
1

SpeedGun:
Performance Regression Testing
of Concurrent Classes

Michael Pradel1, Markus Huggler2,
and Thomas R. Gross2

1 University of California, Berkeley
2 ETH Zurich

2

Motivation

Writing concurrent software is difficult

Correctness:
Synchronize
concurrent
accesses to
shared data

Performance:
Avoid
unnecessary
synchroniza-
tion

2

Motivation

Writing concurrent software is difficult

Correctness:
Synchronize
concurrent
accesses to
shared data

Performance:
Avoid
unnecessary
synchroniza-
tion

Data races
Atomicity violations
Thread safety
Schedule exploration

?

3

Real-World Example

...

time

History of Groovy’s ExpandoMetaClass

Correctness

Performance

... Bug 3557:
Too much
synchronization

Bug 2166:
Missing
synchronization

3

Real-World Example

...

time

History of Groovy’s ExpandoMetaClass

Correctness

Performance

... Bug 3557:
Too much
synchronization

Bug 2166:
Missing
synchronization

3

Real-World Example

...

time

History of Groovy’s ExpandoMetaClass

Correctness

Performance

... Bug 3557:
Too much
synchronization

Bug 2166:
Missing
synchronization

4

Real-World Example (2)
class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) {
this.initialized = true;

}
}
boolean isInitialized() {
return this.initialized;

}

}

Before
bug 2166

4

Real-World Example (2)
class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!isInitialized()) {
setInitialized(true);

}
}
synchronized boolean isInitialized() {
return this.initialized;

}
synchronized void setInitialized

(boolean b) {
this.initialized = b;

}
}

Fix for
bug 2166

4

Real-World Example (2)
class ExpandoMetaClass {
private volatile boolean initialized;
synchronized void initialize() {
if (!isInitialized()) {
setInitialized(true);

}
}
boolean isInitialized() {
return this.initialized;

}
void setInitialized(boolean b) {
this.initialized = b;

}

}

Fix for
bug 3557

5

SpeedGun: Overview

Automated performance regression
testing for thread-safe classes

Regression, improvement, or none

Test Oracle

Test execution and performance measurement

Generation of concurrent performance tests

Version 1 Version 2

6

Challenges

Measuring performance ain’t easy

6

Challenges

Measuring performance ain’t easy
of concurrent software

at all

6

Challenges

� Measurement accuracy
→ Minimum measurable timespan

� Thread scheduling
→ Repeated execution

� Just-in-time compilation
→Warm up + steady state

� Garbage collection
→ Invoke before measurements

Measuring performance ain’t easy
of concurrent software

at all

6

Challenges

� Measurement accuracy
→ Minimum measurable timespan

� Thread scheduling
→ Repeated execution

� Just-in-time compilation
→Warm up + steady state

� Garbage collection
→ Invoke before measurements

Measuring performance ain’t easy
of concurrent software

at all

6

Challenges

� Measurement accuracy
→ Minimum measurable timespan

� Thread scheduling
→ Repeated execution

� Just-in-time compilation
→Warm up + steady state

� Garbage collection
→ Invoke before measurements

Measuring performance ain’t easy
of concurrent software

at all

6

Challenges

� Measurement accuracy
→ Minimum measurable timespan

� Thread scheduling
→ Repeated execution

� Just-in-time compilation
→Warm up + steady state

� Garbage collection
→ Invoke before measurements

Measuring performance ain’t easy
of concurrent software

at all

7

Concurrent Tests: Example

ExpandoMetaClassInit v0 = new ExpandoMetaClassInit();
ExpandoMetaClass v1 = v0.unInitalizedExpandoMetaClass();
Class v2 = v1.getJavaClass();
ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods();

Thread 1 Thread N

String v4 = x.toString();
x.respondsTo(v4, v4, null);
x.isModified();
...

x.initialize();
x.getClassNode();
x.getProperties();
...

...

Sequential prefix + concurrent suffixes

8

Test Generation

Feedback-directed random generation of
concurrent tests [PLDI’12]

Here: Long tests with many suffixes
Exceed minimum
measurable timespan

High degree of
concurrency

9

Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

9

Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

9

Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

9

Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

...

9

Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

...

