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ABSTRACT

Automated testing is an important part of validating the
behavior of software with complex graphical user interfaces,
such as web, mobile, and desktop applications. Despite re-
cent advances in UI-level test generation, existing approaches
often fail to create complex sequences of events that repre-
sent realistic user interactions. As a result, these approaches
cannot reach particular parts of the application under test,
which then remain untested. This paper presents a UI-level
test generation approach that exploits execution traces of
human users to automatically create complex sequences of
events that go beyond the recorded traces. The key idea is
to infer so-called macro events, i.e., sequences of low-level UI
events that correspond to a single logical step of interaction,
such as choosing an item of a drop-down menu or filling and
submitting a form. The approach builds upon and adapts
well-known data mining techniques, in particular frequent
subsequence mining and inference of finite state machines.
We implement the approach for client-side web applications
and apply it to four real-world applications. Our results
show that macro-based test generation reaches more pages,
exercises more usage scenarios, and covers more code within
a fixed testing budget than a purely random test generator.

CCS Concepts

•Software and its engineering → Software notations
and tools; Software maintenance tools;
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1. INTRODUCTION
Many programs, such as client-side web applications, mo-

bile applications, and classical desktop applications, inter-
act with users through a graphical user interface (GUI). It
is important to test such programs at the UI-level by trig-
gering sequences of UI events, such as clicking, moving the
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mouse, and filling text into a form. However, the complex-
ity of many GUI applications makes manual UI-level test-
ing difficult. For example, a complex client-side web ap-
plication may consist of dozens of pages that each provide
hundreds of events that a tester may trigger. Because ex-
ploring such programs manually is difficult, automated test
generation approaches have been proposed [26, 24, 27, 11,
8, 42, 17, 35]. The basic idea is to generate sequences of UI
events that achieve high coverage or that trigger a particular
kind of problem. Existing approaches include black-box ap-
proaches, such as the popular Monkey runner for Android 1,
which triggers random UI events, and white-box approaches,
which, e.g., symbolically analyze the programs code to find
events worth triggering.

Despite recent advances in UI-level test generation, two
important challenges remain. First, deeply exploring a pro-
gram often requires complex sequences of events. For ex-
ample, consider a program that uses a drop-down menu to
connect pages to each other. To reach another page, a test
generator must move the mouse into the menu, wait until
the menu appears, and then click on one of the menu items,
without interleaving other events that would hide the menu
again. Existing black-box approaches are unlikely to cre-
ate such complex sequences because they are unaware of the
semantics of the individual UI events. One approach would
be to enhance black-box approaches with domain knowledge
about the most common complex sequences of events. How-
ever, the large number of such sequences and their different
implementations makes this approach difficult in practice.
Existing white-box approaches are, in principle, able to iden-
tify complex sequences of events that lead to not yet covered
behavior, but do not scale well to complex programs.

Second, effective testing requires both realistic sequences
of events, to explore the most common paths that users will
take, and unusual sequences of events, to uncover corner case
errors. For example, consider a program that asks the user
to fill and submit a form. Most users will fill data into each
part of the form and then click the submit button. Since
most existing test generators are oblivious of how realistic
a sequence of events is, they do not recognize this common
way of using such a form, and instead spend significant effort
on exploring behavior that may not be relevant in practice,
such as filling in some data without ever submitting the
form.

We identify an important reason why existing test gener-
ation approaches do not fully address these challenges: The
granularity of events as seen by the test generator does not

1http://developer.android.com/tools/help/monkey.html
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match the logical steps perceived by a user. For example, a
user considers “go to another page via a drop-down menu”
or “fill and submit a form” as one logical event, whereas a
test generator treats them as sequences of various UI events.
Test generators that are unaware of such logical steps spend
lots of effort in generating sequences of events that a user
might never trigger and that may not reach particular states
of the program.

This paper presents a UI-level test generation approach
that exploits execution traces of human users to automati-
cally create complex sequences of events that represent log-
ical steps as perceived by a user. We call such sequences
of UI events macro events. The key components of the pre-
sented approach infer macro events from given usage traces
and apply the inferred macro events during test generation
to automatically create tests that trigger complex, realistic
sequences of events. Because the approach can be combined
with other test generation approaches, such as random test-
ing or guided testing, it preserves the benefits of these ap-
proaches while addressing the challenge of creating complex,
realistic sequences of events.

A major challenge is to infer and represent macro events in
a way that abstracts from the recorded usage trace. This ab-
straction helps the approach to summarize multiple slightly
different usages into a single macro event and to apply a
macro event beyond the situation from which it is inferred.
We address this challenge by combining and extending two
data mining techniques, frequent subsequence mining and
inference of finite state machines (FSMs). For example,
these techniques may infer a macro event that represents“go
to another page via a drop-down menu” from usage traces
that use the menu to reach some pages and apply the macro
event to reach other pages.

We implement the approach into an automated test gen-
erator for client-side web applications and evaluate it with
four widely used programs. Our results show that the ap-
proach can effectively infer macro events from usage traces
and that macro-based test generation improves upon ran-
dom test generation. In particular, we find that the ap-
proach increases the number of pages visited within a fixed
testing budget by 69.6%, on average, and that it increases
the number of covered branches for three of the four pro-
grams. Furthermore, the approach is able to cover several
usage scenarios that random testing misses.

In summary, this paper contributes the following:

• We introduce macro events, which summarize sequences
of UI events into logical steps that users commonly
perform.

• We present algorithms for inferring macro events from
usage traces and for applying them to generate UI-
level tests that trigger complex, realistic sequences of
events.

