SpeedGun: Performance Regression Testing of Concurrent Classes

Michael Pradel¹, Markus Huggler², and Thomas R. Gross²

University of California, Berkeley
 ETH Zurich

Motivation

Writing concurrent software is difficult

Correctness:

Synchronize concurrent accesses to shared data

Performance:

Avoid unnecessary synchronization

Motivation

Writing concurrent software is difficult

Correctness:

Synchronize concurrent accesses to shared data

Performance:

Avoid unnecessary synchronization

Data races
Atomicity violations
Thread safety
Schedule exploration

Real-World Example

History of Groovy's ExpandoMetaClass

Real-World Example

History of Groovy's ExpandoMetaClass

Real-World Example

History of Groovy's ExpandoMetaClass

Real-World Example (2)

```
class ExpandoMetaClass {
 private boolean initialized;
  synchronized void initialize() {
    if (!this.initialized) {
      this.initialized = true;
 boolean isInitialized() {
    return this.initialized;
```

Before bug 2166

Real-World Example (2)

```
class ExpandoMetaClass {
 private boolean initialized;
  synchronized void initialize() {
    if (!isInitialized()) {
      setInitialized(true);
  synchronized boolean isInitialized() {
    return this.initialized;
  synchronized void setInitialized
      (boolean b) {
    this.initialized = b;
```

Fix for bug 2166

Real-World Example (2)

```
class ExpandoMetaClass {
 private volatile boolean initialized;
  synchronized void initialize() {
    if (!isInitialized()) {
      setInitialized(true);
 boolean isInitialized() {
    return this.initialized;
 void setInitialized(boolean b) {
   this.initialized = b;
```

Fix for bug 3557

SpeedGun: Overview

Automated performance regression testing for thread-safe classes

Measuring performance ain't easy

of concurrent software

Measuring performance ain't easy
at all

of concurrent software Measuring performance ain't easy

- Measurement accuracy
 - → Minimum measurable timespan

at all

of concurrent software

Measuring performance ain't easy

- Measurement accuracy
 - → Minimum measurable timespan
- Thread scheduling
 - → Repeated execution

at all

of concurrent software

Measuring performance ain't easy

- Measurement accuracy
 - → Minimum measurable timespan
- Thread scheduling
 - → Repeated execution
- Just-in-time compilation
 - → Warm up + steady state

at all

of concurrent software

Measuring performance ain't easy

- Measurement accuracy
 - → Minimum measurable timespan
- Thread scheduling
 - → Repeated execution
- Just-in-time compilation
 - → Warm up + steady state
- Garbage collection
 - → Invoke before measurements

Concurrent Tests: Example

Sequential prefix + concurrent suffixes

```
ExpandoMetaClassInit v0 = new ExpandoMetaClassInit();
ExpandoMetaClass v1 = v0.unInitalizedExpandoMetaClass();
Class v2 = v1.getJavaClass();
ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods();
           Thread 1
                                       Thread N
String v4 = x.toString();
                                      x.initialize();
x.respondsTo(v4, v4, null);
                                      x.getClassNode();
x.isModified();
                                      x.getProperties();
```

Test Generation

Feedback-directed random generation of concurrent tests [PLDI'12]

Here: Long tests with many suffixes

Exceed minimum measurable timespan

High degree of concurrency

Execute at least
$$1 + ... + L = \frac{L^2 + L}{2}$$
 calls

Approach: Generate smaller sequences and repeat them

Approach: Generate smaller sequences and repeat them

Execute at least
$$1 + ... + \sqrt{L} = \frac{L + \sqrt{L}}{2}$$
 calls

Test Execution (Single)

How to measure test execution time?

Test Execution (Single)

How to measure test execution time?

Prefix
Thread setup

Suffixes = Measured time

Thread cleanup

Test Execution (Repeated)

Test Execution (Repeated)

Set M of measurements

Add measurements until variance is

within fixed bounds: $\sigma(\mathcal{M}) \leq \overline{\mathcal{M}} \cdot \beta$ standard mean default: deviation 0.01

Length of Tests

How long should tests be?

