Monkey See, Monkey Do:
Effective Generation of GUI Tests
with Inferred Macro Events

Markus Ermuth
Michael Pradel

TU Darmstadt

Motivation

How to test complex GUIs?

Manual Analysis-based

ZUrmo oemo compary e, KNI EEIEC N8 : - 2 s =

Inbox
m < Create Dashboard | # Edit Dashboard | <= Add Portlet

Accounts

Leads
My Upcoming Meetings Calendar What's going on?
Contacts

Opportunities July 2016

TU WE TH FR
1

Recently Viewed

& Jim Smith

il Videlectrix Project L L Jim Smith
me on! | re

I Bluth Company .‘ ! J t night

Random

Motivation

How to test complex GUIs?

Manual Analysis-based Random
= Realistic event sequences
= Huge effort

ZUrmo oemo company Inc. [2 ime B &

Inbox
m < Create Dashboard | # Edit Dashboard | <= Add Portlet

Accounts
Leads
My Upcoming Meetings Calendar What's going on?

Contacts

Opportunities July 2016

TU WE TH FR
Recently Viewed

& Jim Smith
il Videlectrix Project

I Bluth Company

Motivation

How to test complex GUIs?

Manual Analysis-based Random
= Automatic

= Scalability issues

[ove - [

;urmo Demo Company Inc.

Inbox m

Accounts

< Create Dashboard | # Edit Dashboard | <= Add Portlet

Leads
My Upcoming Meetings Calendar What's going on?
Contacts

Opportunities July 2016

TU WE TH FR
1

Recently Viewed

& Jim Smith

il Videlectrix Project L L Jim Smith
1!l

I Bluth Company

Motivation

How to test complex GUIs?

Manual Analysis-based Random
= Automatic and scalable

= Used in practice

ZUrmo oemo company Inc. [2 ime B &

Inbox
m < Create Dashboard | # Edit Dashboard | <= Add Portlet

Accounts
Leads
My Upcoming Meetings Calendar What's going on?

Contacts

Opportunities July 2016

TU WE TH FR
Recently Viewed

& Jim Smith
il Videlectrix Project

I Bluth Company

Motivation

How to test complex GUIs?

Manual Analysis-based Random
= Automatic and scalable

= Used in practice

ZUrMO oene conpery - | B e w

Inbox m

Accounts

< Create Dashboard | # Edit Dashboard | <= Add Portlet

Leads
My Upcoming Meetings Calendar What's going on?
Contacts

Opportunities July 2016

TU WE TH FR
1

Recently Viewed
& Jim Smith
il Videlectrix Project L L Jim Smith

1!l
I Bluth Company

Problem

Header:
= Mouseover

ltems:
= Mouseover S
| MOUSGOUt Report

= Click

Problem

= Effective testing requires Create ~
complex, realistic
sequences of events

= Probability to hit them by
chance: Extremely small

Problem

= Effective testing requires Create ~
complex, realistic
sequences of events

= Probability to hit them by
chance: Extremely small

Observation:

Ul-level events = Logical events

This Talk

Monkey see, monkey do

= Learn usage patterns from users
= Imitate them during test generation

Events vs. Macro Events

>~9®

Event (implementation level) g oy
= Type, target item’

Macro event (logical)
= Finite state machine

= Transitions = abstracted events
over, click,

item item
P /:)ver\x -@®
over, v\ item / oult,

out, item
item

Overview

GUI application

—> Record user actions

Traces

Infer macro events

Macros

Test generation

Tests

Overview

GUI application

—> Record user actions

Traces

Infer macro events

Macros

Test generation

Tests

Fully automatic

Recording User Actions

Trace: Sequence of events

over, header over, header

over, item1 over, item1
O, ™ click,item1 out, item1 etc.
— out, item1 over, item2

click, item?2
out, item?2

Inference of Macro Events

Frequent Finite
: Macro
Trace> subsequ. > Clusterlng 2 AUtOMmata R
events

mining iInference

Inference of Macro Events

Frequent Finite
: Macro
Trace> subsequ. > Clusterlng 2 AUtOMmata R
events

mining iInference
Goal: Identify recurring patterns and

remove noise

Adapted CloSpan algorithm [van et al., 2003}
= Bounded length of subsequences
= Structural relations between events

Inference of Macro Events

Frequent

Finite

Macro

Trace> subsequ. > Clustering 2a AUtomata B

mining

over, header
over, item1
click, item1
out, item1

: events
Inference

over, header
over, item1
out, item1
over, item2
click, item?2
out, item?2

Inference of Macro Events

Frequent

Finite
Macro

Trace> subsequ. > Clustering 2a AUtomata B

mining

over, header
over, item
click, item
out, item

: events
Inference

over, header
over, item
out, item
over, item
click, item
out, item

Inference of Macro Events

Frequent Finite
: Macro
Trace> subsequ. > Clusterlng 2 AUtOMmata R
events

mining iInference

OVer,
over, item
out, item

over, item

over, item

click, item
out, item

click, item
out, item

Inference of Macro Events

Frequent Finite
. Macro
Trace> subsequ. > Clusterlng 2 AUtOMmata R
events

mining iInference

Goal: Group related subsequences

Prefix clustering:
s Same initial event ~ same cluster

Inference of Macro Events

Frequent
L=tk SUDSEQU.
mining

over, header
over, item
click, item
out, item

Finite
Macro

s ClUstering Bg automata g

: events
Inference

over, header
over, item
out, item
over, item
click, item
out, item

Inference of Macro Events

Frequent Finite
_ Macro
Trace> subsequ. > Clusterlng 2 AUtOMmata R
events

mining iInference

over, header over, header
over, item over, item
click, item out, item
out, item over, item
click, item