• We implement the idea into a practical tool and pro-
vide empirical evidence that it improves the effective-
ness of random test generation for widely used pro-
grams.

2. EXAMPLE AND OVERVIEW
This section motivates our approach with an example and

outlines its key components. Figure 1a shows a drop-down
menu that enables a user to navigate to different function-
alities of the program. The example is a simplified version

(a) Screenshot:
Menu header:
 - mouseover: show menu

Menu items:
 - mouseover: highlight item, keep menu visible
 - click: select item
 - mouseout: unhighlight item

(b) Execution traces:
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Figure 1: Motivating example.

of a menu in the Zurmo web application. Correctly using
the menu is crucial for effectively using the program. Even
though choosing an item from the menu can be seen as one
logical step, it consists of multiple independent UI events:
Revealing the menu corresponds to a mouseover event on
the menu header. Moving the mouse through the menu cor-
responds to mouseover and mouseout events on the menu
item list, which highlight the corresponding item and keep
the menu visible. Selecting a menu item corresponds to a
click event on the item.

Usage scenarios that require complex sequences of events,
such as the example, pose a challenge for automated test
generators. For example, consider a generator that creates
sequences of events by randomly selecting among the set
of available events. Since the menu in Figure 1a is part of
a complex web site with hundreds of available events, the
probability to trigger a sequence of events that opens the
menu, keeps it visible by moving the mouse over it, and
selects a menu item is very small. As a result, such ran-
dom testing is unlikely to reach all pages that users may
access through the menu and therefore cannot thoroughly
test parts of the program.

The approach presented in this paper addresses the chal-
lenge of generating complex and realistic sequences of events
in three steps. First, the approach gathers execution traces
from the interactions of human users with a program. Such
traces can be gathered, e.g., during manual pre-deployment
testing or via lightweight, distributed sampling of user in-
teractions with a deployed program. Second, the approach
identifies recurring patterns in the usage traces and sum-
marizes them into an FSM-based description. Each such
pattern, called a macro event, represents one logical step
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of using the program. Third, the approach automatically
generates tests, i.e., sequences of UI events, through a com-
bination of random testing and applying the inferred macro
events. Section 3 presents these steps in detail. The follow-
ing illustrates them with the motivating example.

Recording usage traces. To illustrate the first step con-
sider three usages of the menu. In the first and the last
usage, the user selects the first item. In the second usage,
the user moves the mouse over the first item and selects
the second item. Figure 1b shows the execution traces for
these usages. The traces summarize the events triggered by
the user and record the event type, e.g., mouseover, and a
description of the DOM element on which the event is trig-
gered, e.g., header. Note that in practice, execution traces
typically comprise thousands of events. Section 3.1 describes
the details of recording usage traces.

Inferring macro events. The key challenges for the second
step of the approach are twofold. First, to be applicable
to real-world programs, the approach must efficiently deal
with large execution traces. Second, to infer macro events
that are applicable beyond simply replaying exactly the se-
quences of events observed in a usage trace, the approach
must abstract events and the order in which events occur.
We address these challenges by using and extending two ex-
isting data mining techniques. At first, frequent subsequence
mining identifies recurring sequences of events that are can-
didates for describing a single logical step of interacting with
the program. For the example, the approach identifies five
such subsequences, which correspond to Trace 1 and Trace 2
and three subsequences of them. For realistic traces, the ap-
proach typically identifies thousands of subtraces that each
contain a subset of all trace events. Then, the approach
clusters related subsequences and applies a variant of the k-
tails algorithm [6] to summarize a set of subsequences into
an FSM that represents a macro event. Figure 1c shows the
macro event that the approach infers for the running exam-
ple. Each transition represents a UI event, and a sequence
of UI events accepted by the FSM corresponds to the logi-
cal step described by the macro event. Section 3.2 describes
inferring macro events in detail.

Generating sequences of UI events. Based on the inferred
macro events, the final step of the approach creates tests by
generating sequences of UI events. The test generation al-
gorithm probabilistically chooses between applying a macro
event (if there is an applicable macro event) and randomly
picking the next event to trigger. For the example, the test
generator may try to apply the macro event whenever it
reaches a page with a matching drop-down menu. Because
the macro events generalizes from the observed traces, ap-
plying the macro may skip an arbitrary number of menu
items before clicking on an item. We combine macro event-
based testing with random testing because not all events of
a program are part of a macro event. Section 3.3 describes
the test generation part of the approach in detail.

3. APPROACH
This section explains the three steps outlined in the pre-

vious section in detail. Users interact with web applications
through events:

Definition 1. A micro event e, or short event, is a tuple
(t, d), where

• t is the event’s type, and

• d is the kind of DOM element that the event is trig-
gered on (also called event target).

For example, a click on a button is represented as a micro
event (click, button). The goal of our approach is to sum-
marize logical steps of a user’s interaction with a program
into macro events:

Definition 2. A macro event, or short macro, describes
a sequential event pattern consisting of two or more micro
events. The pattern is represented by a non-deterministic
FSM (Σ,A, s0, δ, ρ,F), where:

• Σ is the set of all micro events used within the pattern,

• A is the set of states,

• s0 ∈ A is the initial state,

• δ : A × Σ → P(A) is the transition function that re-
turns the set of destination states that can be reached
when triggering a particular micro event in a particular
state,

• ρ : Σ → {same, ancestor, descendant, family, none}
assigns to each micro event its structural relation to
the preceding micro event, and

• F ⊆ A is the set of final states, characterized by the
lack of outgoing transitions.

