time than SyncProf, primarily because it does not
need additional runs for test summarization. However, this
slight advantage in efficiency is outweighed by SyncProf’s
improvements in effectiveness (Section 4.2.2).

The runtime overhead for binary instrumentation was about
10x for open source projects, and 4x for the benchmark pro-
grams. If the search for optimizations was enabled, the over-
head was up to 60x for open source projects, and 100x for the
memory intensive benchmark programs. These overheads
are in the same order of magnitude as that of other profil-
ers [20,41]. We consider these overheads to be acceptable for
in-house performance profiling, which is the intended usage
scenario of SyncProf.

5. DISCUSSION
It is possible that optimizing a CS introduces a new bot-

tleneck due to CS reordering. We controlled for this threat
by verifying whether the optimization can improve overall
performance. Another potential problem is the overhead of
profiling. To avoid the problem that profiling influences the
performance and may distort the profiling results, we do
not measure wall-clock time. Instead, SyncProf uses a log-
ical clock that counts the number of evaluated conditionals
(see Section 2.2.2).

SyncProf may fail to detect a problem if the bottleneck CS
is not exercised by the existing test cases. Also, SyncProf
may suggest incorrect optimizations that can affect program
correctness (e.g., data races due to lock elimination). In our
study, the reason for the incorrect suggestions is that the test
cases do not exercise all CSs needed for precise optimization.
In addition, without using all inputs, the performance im-
pact reported by SyncProf may be different from that in
the deployed environment. Work on automated test input
generation may address these limitations.

6. RELATED WORK
Several profiling techniques identify and accelerate syn-

chronization bottlenecks using software and hardware ap-
proaches [9, 15, 17, 27, 32, 36, 56]. These techniques focus on
individual executions. For example, Tallent et al. [56] use
an idleness metric to locate the threads that are responsi-
ble for the idleness, so the threads can be accelerated by
the hardware. Dynatrace [15] and Intel Vtune [1] report
lock contention by computing thread synchronization time.
Similar to DRD, they analyze individual execution, whereas
SyncProf identifies summarizes the performance impact of
each CS across multiple executions. None of the existing
techniques tracks indirect or nested dependences of CSs,
which may lead to imprecise results. Moreover, none of the
above techniques suggests optimizations.

Other research finds performance problems through dy-
namic analysis [2,23,26,41] or static pattern matching [51].
For example, MemoizeIt [57] detects repeated method calls
that can be optimized through memoization. StackMine

mines call stack traces to discover call sequences with a high
performance impact [23]. While the above techniques are in-
spiring and effective, they focus on sequential programs.

Several approaches analyze concurrency-related performance
issues [12,22,45,62,66,66]. For example, SpeedGun [45] gen-
erates multi-threaded performance test cases to expose per-
formance differences between two program versions. Yu et
al. [66] propose a trace-based dynamic approach to identify
general performance problems (including lock contention)
and report root causes. Wert et al. [62] characterize symp-
toms of performance problems, which can be used to deter-
mine a specific type of issue, such as synchronization-related
performance problems. However, none of the above tech-
niques localizes the root cause of a bottlenecks or suggests
optimizations.

Some techniques optimize critical sections or locks to im-
prove performance [12, 47, 48, 55, 67]. For example, Lock
Elision (LE) [47, 48] uses a hardware approach to dynam-
ically remove unnecessary locks. However, this approach
does not localize bottlenecks or suggest optimizations at the
code level. Curtsinger et al. [12] use a causal profiling ap-
proach to identify code with optimization opportunities. It
requires developers to insert progress/delay points at the
start and end of an event of interest (e.g., a transaction).
Again, this approach uses single inputs and does not sug-
gest optimizations. However, we may build upon their work
to predict the benefits of optimization.

There has been some work on using lock-related graphs
to achieve different goals [21, 30, 50, 61, 66]. For example,
the wait-for graph and its extensions have been widely used
to detect deadlocks [30, 50, 61]. Yu et al. [66] propose a
wait graph to identify general performance problems in de-
vice drivers. Our SyDG approach is different in several as-
pects. First, the SyDG specifically targets synchronization
bottlenecks and thus can effectively help developers identify
ineffective synchronization usage. Second, a SyDG models
several types of causal-edges, which can precisely compute
the performance impact of CSs. Third, the SyDG provides a
generic basis for computing multiple performance metrics.

7. CONCLUSIONS
We present SyncProf, a concurrency-focused performance

profiler that helps developers identify synchronization bot-
tlenecks, localize their root cause, and find suitable opti-
mizations. The approach summarizes the performance be-
havior from multiple inputs and executions into a ranked list
of critical sections. A key ingredient of SyncProf is a novel
graph representation of the wait relations between critical
sections, which provides a generic basis for metrics that sum-
marize the performance impact of critical sections and for
suggesting bottleneck-specific optimization strategies. Our
study shows that the approach successfully identifies and
localizes both existing and previously unknown bottlenecks,
and that it suggests effective optimization strategies for most
of them. Given the increasing need for efficient concurrent
software, we consider our work to be a useful contribution
to the developer’s toolbox.