out, item

Inference of Macro Events

Frequent Finite
: Macro
Trace> subsequ. > Clusterlng g AUtomata B
events

mining inference

Goal: Summarize sequences into macros

Adapted k-tails algorithm [Biermann, Feldman, 1972]
= Optimized state merging
= Structural relations between events

Inference of Macro Events

Frequent Finite
Macro
Trace> subsequ - Clusterlng g AUtomata B
events

mining inference

OVer, click,

item item
-0 /:)ver\x -@
over, v\ ltem / out,

header S item
item

Test Generation

= Interleave random testing with
macro replay

= Pick and replay macros based on
available events

= Replay active macro until reaching a
final state

More Details in the Paper

Markus Ermuth
Department of Computer Science
TU Darmstadt, Germany
markus.ermuth@gmail.com

ABSTRACT

Automated testing is an important part of validating the
behavior of software with complex graphical user interfaces,
such as web, mobile, and desktop applications. Despite re-
cent advances in Ul-level test generation, existing approaches
often fail to create complex sequencez of events that repre-
sent realistic user interactions. As a result, these approaches
cannot reach particular parts of the application under test,
which then remain untested. This paper presents a Tllevel
test generation approach that exploits execution traces of
human vsers to antomatically create complex zequences of
events that go beyond the recorded traces. The key idea is
to infer zo-called macro events, i.e., sequences of low-level TI
events that correspond to asingle logical step of interaction,
such as choosing an item of a drop-down menu or filling and
submitting a form. The approach builds upon and adapts
welkknown data mining techniques, in particular frequent
subsequence mining and inference of finite state machines.
We implement the approach for dient-zside web applications

and orrihr W Fa fanr meoal maraeld s liood e o i v woonn H o

Monkey See, Monkey Do: Effective Generation of
GUI Tests with Inferred Macro Events

Michael Pradel
Department of Computer Science
TU Darmstadt, Germany
michael@binaervarianz.de

mouse, and filling text into a form. However, the complex-
ity of many GUI applications makes mamial Ul-level test-
ing difficult. For example, a complex client-side web ap-
plication may consist of dozens of pages that each provide
hundreds of events that a tester may trigger. Because ex-
ploring such programs mamally is difficult, automated test
generation approaches have been proposed [26, 24, 27, 11,
8, 42, 17, 35]. The basic idea is to generate sequences of Ul
events that achieve high coverage or that trigger a particular
kind of problem. Existing approaches include black-box ap-
proaches, such az the popular Monkey runner for Android ®,
which triggers random Ul events, and white-box approaches,
which, e.g., symbolically analyze the programs code to find
events worth triggering.

Despite recent advances in Ul-level test generation, two
important challenges remain. First, deeply exploring a pro-
gram often requires compler sequences of events. For ex-
ample, consider a program that uses a drop-down menu to
connect pages to each other. To reach another page, a test
generator must move the mouse into the menu, wait until

Implementation

Client-side web applications

Builds on WebAppWalker

= Framework for Ul-level testing
= Firefox add-on

= Strategies for selecting events

https://github.com/michaelpradel/WebAppWalker/

11

Evaluation

Effectiveness and efficiency?

Setup:

= 4 real-world applications

= 16 usage traces

= Comparison with random
testing

inoodle

12

Visited Pages

How many pages do the
generated tests reach?

25

visited pages
> o o

&)

o

_ random

T
macro F—+——

Iy e |
L} i

100 200 300 400 500

triggered events (Drupal)

Significant
Improvements
for 3/4

applications

13

Branch Coverage

How many branches do the
generated tests cover?

6000 . | | |

macro kF———

5500 _rand0n1

5000 | TE (1] _
il
4500 | {[{ﬁ]
-
4000 I -

3500 F -

covered branches

3000 | | | |
0 100 200 300 400 500

triggered events (Zurmo)

Significant
Improvements
for 3/4

applications

14

Covered Usage Scenarios

How many usage scenarios do the
generated tests cover?

10
Mmacro me—

- random =

tests covering usage scenario

SO NN B~ O 0
[[
I
R
Q (—
S
| |

15

Performance

= Inferring macro events

5 13 seconds — 85 minutes
- One-time effort

= Test generation
- 0.7 — 1.3 seconds per event
- Only 8% slower than random testing

16

Future Work

= Cross-application macro learning

= Lightweight, in-production gathering
of traces

= Scalability of inference algorithms

17

Conclusion

= Macro events:
Abstract Ul events into logical events

= Infer and apply macros:
More effective GUI testing

= Human knowledge improves
automated testing

RS

Conclusion

= Macro events:
Abstract Ul events into logical events

= Infer and apply macros:
More effective GUI testing

= Human knowledge improves
automated testing

Thanks!

RS