For example, Figure 1c shows a macro event that summa-
rizes the sequences of micro events that a user may trigger
to select an item from a drop-down menu.

3.1 Recording User Actions
While a user interacts with the program under test, the

user logging component of our approach records all UI events
that the user triggers. Since the ultimate goal is to exercise
code triggered by user events, the approach ignores events
that do not trigger any JavaScript code.

The approach stores the recorded events into an event
trace, which is a sequence of trace entries.

Definition 3. A trace entry t is a tuple (e, p, s), where:

• e is the recorded event,

• p is an abstraction of the path in the DOM tree that
contains the event target, and

• s is the state of the program when the recorded event
is triggered.

Recording the path p is important to identify events that
belong to the same UI component, e.g., events that belong
to different parts of a menu. We use the XPath of a DOM
element as the abstraction p because it captures the path
within the DOM tree that contains the DOM element. The
XPath is a unique reference for the DOM element, as long
as the application stays on one page and does not change its
DOM tree.

We record the state s of the program because the approach
limits the scope of macro events to sequences of events that
happen on a single page. To represent the program’s state,
we use the URL and the title of the current page. Richer
representations of the state [42] can be plugged into our
approach.
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3.2 Inference of Macro Events
Based on the recorded event traces, the second step of the

approach is to infer macro events. This step builds on two
existing machine learning approaches, frequent subsequence
mining and finite-state machine inference, and has four sub-
steps. First, we pre-process the event traces by splitting
them into per-page sequences (Section 3.2.1). Second, we
use frequent subsequence mining to identify recurring pat-
terns within the traces (Section 3.2.2). Third, we cluster
similar subsequences that belong to the same macro event.
Finally, we infer a FSM from each cluster of subsequences.
Each such FSM represents one macro event (Section 3.2.4).

3.2.1 Pre-Processing of Event Traces

We limit the scope of the macro events to a single page.
The motivation for this pre-processing is two-fold. First,
page transitions are a natural border for macro events. Sec-
ond, cutting the recorded traces into smaller sequences of
events reduces the computational effort of the later steps
of inferring macro events. To split the trace, our approach
compares the URL of each trace entry with the directly pre-
ceding entry. If the URLs differ, the approach splits the
trace in-between the two entries. To remove sequences that
are too short to infer recurring macro events, we drop all
sequences with a length below a threshold lengthmin (= 2
for all experiments).

3.2.2 Mining Frequent Subsequences

First, we use frequent subsequence mining to identify re-
curring patterns within the recorded event traces. By search-
ing for subsequences, the approach gains robustness against
noisy events that interleave with the actual pattern. For ex-
ample, suppose a trace that contains the following sequence
of events ten times:

(keydown, input)
(keypress, input)
(keyup, input)

One occurrence of this sequence is interleaved by the follow-
ing event:

(mouseover, h2)

The approach identifies this event as noise and infers the
remaining sequence of events without the noisy event as a
pattern.

Background: Closed sequential pattern mining. Given a
set of sequences of items, closed sequential pattern mining
(CloSpan) [45] extracts frequent patterns, also known as fre-
quent subsequences. A subsequence is considered frequent if
the number of sequences that contain the subsequence (i.e.,
the support) is beyond a particular threshold. CloSpan dif-
fers from other subsequence mining approaches such as Pre-
fixSpan [30], because it searches for closed frequent subse-
quences. A frequent subsequence is considered closed if there
is no other frequent subsequence that contains all items of
the subsequence in the same order, while both subsequences
have the same support.

We build upon and extend the CloSpan approach to iden-
tify frequent subsequences of trace entries. The original al-
gorithm is not directly applicable for three reasons. First,
it searches for subsequences of arbitrary length, which lim-
its its scalability. To enable our approach to scale to event
traces of real-world programs, we adapt the algorithm to

Algorithm 1 Mining closed frequent subsequences

Input: Set Srec of recorded sequences
Output: Set S of closed frequent sequences
1: remove items with support ≤ suppmin from Srec
2: remove sequences with length ≤ lengthmin from Srec
3: S1 ← all frequent 1-item sequences in Srec
4: S ← S1

5: for each σ ∈ S1 do
6: S ← CloSpan(S);

7: eliminate non-closed sequences from S

8: function CloSpan(σ)
9: if σ′ ∈ S exists s.tt. σ ⊑ σ′ or σ′ ⊑ σ then
10: return
11: if |σ| ≥ lengthmin then
12: S ← S ∪ {σ}

13: if |σ| == lengthmax then
14: return ;

15: for each σ′′ ∈ Srec s.tt. rel(lastEntry(σ),
firstEntry(σ′′)) 6= ”none” do

16: CloSpan(σ ⋄ σ′′);

search subsequences within a configurable minimum and
maximum length. This change enables us to control the
computational cost of the mining process and to exclude
patterns that are too short to represent meaningful macro
events. Second, the original algorithm considers items as
black boxes. In contrast, our approach reasons about rela-
tions between trace entries based on the structural relations
between their corresponding DOM elements. Considering
such relations is crucial to identify macro events that contain
semantically related micro events. We adapt the CloSpan
algorithm to consider relations during the mining process.
Third, the original algorithm reasons not only about se-
quences of items but also about sequences of itemsets. Since
the order of events is critical for generating UI-level tests,
we do not use itemsets in our approach and omit all itemset-
related parts of the algorithm.