Execute at least 1 + ..+ L =
L2 + L

2
calls

10

Test Generation: Scalability

Approach: Generate smaller sequences
and repeat them

Repeat√
L calls√
L times

Goal:
L calls

...

...

...

=

10

Test Generation: Scalability

Approach: Generate smaller sequences
and repeat them

Execute at least 1 + ..+
√
L =

L+
√
L

2
calls

Repeat√
L calls√
L times

Goal:
L calls

...

...

...

=

11

Test Execution (Single)

time

Prefix
Thread setup

Thread cleanup

How to measure test execution time?

Suffixes

11

Test Execution (Single)

time

Prefix
Thread setup

Suffixes =
Measured time

Thread cleanup

How to measure test execution time?

12

Test Execution (Repeated)

time

... ...

Warm up Steady
state

Steady
state

SetM of measurements

...

...

= test execution

12

Test Execution (Repeated)

time

... ...

Warm up Steady
state

Steady
state

SetM of measurements

Add measurements until variance is
within fixed bounds: σ(M) ≤M · β

standard
deviation

mean default:
0.01

...

...

= test execution

13

Length of Tests

How long should tests be?

13

Length of Tests

How long should tests be?

time

Steady state

...

Average execution time of test T: tT
Repetitions: rT

Constraints:
� tT > minimum measurable timespan
� rT > minimum number of repetitions

Test T Test T Test T

14

Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin Lmax

14

Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin Lmax
1.
Not enough
repetitions

14

Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin LmaxToo short
to measure

2. 1.
Not enough
repetitions

14

Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin LmaxToo short
to measure

2.
Okay
3. 1.

Not enough
repetitions

15

Test Oracle

Does one version outperform the other?

1) Decide winner of each test

.. mean and confidence interval

15

Test Oracle

Does one version outperform the other?

Statistically
significant
difference?

1) Decide winner of each test

.. mean and confidence interval

15

Test Oracle

Does one version outperform the other?

Statistically
significant
difference?

Difference above
threshold?

1) Decide winner of each test

.. mean and confidence interval

15

Test Oracle

Does one version outperform the other?

2) Decide overall winner

15

Test Oracle

Does one version outperform the other?

2) Decide overall winner

� Group tests by winner:
TV 1, TV 2, TNone

� Report regression if
|TV 1| > |TV 2| and |TV 1| > |TNone|

� Report improvement if
|TV 2| > |TV 1| and |TV 2| > |TNone|

16

SpeedGun: Overview

Automated performance regression
testing for thread-safe classes

Regression, improvement, or none

Test Oracle

Test execution and performance measurement

Generation of concurrent performance tests

Version 1 Version 2

17

Evaluation

Does SpeedGun identify performance
regressions and improvements?

Setup:
� 5 classes from 4 projects
� Full version history of 3 classes
� 113 pairs of classes

Baseline:
� Comments from developers
� Manual inspection

18

Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)

18

Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)

18

Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)

18

Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)

18

Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)

19

Examples

Program Change Speedup

Groovy Synchronize methods ↘ 0.92x

Groovy Volatile instead of syn-
chronized

↗ 1.50x

Collections Fix correctness bug by
adding synchronization

↘ 0.64x

Pool Finer-grained locking to
avoid deadlocks

↗ 1.52x

Intel Core i7 CPU, 8 threads

20

Related Work

Performance
analysis and
profiling

Test generation

Regression testing

Grechanik2012

Han2012

McCamant2003

Jin2010
Foo2010

Yilmaz2005
Chen2007

Pacheco2007
Ciupa2008

Visser2004

Godefroid2005

Pradel2012

SpeedGun

Burnim2009
Zhang2011

Nistor2012 Yan2012

Csallner2004 Sen2005

Xu2012Jovic2011

21

Conclusion

SpeedGun: Automated performance
regression testing for thread-safe classes

� Generation of concurrent performance
tests

� Systematically avoid pitfalls of
measuring concurrent performance

A step towards reliable and efficient
concurrent software

22

Michael Pradel1, Markus Huggler2,
and Thomas R.Gross2

1 University of California, Berkeley
2 ETH Zurich

I’m looking for students to join
my group at TU Darmstadt!

SpeedGun:
Performance Regression Testing
of Concurrent Classes