Acknowledgments. We thank the anonymous reviewers for

their valuable feedback. This research is supported in part by the

NSF grant CCF-1464032, by the German Research Foundation

within the Emmy Noether project “ConcSys” and by the German

Federal Ministry of Education and Research and the Hessian Min-

istry of Science and the Arts within “CRISP”.

398

8. REFERENCES

[1] IntelR© vtuneTMamplifier xe, 2014.
http://software.intel.com/en-us/articles/intel-vtune-
amplifier-xe/.

[2] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy.
Finding and removing performance bottlenecks in
large systems. In ECOOP, 2004.

[3] M. F. Arlitt and C. L. Williamson. Web server
workload characterization: The search for invariants.
In SIGMETRICS, pages 126–137, 1996.

[4] C. Artho, K. Havelund, and A. Biere. High-level data
races. Softw. Test. Verif. Rel., 13:207–227, 2003.

[5] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker.
Software performance testing based on workload
characterization. In WOSP, pages 17–24, 2002.

[6] P. Barford and M. Crovella. Critical path analysis of
tcp transactions. TON, 9:238–248, 2001.

[7] M. D. Bond, K. E. Coons, and K. S. McKinley.
PACER: proportional detection of data races. In
PLDI, pages 255–268, 2010.

[8] S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. In ASPLOS,
pages 167–178, 2010.

[9] G. Chen and P. Stenstrom. Critical lock analysis:
Diagnosing critical section bottlenecks in
multithreaded applications. In SC, pages 71:1–71:11,
2012.

[10] Diagnosing Lock Contention with the Concurrency
Visualizer, 2010. Microsoft MSDN.

[11] K. E. Coons, S. Burckhardt, and M. Musuvathi.
GAMBIT: effective unit testing for concurrency
libraries. In PPOPP, pages 15–24, 2010.

[12] C. Curtsinger and E. D. Berger. Coz: Finding code
that counts with causal profiling. In SOSP, pages
184–197, 2015.

[13] D. Draheim, J. Grundy, J. Hosking, C. Lutteroth, and
G. Weber. Realistic load testing of web applications.
In CSMR, pages 11 pp.–70, 2006.

[14] DRD: a thread error detector, 2015.
http://valgrind.org/docs/manual/drd-manual.html.

[15] Identify Thread Contention, 2015.
https://community.dynatrace.com.

[16] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and
H.-J. Boehm. Ifrit: Interference-free regions for
dynamic data-race detection. In OOPSLA, pages
467–484, 2012.

[17] S. Eyerman and L. Eeckhout. Modeling critical
sections in amdahl’s law and its implications for
multicore design. In ISCA, pages 362–370, 2010.

[18] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In
POPL, pages 256–267, 2004.

[19] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In PLDI, pages 338–349, 2003.

[20] L. Gong, M. Pradel, and K. Sen. JITProf: Pinpointing
JIT-unfriendly JavaScript code. In FSE, pages
357–368, 2015.

[21] J. N. Gray, R. A. Lorie, and G. R. Putzolu.
Granularity of locks in a shared data base. In VLDB,
pages 428–451, 1975.

[22] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu. What
change history tells us about thread synchronization.
In FSE, pages 426–438, 2015.

[23] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie.
Performance debugging in the large via mining
millions of stack traces. In ICSE, pages 145–155, 2012.

[24] M. Heinrich and M. Chaudhuri. Ocean warning:
Avoid drowning. SIGARCH Comput. Archit. News,
31(3):30–32, 2003.

[25] W. Heirman, T. Carlson, S. Che, K. Skadron, and
L. Eeckhout. Using cycle stacks to understand scaling
bottlenecks in multi-threaded workloads. In IISWC,
pages 38–49, 2011.

[26] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance
bugs. In PLDI, pages 77–88, 2012.

[27] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt.
Bottleneck identification and scheduling in
multithreaded applications. In ASPLOS, pages
223–234, 2012.

[28] S. Joshi, S. K. Lahiri, and A. Lal. Underspecified
harnesses and interleaved bugs. In POPL, pages
19–30, 2012.

[29] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static
data race detection for concurrent programs with
asynchronous calls. In FSE, pages 13–22, 2009.

[30] E. Koskinen and M. Herlihy. Dreadlocks: Efficient
deadlock detection. In SPAA, pages 297–303, 2008.

[31] Ongoing work on lock contention in qemu driver,
2013. https://www.redhat.com/archives/libvir-
list/2013-May/msg01247.html.

[32] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: Migrating
critical-section execution to improve the performance
of multithreaded applications. In USENIX ATC, pages
6–6, 2012.

[33] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI,
pages 190–200, 2005.

[34] D. Marino, M. Musuvathi, and S. Narayanasamy.
LiteRace: effective sampling for lightweight data-race
detection. In PLDI, pages 134–143, 2009.

[35] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In PODC, pages 267–275, 1996.

[36] B. Miller, M. Clark, J. Hollingsworth, S. Kierstead,
S.-S. Lim, and T. Torzewski. Ips-2: the second
generation of a parallel program measurement system.
TPDS, pages 206–217, 1990.