Algorithm 1 shows the main steps of the subsequence min-
ing, adapted from the original CloSpan algorithm [45]. The
underlined parts are our modifications. The algorithm takes
the set Srec of recorded and pre-processed sequences of trace
entries as its input and builds a set S of closed frequent
subsequences. At first, the algorithm prunes trace entries
that occur less often than a configurable minimum support
and sequences that are shorter than the minimum length.
The main part of the algorithm identifies all single-item se-
quences and then iteratively extends them into longer subse-
quences using the CloSpan function. Finally, the algorithm
scans the resulting set of sequences to remove all non-closed
sequences, i.e., sequences that are contained in another se-
quence with the same support.

Lines 8 to 16 show the CloSpan function, which grows the
sequences in S based on a sequence σ. The function checks
whether any already found frequent sequence in S contains
the currently grown sequence σ or any sequence is contained
in σ. When such a contained sequence is found, the algo-
rithm stops growing sequences based on σ because it already
found all extensions of the current sequences. Next (lines 11
to 14), the algorithm adds σ to the set of subsequences.
In contrast to the original algorithm, our approach adds a
sequence only if its length exceeds lengthmin (= 2 for all ex-
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periments). Furthermore, the approach stops the growth of
a sequence when its length reaches lengthmax (= 10 for all
experiments). These two checks avoid unnecessary growing
and processing of sequences that do not match our length
requirements, reducing the overall computational effort of
the mining process. Section 5.4 shows the effectiveness of
these checks in practice.

The final part of the CloSpan function (lines 15 to 16)
recursively calls the function to extend all sequences in S
with the new sequence σ. We extend this step of the orig-
inal algorithm with an additional filter. The filter ensures
that the events that will eventually be part of an inferred
macro are semantically related to each other. To illustrate
the motivation for this filtering, consider a page that con-
tains multiple forms and an inferred macro that describes
the order of micro events required for filling a form. If the
macro event describes only the event type and the kind of
DOM element of each event (Definition 1), then the test
generator may switch between the different forms while ap-
plying the macro event. As a result, the approach would
partly fill multiple forms instead of fully filling and submit-
ting one form. Instead, we want the test generator to focus
on one form at a time, which corresponds to the usage that
the macro is inferred from. The challenge is how to distin-
guish between the different forms, or more generally, how to
identify elements that are semantically related.

To address this challenge, the approach considers the struc-
tural relations between the target DOM elements of events
when inferring and applying macros. The approach reasons
about the relations of DOM elements by comparing their
XPaths and identifies five kinds of relations:

Definition 4. The relation rel(t1, t2) of two trace entries
t1 = (e1, p1, s1) and t2 = (e2, p2, s2) is one of the following:

• same if p1 = p2, i.e., if the recorded events are trig-
gered in the same DOM element

• ancestor if the XPath p1 contains the XPath p2, i.e.,
one event is triggered on a DOM element that is an
ancestor of the other DOM element

• descendant if the XPath p2 contains the XPath p2

• family if the XPaths p1 and p2 share a common an-
cestor DOM element danc that is different from html
and body, and if the distance of the elements described
by p1 and p2 to danc is smaller than a configurable
threshold

• none otherwise

Based on these relations, Algorithm 1 ensures that only re-
lated trace entries are extracted into a subsequence. Line 15
checks whether the last entry of the currently grown se-
quence σ and the first entry of a possible suffix σ′′ are in
a non-trivial relation. Only if such a relation exists, the al-
gorithm concatenates both sequences, σ⋄σ′′, and recursively
passes them to the CloSpan function for further extension.
This process continues until the algorithm has identified all
frequent subsequences, where each entry is related to the
next entry and that fit our length requirements.

3.2.3 Clustering

We use a simple prefix clustering to bundle similar fre-
quent subsequences. For this purpose, the approach com-
pares the first event entry of each found sequence and clus-
ters together those sequences that share the same event.

Algorithm 2 Adapted k-tails

Input: Set Scluster of closed frequent sequences , k
Output: Merged FSM M = (Σ,A, so, δ,F)
1: for each σ ∈ Scluster do
2: add σ to M

3: merged← true
4: while merged do
5: merged← false
6: for each s1, s2 ∈ A do
7: if s1, s2 are k-equivalent then
8: merge s1, s2
9: merged← true

That is, we bundle sequences that share the same entry
point. These entry points will serve as the initial state of the
FSMs that result when the bundled sequences are merged.

3.2.4 Summarizing Subsequences into FSMs

We define an equivalence relation for events to be able to
distinguish between them:

Definition 5. Given a trace [..., t1, t2, ..., t3, t4, ...], where
ti = (ei, pi, si), the trace entries t2 and t4 are equivalent, if
and only if

• e2 = e4 and

• one of the following is true:

– rel(t1, t2) = rel(t3, t4),

– rel(t1, t2) is none, or

– rel(t3, t4) is none.

That is, we consider two trace entries as equivalent when
they have the same event type and the relations to their
preceding trace element is the same or non-existent.

For summarizing the subsequence clusters, we adapt the
k-tails algorithm [6], which infers a FSM from sequences of
events. To obtain a FSM, k-tails creates an initial FSM
out of the given sequences and then iteratively merges k-
equivalent states of the FSM, until no more states can be
merged. Two states are considered k-equivalent if the paths
of length k, which start from these states, are equal.

We adapt the k-tails algorithm, as described by Beschast-
nikh et al. [5] to limit the search space for k-equal states as
well as to reduce the total number of states. Algorithm 2
shows our variant of k-tails. Again, we highlight those parts
that we changed in comparison to the original algorithm.

