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Motivation

Writing concurrent software is difficult

Correctness:
Synchronize
concurrent
accesses to
shared data

Performance:
Avoid
unnecessary
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tion
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Data races
Atomicity violations
Thread safety
Schedule exploration

?
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Real-World Example
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Real-World Example (2)
class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) {
this.initialized = true;

}
}
boolean isInitialized() {
return this.initialized;

}

}

Before
bug 2166
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Real-World Example (2)
class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!isInitialized()) {
setInitialized(true);

}
}
synchronized boolean isInitialized() {
return this.initialized;

}
synchronized void setInitialized

(boolean b) {
this.initialized = b;

}
}

Fix for
bug 2166
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Real-World Example (2)
class ExpandoMetaClass {
private volatile boolean initialized;
synchronized void initialize() {
if (!isInitialized()) {
setInitialized(true);

}
}
boolean isInitialized() {
return this.initialized;

}
void setInitialized(boolean b) {
this.initialized = b;

}

}

Fix for
bug 3557
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SpeedGun: Overview

Automated performance regression
testing for thread-safe classes

Regression, improvement, or none

Test Oracle

Test execution and performance measurement

Generation of concurrent performance tests

Version 1 Version 2
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Measuring performance ain’t easy
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→ Minimum measurable timespan

� Thread scheduling
→ Repeated execution

� Just-in-time compilation
→Warm up + steady state

� Garbage collection
→ Invoke before measurements
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Concurrent Tests: Example

ExpandoMetaClassInit v0 = new ExpandoMetaClassInit();
ExpandoMetaClass v1 = v0.unInitalizedExpandoMetaClass();
Class v2 = v1.getJavaClass();
ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods();

Thread 1 Thread N

String v4 = x.toString();
x.respondsTo(v4, v4, null);
x.isModified();
...

x.initialize();
x.getClassNode();
x.getProperties();
...

...

Sequential prefix + concurrent suffixes
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Test Generation

Feedback-directed random generation of
concurrent tests [PLDI’12]

Here: Long tests with many suffixes
Exceed minimum
measurable timespan

High degree of
concurrency
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Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...
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Test Generation: Scalability

Challenge: Scaling feedback-directed
test generation to large tests

Goal:
L calls

...

...

Execute at least 1 + ..+ L =
L2 + L

2
calls
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Test Generation: Scalability

Approach: Generate smaller sequences
and repeat them

Repeat√
L calls√
L times

Goal:
L calls

...

...

...

=
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Test Generation: Scalability

Approach: Generate smaller sequences
and repeat them

Execute at least 1 + ..+
√
L =

L+
√
L

2
calls

Repeat√
L calls√
L times

Goal:
L calls

...

...

...

=
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Test Execution (Single)

time

Prefix
Thread setup

Thread cleanup

How to measure test execution time?

Suffixes
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Test Execution (Single)

time

Prefix
Thread setup

Suffixes =
Measured time

Thread cleanup

How to measure test execution time?
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Test Execution (Repeated)

time

... ...

Warm up Steady
state

Steady
state

SetM of measurements

...

...

= test execution
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Test Execution (Repeated)

time

... ...

Warm up Steady
state

Steady
state

SetM of measurements

Add measurements until variance is
within fixed bounds: σ(M) ≤M · β

standard
deviation

mean default:
0.01

...

...

= test execution
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Length of Tests

How long should tests be?
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Length of Tests

How long should tests be?

time

Steady state

...

Average execution time of test T: tT
Repetitions: rT

Constraints:
� tT > minimum measurable timespan
� rT > minimum number of repetitions

Test T Test T Test T
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Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin Lmax
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Length of Tests (2)

Approach: Binary search
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� Generate a test T
� Execute and measure tT and rT for

both versions
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to measure
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Length of Tests (2)

Approach: Binary search

Repeat until constraints fulfilled:
� Generate a test T
� Execute and measure tT and rT for

both versions

Lmin LmaxToo short
to measure

2.
Okay
3. 1.

Not enough
repetitions
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Test Oracle

Does one version outperform the other?

1) Decide winner of each test

.. mean and confidence interval
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Test Oracle

Does one version outperform the other?

Statistically
significant
difference?

Difference above
threshold?

1) Decide winner of each test

.. mean and confidence interval
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Test Oracle

Does one version outperform the other?

2) Decide overall winner
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Test Oracle

Does one version outperform the other?

2) Decide overall winner

� Group tests by winner:
TV 1, TV 2, TNone

� Report regression if
|TV 1| > |TV 2| and |TV 1| > |TNone|

� Report improvement if
|TV 2| > |TV 1| and |TV 2| > |TNone|
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SpeedGun: Overview

Automated performance regression
testing for thread-safe classes

Regression, improvement, or none

Test Oracle

Test execution and performance measurement

Generation of concurrent performance tests

Version 1 Version 2
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Evaluation

Does SpeedGun identify performance
regressions and improvements?

Setup:
� 5 classes from 4 projects
� Full version history of 3 classes
� 113 pairs of classes

Baseline:
� Comments from developers
� Manual inspection
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Results

113 pairs of classes

No warning (96)
Expected difference
is reported (11)

Expected difference
is not reported (4)

Unexpected difference
is reported (2)
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Examples

Program Change Speedup

Groovy Synchronize methods ↘ 0.92x

Groovy Volatile instead of syn-
chronized

↗ 1.50x

Collections Fix correctness bug by
adding synchronization

↘ 0.64x

Pool Finer-grained locking to
avoid deadlocks

↗ 1.52x

Intel Core i7 CPU, 8 threads
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Conclusion

SpeedGun: Automated performance
regression testing for thread-safe classes

� Generation of concurrent performance
tests

� Systematically avoid pitfalls of
measuring concurrent performance

A step towards reliable and efficient
concurrent software
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