[37] D. Mosberger and T. Jin. Httperf—a tool for
measuring web server performance. SIGMETRICS
Perform. Eval. Rev., 26(3):31–37, 1998.

[38] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
Heisenbugs in concurrent programs. In OSDI, pages
267–280, 2008.

[39] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective
static deadlock detection. In ICSE, pages 386–396,
2009.

[40] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and

399

D. Marinov. Ballerina: Automatic generation and
clustering of efficient random unit tests for
multithreaded code. In ICSE, pages 727–737, 2012.

[41] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
Detecting performance problems via similar
memory-access patterns. In ICSE, pages 562–571,
2013.

[42] E. Novillo and P. Lu. A case study of selected splash-2
applications and the sbt debugging tool. In IPDPS,
pages 290.2–, 2003.

[43] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan,
P. Sadayappan, and C.-W. Tseng. Uts: An unbalanced
tree search benchmark. In LCPC, pages 235–250, 2007.

[44] M. Pradel and T. R. Gross. Fully automatic and
precise detection of thread safety violations. In PLDI,
pages 521–530, 2012.

[45] M. Pradel, M. Huggler, and T. R. Gross. Performance
regression testing of concurrent classes. In ISSTA,
pages 13–25, 2014.

[46] M. Pradel, P. Schuh, G. Necula, and K. Sen.
EventBreak: Analyzing the responsiveness of user
interfaces through performance-guided test generation.
In OOPSLA, 2014.

[47] R. Rajwar and J. R. Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. In MICRO, pages 294–305, 2001.

[48] A. Roy, S. Hand, and T. Harris. A runtime system for
software lock elision. In EuroSys, pages 261–274, 2009.

[49] B. Sahelices, P. Ibáñez, V. Viñals, and J. M. Llabeŕıa.
A methodology to characterize critical section
bottlenecks in dsm multiprocessors. In Euro-Par,
pages 149–161, 2009.

[50] M. Samak and M. K. Ramanathan. Trace driven
dynamic deadlock detection and reproduction. In
PPoPP, pages 29–42, 2014.

[51] M. Selakovic and M. Pradel. Performance issues and
optimizations in JavaScript: An empirical study. In
ICSE, 2016.

[52] K. Sen. Effective random testing of concurrent
programs. In ASE, pages 323–332, 2007.

[53] K. Sen. Race directed random testing of concurrent
programs. In PLDI, pages 11–21, 2008.

[54] O. Shacham, N. Bronson, A. Aiken, M. Sagiv,
M. Vechev, and E. Yahav. Testing atomicity of
composed concurrent operations. In OOPSLA, pages
51–64, 2011.

[55] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A
performance analysis framework for identifying
potential benefits in GPGPU applications. In PLDI,
pages 11–22, 2012.

[56] N. R. Tallent, J. M. Mellor-Crummey, and
A. Porterfield. Analyzing lock contention in
multithreaded applications. In PPoPP, pages 269–280,
2010.

[57] L. D. Toffola, M. Pradel, and T. R. Gross.
Performance problems you can fix: A dynamic analysis
of memoization opportunities. In OOPSLA, 2015.

[58] W. Visser, K. Havelund, G. P. Brat, S. Park, and
F. Lerda. Model checking programs. Autom. Software.
Eng., 10(2):203–232, 2003.

[59] C. von Praun and T. R. Gross. Static conflict analysis
for multi-threaded object-oriented programs. In PLDI,
pages 115–128, 2003.

[60] L. Wang and S. D. Stoller. Accurate and efficient
runtime detection of atomicity errors in concurrent
programs. In PPOPP, pages 137–146, 2006.

[61] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In OSDI, pages 281–294,
2008.

[62] A. Wert, J. Happe, and L. Happe. Supporting swift
reaction: Automatically uncovering performance
problems by systematic experiments. In ICSE, pages
552–561, 2013.

[63] A. Williams, W. Thies, and M. D. Ernst. Static
deadlock detection for java libraries. In ECOOP, pages
602–629, 2005.

[64] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The splash-2 programs: Characterization
and methodological considerations. In ISCA, pages
24–36, 1995.

[65] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In PLDI, pages 1–14, 2005.

[66] X. Yu, S. Han, D. Zhang, and T. Xie. Comprehending
performance from real-world execution traces: A
device-driver case. In ASPLOS, pages 193–206, 2014.

[67] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin. On
performance debugging of unnecessary lock
contentions on multicore processors: A replay-based
approach. In CGO, 2015.

400

	Introduction
	Approach
	Bottleneck Detection
	Performance Impact Analysis
	Synchronization Dependence Graph
	Constructing the Graph
	Performance Impact Metrics
	Dealing with Non-Deterministic Performance

	Root Cause Analysis
	Suggesting Optimization Strategies

	Implementation
	Evaluation
	Experimental Setup
	Results and Analysis
	RQ1: Effectiveness in Localizing Bottlenecks
	RQ2: Comparison with Existing Profiler
	RQ3: Effectiveness in Suggesting Optimizations
	RQ4: Efficiency of SyncProf

	Discussion
	Related Work
	Conclusions
	References