The algorithm initializes the FSM by adding sequences to
it. But instead of first adding all sequences and then merging
all equivalent states, our algorithm adds only one sequence
at a time to the FSM and merges the existing FSM with
the added sequence before adding another sequence. This
approach reduces the search space for equal states compared
to the original approach, because we reduce the number of
states by merging the FSM before adding new sequences.

Next, the algorithm searches for k-equivalent states (de-
fined below) by comparing all states with each other, until it
finds two states that are k-equivalent. If the algorithm finds
two k-equivalent states, it merges them. The algorithm re-
peats the searching and merging until there are no more
k-equivalent states.

While our approach merges two states, it also merges tran-
sitions that are equivalent except for the relation that the
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Algorithm 3 TriggerNextEvent

Input: SetM of macros, set E of available events
Output: Triggers the next event
1: randNumb← a random integer value between 0 and 1
2: if randNumb < pmacro then
3: TriggerRandomEvent(E)
4: else
5: UseMacroEvent(M, E)
6: if found no applicable macro then
7: TriggerRandomEvent(E)

attached event entries have to the preceding event in their
sequence. For this purpose, the approach keeps the less re-
strictive relation of the compared transitions. That is, the
resulting transition satisfies the requirements of both merged
transitions. For example, if one transition has the same re-
lation and the other transition has the family relation, then
the approach assigns the family relation to the merged tran-
sition.

To merge all final states and therefore reduce the total
total number of states, we redefine the original k-equivalence
relation as follows. The definition builds upon Definition 5
to compare trace entries.

Definition 6. Two states are k-equivalent if at least one
of the following conditions holds:

• both states have equivalent k-tails,

• both states are final states, i.e., they do not have any
tails, or

• both states have tails with an equal length < k that
end with a final state.

3.3 Test Generation
The final step of our approach is to augment random test

generation by applying the inferred macro events. Algo-
rithm 3 shows the test generation algorithm. The algorithm
has two modes: macro-based exploration and random explo-
ration. During random exploration, the algorithm switches
to macro-based exploration with a configurable probability
pmacro (= 50% for all experiments). Once it is in macro-
based exploration mode, the algorithm tries to execute a
macro until reaching a final macro state. The functions
TriggerRandomEvent and UseMacroEvent represent these
two modes. TriggerRandomEvent simply chooses among all
currently available events with a uniform probability distri-
bution. Algorithm 4 summarizes the UseMacroEvent func-
tion.

One challenge is to choose which macro to use in a par-
ticular state of the program. We call the macro that is used
to trigger subsequent events, the active macro. The choice
of the active macro depends on the available events, i.e.,
events that can be triggered in the current state. A naive
approach that selects a macro only if all events that are con-
tained within the macro are available would be ineffective
for two reasons. First, a single macro may produce different
sequences of events that use different subsets of the macro’s
events. That is, applying the macro may not need all events
of the macro. Second, since a web application is capable of
modifying its UI on the fly without actually loading another
page, the set of available events may change while applying
a macro. In particular, the program may add components

Algorithm 4 UseMacroEvent

Input: SetM of macros, set E of available events
Output: Triggers events according to a macro
1: if no active macro or page changed then
2: SelectNewMacroEvent(M, E)
3: Mactive ← selected macro
4: e← selected event
5: TriggerEvent(e)
6: return ;
7: else
8: SelectMacroEventContinuation(Mactive, E)
9: if continuation found then
10: e← selected event
11: TriggerEvent(e)
12: return ;
13: else
14: Mactive ← none
15: TriggerNextEvent(M, E)

to its UI in reaction to a previously triggered event, thereby
making new events available.

To avoid rejecting macros unnecessarily, our approach in-
crementally checks the applicability of a macro, immediately
before triggering an event. For this purpose, we split the
task of selecting an applicable macro into two subtasks: se-
lecting a new macro when there is no active macro, and
choosing the next transition within the active macro. Al-
gorithm 4 shows how the approach chooses between select-
ing a new macro and continuing an active one. The algo-
rithm first checks if there is an active macro. If there is
none, SelectNewMacroEvent is called to select a new macro.
Otherwise, the algorithm checks if the active macro can be
continued by using the SelectMacroEventContinuation func-
tion. The algorithm may fail to find a micro event that is
applicable according to the current macro and available in
the current state of the program, e.g., because the program
non-deterministically changed its state. In this case, the ap-
proach returns to Algorithm 3, which will choose between
triggering a random event and selecting a new macro again.

In the SelectNewMacroEvent function, our approach checks
if there is a macro that is both applicable in the particular
state of the program: Each available event is compared with
the event that belongs to an initial transition of each macro.
If a match is found, the function chooses the matching avail-
able event as selected event that should be triggered as well
as the according macro as the active macro. Otherwise, the
search for a matching event continues. If the search cannot
find any matching event, the algorithm concludes that there
is no macro that can be used in the current state of the
program and returns without selecting an event or an active
macro.

Within the SelectMacroEventContinuation function, our
approach first checks if the active macro has reached a final
state. If so, then the function returns without selecting an
event. Otherwise, the algorithm takes a transition from the
current state of the macro and searches the available events
for an event that matches the transition’s event. In case of
a match, the matching event is returned as selected event.
Otherwise, the algorithm returns without a selected event.

For comparing events, our approach uses Definition 5. For
comparing the event target’s relation, the approach deter-
mines the relation of the candidate’s event target with the
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event target of the previously triggered event. To match,
the relation does not have to be an exact match, but the
relation specified in the transition serves as the minimum
requirement. Therefore, our approach also accepts events
with a target DOM element that have a stricter relation to
the previously triggered event.