Length of Tests

How long should tests be?

Average execution time of test T: t_T

Repetitions: r_T

Constraints:

- $lacktriangledown to the time <math>t_T > t_T > t_T$
- $r_T > minimum number of repetitions$

time

Approach: Binary search

- Generate a test T
- Execute and measure t_T and r_T for both versions

$$L_{min}$$
 L_{max}

Approach: Binary search

- Generate a test T
- Execute and measure t_T and r_T for both versions

Approach: Binary search

- lacksquare Generate a test T
- Execute and measure t_T and r_T for both versions

Approach: Binary search

- Generate a test T
- Execute and measure t_T and r_T for both versions

Test Oracle

Does one version outperform the other?

1) Decide winner of each test

Version 1 Version 2

Does one version outperform the other?

1) Decide winner of each test

Does one version outperform the other?

1) Decide winner of each test

Does one version outperform the other?

2) Decide overall winner

Does one version outperform the other?

2) Decide overall winner

Group tests by winner:

$$\mathcal{T}_{V1}$$
, \mathcal{T}_{V2} , \mathcal{T}_{None}

Report regression if

$$|\mathcal{T}_{V1}| > |\mathcal{T}_{V2}|$$
 and $|\mathcal{T}_{V1}| > |\mathcal{T}_{None}|$

Report improvement if

$$|\mathcal{T}_{V2}| > |\mathcal{T}_{V1}|$$
 and $|\mathcal{T}_{V2}| > |\mathcal{T}_{None}|$

SpeedGun: Overview

Automated performance regression testing for thread-safe classes

Evaluation

Does SpeedGun identify performance regressions and improvements?

Setup:

- 5 classes from 4 projects
- Full version history of 3 classes
- 113 pairs of classes

Baseline:

- Comments from developers
- Manual inspection

113 pairs of classes

```
No warning (96)
         Expected difference
         is reported (11)
               Expected difference
               is not reported (4)
                   Unexpected difference
                   is reported (2)
```

113 pairs of classes

```
No warning (96)
         Expected difference
         is reported (11)
               Expected difference
               is not reported (4)
                    Unexpected difference
                    is reported (2)
```

113 pairs of classes

No warning (96) **Expected difference** is reported (11) **Expected difference** is not reported (4) **Unexpected difference** is reported (2)

113 pairs of classes

No warning (96) **Expected difference** is reported (11) **Expected difference** is not reported (4) **Unexpected difference** is reported (2)

113 pairs of classes

```
No warning (96)
         Expected difference
         is reported (11)
               Expected difference
               is not reported (4)
                   Unexpected difference
                   is reported (2)
```

Examples

Program	Change	Speedup	
Groovy	Synchronize methods	V	0.92x
Groovy	Volatile instead of synchronized	7	1.50x
Collections	Fix correctness bug by adding synchronization	V	0.64x
Pool	Finer-grained locking to avoid deadlocks	7	1.52x

Related Work

Performance analysis and profiling

Jovic2011 Xu2012 Grechanik2012 Nistor2012 Yan2012 Han2012

> Foo2010 Yilmaz2005 Chen2007

Test generation

Burnim2009 Zhang2011 Visser2004 Csallner2004 Sen2005

Godefroid2005

Pacheco2007

Ciupa2008

Pradel2012

SpeedGun

Jin2010

McCamant2003

Regression testing

Conclusion

SpeedGun: Automated performance regression testing for thread-safe classes

- Generation of concurrent performance tests
- Systematically avoid pitfalls of measuring concurrent performance

A step towards reliable and efficient concurrent software

SpeedGun:

Performance Regression Testing of Concurrent Classes

Michael Pradel¹, Markus Huggler², and Thomas R.Gross²

¹ University of California, Berkeley
² ETH Zurich

I'm looking for students to join my group at TU Darmstadt!