The combination of random and macro-based exploration
is effective for two reasons. First, the algorithm falls back
to random event triggering when the test generation can-
not find any macro that matches the particular state of the
program. The fallback is especially useful, when the test
generation gets stuck in a particular state of the program.
Without the fallback, the test generator would either repeat-
edly apply the same macros, while the state of the program
remains unchanged, or would not use any macro at all. In-
stead, a random event helps escape from a dead end. Second,
random exploration enables the approach to test those parts
of the program that are not covered by any inferred macro
event. For example, this may include parts of the program
not exercised in the recorded trace.

4. IMPLEMENTATION
We implement the approach as a Firefox add-on and a

node.js application. The browser add-on records all events
triggered by a user into a file. To this end, the browser add-
on keeps track of all available events that a user may trigger
and attaches to each of them an additional event handler
that records the triggered event. The trace files obtained
from users are then analyzed by the node.js application to
infer macro events. The test generation part of the approach
is also implemented in the browser add-on. The browser
add-on part of our implementation builds upon an existing
test generation framework for web applications2 that has
been used in previous work [35].

5. EVALUATION
We evaluate the approach with four real-world JavaScript-

based web applications. The evaluation addresses the follow-
ing research questions:

• How effective is macro-based testing compared to ran-
dom testing? Compared to random testing, macro-
based testing reaches more pages, achieves higher cov-
erage, and covers more usage scenarios of a program.
(Section 5.2)

• Does the inference approach effectively summarize large
traces into macros? The approach reduces large event
traces into a small number of recurring macros. (Sec-
tion 5.3)

• Are the inferred macros applicable during test genera-
tion? The macro-based test generator successfully ap-
plies most of the inferred macros (87%). (Section 5.3)

• How efficient is the approach? The approach is ef-
ficient enough to analyze large programs: Inferring
macros takes between 13 seconds and 85 minutes per
program. The macro-based test generator is only 8%
slower than a purely random test generator. (Sec-
tion 5.4)

5.1 Experimental Setup

2https://github.com/michaelpradel/WebAppWalker/

Table 1: Overview of the benchmark programs.

Program Version Description LoC

Drupal 7.38.1 CMS 8,371
MODX 3.0.4 CMS 45,620
Moodle 2.9.1 E-Learning 412,596
Zurmo 2.3.5pl CRM 42,206

Table 1 lists the benchmark programs along with their
number of lines of JavaScript code.3 We locally install these
programs and use a system with an Intel Core i7-860 with
8 cores (4 physical and 4 virtual cores) and 2.8 GHz clock
speed. The system has 8 GB RAM and runs Ubuntu 15.04.

To gather event traces, we ask a group of users to exer-
cise the benchmark programs, while our approach captures
their interactions. All participants are computer science stu-
dents (one PhD student, two master students, one bachelor
student) that are not involved in the project beyond par-
ticipating in the experiment and that had no prior knowl-
edge about the benchmark programs before the experiment.
We instruct each participant to use each program for five
minutes in a way that they image the program to be used
during productive work. We further instruct participants
that repeatedly using any part of the program is acceptable,
whereas they do not have to exhaustive explore every detail
of the programs. We do not give any additional instructions
to influence the participants’ exploration of the programs as
little as possible. In total, the experiment yields 16 execu-
tion traces.

We set suppmin to 8, i.e., two times the number of traces
for each program. The rationale is that a subsequence should
be contained at least twice in each recorded trace to be con-
sidered as frequent. We set k for the k-tails algorithm to 2.
To evaluate the test generation, we limit the generation pro-
cess to trigger 500 events. We repeat each test generation ex-
periment ten times because it depends on non-deterministic
decisions.

5.2 Effectiveness of Generated Tests
To evaluate the effectiveness of macro-based test gener-

ation, we compare the approach to purely random testing.
The random test generator repeatedly picks an event from
the set of currently available events, which is equivalent to
setting pmacro = 1 in Algorithm 3. For a fair comparison,
we implement the random test generator based on the same
infrastructure (Section 4) as the macro-based test generator.

We consider three metrics. First, we measure how many
pages of the application a test generator visits depending on
the number of triggered events. This metric is useful because
reaching a page is a pre-requisite to explore its behavior.
Second, we measure how many usage scenarios of a program
a test generator covers in a fixed testing budget. To this end,
we specify a set of typical usage scenarios, as they may be
specified for manual testing. Third, we measure the branch
coverage of a program’s JavaScript code that a test generator
achieves while exercising the program.

5.2.1 Visited Pages

Figure 2 shows for each program the number of visited
pages depending on the number of triggered events. For
each data point, the graphs show the average over ten rep-

3Measured with https://github.com/AlDanial/cloc.
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Figure 2: Number of visited pages depending on the number of triggered events. The bars show the 95%-
confidence interval and the average value.

etitions of the experiment and the 95%-confidence interval.
The figure shows that macro-based testing reaches signifi-
cantly more pages than random testing for three of the four
programs. For example, for Drupal the approach visits only
about 18 pages after 500 triggered events, whereas random
testing visits about 6 pages. For MODX, macro-based test-
ing visits about 0.5 pages less than random testing, on aver-
age. However, the difference is not statistically significant,
as indicated by the mostly overlapping confidence intervals.

5.2.2 Covered Usage Scenarios

To better understand whether reaching more pages trans-
lates into testing more usage scenarios, as they are typically
used for manual testing, we specify a set of such scenar-
ios. We limit this experiment to Drupal because specifying
scenarios and checking whether they are triggered requires
some effort. We specify the following usage scenarios:

• Add content : The user fills and submits a form to cre-
ate a new article.

• Preview content : The user previews a new article be-
fore submitting it.

• Comment article: The user writes and submits a com-
ment on an existing article.

• Edit content : The user edits an existing article and
submits the changes.

• Delete content : The user deletes an article.

• Simple search: The user uses the search form to search
for an article.

• Advanced search: The user uses the advanced search,
providing additional options to filter the search by in-
cluding or excluding particular words.

• User search: The user searches for an existing user.

To detect whether a usage scenario is covered, we dy-
namically analyze the program during test generation. The
analysis monitors the URL of the current page. If the URL
matches a state where one of the usage scenarios may be
covered, we inspect the state of the program and capture
the events triggered by the test generator to check if the
usage scenario is indeed covered. For example, to check if
the “simple search” scenario is covered, we check if the input
field of the search form is filled before submitting the search
form.

Figure 3: Number of runs that cover a specific usage
scenario at least once.

Figure 3 shows how many of the ten runs with the macro-
based and the random approach cover a specific usage sce-
nario. With one exception, random testing does not cover
any of the scenarios, whereas macro-based testing covers five
of the eight scenarios in some or even all runs.

In addition to showing that the macro-based approach
outperforms random testing, the results also illustrate some
limitations of our approach. The usage scenarios missed by
both approaches are due to three reasons. First, to be able to
cover a scenario, the test generator must reach a particular
state, which it fails to do for some scenarios within the test-
ing budget of 500 events. Second, even when the program is
in the specific state, the test generator may not trigger the
“right” macro event that covers the scenario. For example,
there may be other applicable macro events that the test
generator triggers, or it may also select an event randomly.
Finally, we observe that some of Drupal’s pages are too big
to be completely displayed. Since our current implementa-
tion does not interleave applying macro with scrolling the
page, it cannot trigger events on hidden parts of the page.

5.2.3 Branch Coverage

For measuring coverage, we use JSCover4, which instru-
ments the JavaScript source code once it is loaded. Be-
cause finding all code that a program may load is difficult
for JavaScript, we report the absolute number of covered
branches, instead of a percentage.

4http://tntim96.github.io/JSCover/
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Figure 4: Branch coverage depending on the number of triggered events. The bars show the 95%-confidence
interval and the average value.

Figure 4 summarizes the results. For three of the four
programs, macro-based testing achieves higher coverage af-
ter 500 triggered events than random testing. For example,
for Zurmo, the macro-based approach covers almost 5,500
branches, whereas random testing covers only about 4,800
branches. The exception is Drupal, where random testing
outperforms macro-based testing after about 300 triggered
events. One explanation for why the macro-based approach
may cover fewer branches is that applying macros uses the
program mostly in the expected way. In contrast, random
testing also explores sequences that most users do not trig-
ger and that executes code for handling errors. For example,
while macro-based testing is likely to fill a form completely
before submitting it, random testing often submits the form
without filling in all required fields, which triggers code that
warns about the missing fields.

5.3 Understanding the Steps of the Approach
To better understand the intermediate steps of our ap-

proach, Table 2 shows detailed information about the event
traces, the macro inference, and the test generation.

Event traces. Columns 2-4 show how many trace events we
record for each program, how many of them the approach
identifies as frequent, and how many sequences we obtain
after splitting sequences into per site subsequences. These
sequences, ranging from 45 to 82 per program, are the input
to the inference step.

Inference of macro events. Identifying frequent subse-
quences significantly increases the number of considered se-
quences, up to 158,969 for Zurmo. As shown by Column 6,
considering only closed subsequences removes many of them,
which results in up to 94,292 sequences for a program. The
high number of closed frequent subsequences highlights the
importance of combining subsequence mining with FSM in-
ference. The FSM inference step summarizes the large num-
ber of sequences into a manageable number of macro events,
ranging from 17 to 23 per program. Columns 8 and 9 show
the average number of states and transitions per macro.

Test generation. The last two columns of Table 2 illus-
trate the effectiveness of the macro-based test generator.
The last column shows how many of the inferred macros the
generator applies at least once until reaching a final state.
Overall, out of 76 macros, 66 are applied completely (87%),
showing that the approach successfully uses most of the in-
ferred macros. The second-to-last column shows how many

attempts to apply a macro lead to a final state of the macro.
Many attempts fail, e.g., because the macro is not fully ap-
plicable on the current page. This result confirms our design
decision to combine macro-based testing with random test-
ing, which is always applicable.

5.4 Performance
We measure how much time the different steps of the ap-

proach take. The time required for processing event traces
and inferring macro events ranges between 13 seconds (Dru-
pal) and 85 minutes (Zurmo). Most of the time is spent
on mining frequent subsequences (over 99% for Zurmo). A
simple way to control the computational effort of this step
is to reduce the maximum length of frequent subsequences.
Reducing the default value of 10 to 8 reduces the total pre-
processing and inference time to values between 2.8 seconds
(Drupal) and about one minute (Zurmo). However, even
without this reduction, we consider the inference time to be
acceptable in practice because it is a one-time effort that
does not need to be repeated when generating new tests.

Macro-based test generation takes between 5.8 minutes
(Drupal) and 10.8 minutes (Moodle) to create a sequence of
500 events. Most of the time is spent for determining which
elements of a page have triggerable events and for execut-
ing the program under test. For comparison, these times
are about 8% higher than the running times of the random
test generator. We conclude that, when excluding the one-
time effort of inferring macros, the macro-based approach
is beneficial compared to random testing not only given a
fixed budget of events to trigger but also given a fixed time
budget.

5.5 Threats to Validity
There are several threats to the external validity of our

findings. First, we use execution traces from users that were
unfamiliar with the benchmark programs before participat-
ing in our experiment. Traces from other users and traces
obtained over a longer period of time may yield other macro
events and therefore also other results. Second, the analysis
of covered usage scenarios is based on a relatively small set
of scenarios for a single program. Third, our benchmark pro-
grams may not be representative for other web applications.
To mitigate this threat, we select four popular open-source
applications that cover different application domains. Fi-
nally, we compare our approach only to random test genera-
tion, and more sophisticated test generation approaches are
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Table 2: Details of the data handled by the approach. For the test generation, we give the average success
rate (%) for completing macro events and the number of macros that are completed at least once.

Program Traces Inference Test generation

Events Split Subsequences Macros Successful Completed

Total Freq. seqs. Freq. Closed Nb. States (avg.) Trans. (avg.) attempts (%) macros (avg.)

Drupal 4,574 4,360 82 8,331 4,393 18 14 34 21 17
MODX 7,093 6,106 45 9,300 3,995 17 9 28 27 14
Moodle 7,146 4,740 54 22,415 7,527 23 14 39 28 22
Zurmo 4,532 3,965 61 158,969 94,293 18 11 35 9 13

likely to be more effective than random testing. We believe
that using macros to augment test generation is orthogonal
to most other improvements over random testing. A possi-
ble threat to conclusion validity is that the random-based
nature of the evaluated approaches may bias our results. To
control for this threat, we provide the 95%-confidence inter-
vals of the number of visited pages and the branch coverage.

6. RELATED WORK
Testilizer [13] is a UI-level test generator that uses an ex-

isting test suite to infer a finite state model of the program
and that explores the program based on this model, while
generating assertions about the DOM state. Brooks and
Memon [7] infer a probabilistic finite state model of a GUI
program from usage traces of the program; they use the
model for guiding a test generator towards pairs of events
that have a high probability to occur together. Our work
differs by inferring multiple finite state models that each de-
scribe a specific interaction pattern with a program, instead
of summarizing the entire program into a single model. An-
other difference is that macro events are applicable beyond
the context from which they were inferred, whereas Testilizer
aims at modeling a program without such an abstraction
step. Extending our macro inference with probabilities for
each event [7] is a promising direction for future work. User
session-based testing [12] semi-automatically builds a model
from usage traces of server-side web applications and uses
them for testing. Instead, our approach infers macros fully
automatically and focuses on client-side applications.

Existing capture and replay systems, such as Selenium5,
share the idea of recording user interactions to automate UI-
level testing. In contrast to such systems, our approach does
not replay exactly the same sequences of events as provided
by a human, but applies abstractions of captured sequences
of events in combination with random test generation. Be-
sides UI-level capture and replay systems, other approaches
record and replay executions at the level of individual oper-
ations [29, 39, 41].

Various approaches automatically generate UI-level tests
by inferring a finite state model of the program [26, 24,
27, 11, 25, 8, 42], by using feedback from the program’s
execution [4], by symbolically reasoning about event han-
dlers [40, 3, 17], or by steering toward responsiveness prob-
lems [35]. Choudhary et al. [9] experimentally compare sev-
eral approaches for Android. Model-based approaches share
the idea of representing the program as a finite state model.
Our work differs because, instead of modeling the entire pro-
gram, macro events model a specific part of a program in

5http://www.seleniumhq.org/

a generic way. In contrast to all the above approaches, our
work exploits the knowledge of users to reach parts of the
program that are difficult to reach otherwise.

Recent approaches for dynamically analyzing JavaScript-
based web applications, such as TypeDevil [36], DLint [16],
and JITProf [15], detect correctness, performance, and se-
curity problems. Combining dynamic analyses with macro-
based UI-level test generation is likely to increase the effec-
tiveness of such approaches.

Data mining techniques are widely used to extract and
summarize data gathered through program analysis, e.g.,
for specification mining [2, 21, 14, 32, 28, 46, 32] and for
detecting anomalies that are likely bugs [19, 18, 1, 37, 46,
43, 44, 33, 34]. Variants of the k-tails algorithm are used
for extracting [20, 22, 23] and validating temporal specifica-
tions [31], and summarizing system logs [5] and event-based
processes [10, 38]. Frequent subsequence mining helps, e.g.,
to identify API usage patterns [46] and to find copy-and-
paste bugs [18]. Our work is the first to adapt frequent sub-
sequence mining and the k-tails algorithm for summarizing
UI events.

7. CONCLUSION
Testing complex programs with UI-level tests is an im-

portant yet non-trivial task. Automated UI-level testing
techniques facilitate this task by generating sequences of
events. Unfortunately, fully automated approaches often
cannot reach particular states of an application and there-
fore do not explore all possible behavior, e.g., because it
requires a particular sequences of events. This paper ex-
plores how to exploit recorded sequences of user interactions
to automatically generate tests that go beyond the recorded
sequences. To this end, we introduce macro events, which
summarize recurring sequences of low-level UI events that
correspond to a single logical step. Our approach combines
macro events with random testing to create new tests that
are more effective than purely random testing. In partic-
ular, the generated tests reach more pages of a web site,
cover more usage scenarios, and often achieve higher cover-
age than random testing. Macro-based testing complements
existing UI-level test generation techniques, such as random
testing and model-based testing, and can be combined with
them.
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