
Performance Regression Testing of Concurrent Classes

Michael Pradel
EECS Department

University of California,
Berkeley

Markus Huggler
Dept. of Computer Science

ETH Zurich

Thomas R. Gross
Dept. of Computer Science

ETH Zurich

ABSTRACT
Developers of thread-safe classes struggle with two oppos-
ing goals. The class must be correct, which requires syn-
chronizing concurrent accesses, and the class should pro-
vide reasonable performance, which is difficult to realize in
the presence of unnecessary synchronization. Validating the
performance of a thread-safe class is challenging because it
requires diverse workloads that use the class, because ex-
isting performance analysis techniques focus on individual
bottleneck methods, and because reliably measuring the per-
formance of concurrent executions is difficult. This paper
presents SpeedGun, an automatic performance regression
testing technique for thread-safe classes. The key idea is
to generate multi-threaded performance tests and to com-
pare two versions of a class with each other. The analysis
notifies developers when changing a thread-safe class signif-
icantly influences the performance of clients of this class.
An evaluation with 113 pairs of classes from popular Java
projects shows that the analysis effectively identifies 13 per-
formance differences, including performance regressions that
the respective developers were not aware of.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Languages, Performance, Measurement, Algorithms

Keywords
Thread safety, Test generation, Performance measurement

1. INTRODUCTION
A thread-safe class is a class that encapsulates all syn-

chronization necessary to allow multiple concurrent threads
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to access a shared object without further synchronization.
Clients of the class can access an instance from multiple
threads as if there was no other thread using the same in-
stance. Because correctness must be guaranteed by the class
developer, thread-safe classes simplify the task of parallel
programming for the clients. In many multi-threaded pro-
grams, a small number of thread-safe classes implement most
concurrency-related functionality. Since these classes are at
the core of the program, their behavior is crucial for the
entire program.

Developers of a thread-safe class aim for two contradicting
goals. On the one hand, the class must be correct, in particu-
lar, it should indeed be thread-safe. To ensure thread safety,
the class must synchronize all concurrent accesses to an in-
stance of the class, for example, with synchronized methods.
On the other hand, the class should perform well, even when
many threads access a shared instance concurrently. To en-
sure good performance, thread-safe classes typically try to
minimize the frequency and granularity of synchronization,
for example, by using short synchronized blocks instead of
synchronized methods. Due to the contradicting nature of
these two goals, correctness and performance, developers of-
ten struggle to achieve both.

To achieve correctness, developers can rely on bug find-
ing techniques [17, 16, 6, 46, 26, 41] and approaches that
influence the schedule of concurrent executions [15, 36, 12,
7, 45, 40, 32, 30, 25, 57, 49]. In contrast, developers cur-
rently have only little support to measure, improve, and
maintain the performance of thread-safe classes. Traditional
CPU profiling [21] is only of limited help, as it focuses on
individual bottleneck methods. Furthermore, performance
issues are relatively hard to identify because measuring the
performance of a concurrent execution in a reliable way is
non-trivial. Recent work on automatically finding perfor-
mance problems focuses on particular bug patterns [54, 55,
38] but does not address concurrency-related performance
problems.

This paper presents SpeedGun, an automatic performance
regression testing technique for thread-safe classes. The ap-
proach allows developers to easily assess how a change in
a thread-safe class influences the performance of its clients.
The key idea is to automatically generate concurrent perfor-
mance tests that exercise the class in various ways and to
measure the performance before and after a change. Speed-
Gun warns developers if a change significantly decreases the
performance, that is, if the perceived slowdown is above a
configurable threshold. SpeedGun also reports performance
improvements to enable developers to verify whether a sup-



class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {
if (!this.initialized) {
this.initialized = true;

}
}
boolean isInitialized() {
return this.initialized;

}

}

(a) Before October 2007: Class is
not thread-safe because reads and
writes of initialized are not synchro-
nized.

class ExpandoMetaClass {
private boolean initialized;
synchronized void initialize() {

if (!isInitialized()) {
setInitialized(true);

}
}
synchronized boolean isInitialized() {

return this.initialized;
}
synchronized void setInitialized

(boolean b) {
this.initialized = b;

}
}

(b) October 2007: Fix thread safety
problem by making methods synchro-
nized. Leads to performance regres-
sion reported in May 2009.

class ExpandoMetaClass {
private volatile boolean initialized;
synchronized void initialize() {

if (!isInitialized()) {
setInitialized(true);

}
}
boolean isInitialized() {

return this.initialized;
}
void setInitialized(boolean b) {

this.initialized = b;
}

}

(c) September 2009: Fix performance
regression by replacing synchronized
methods with volatile variables.

Figure 1: Three versions of a thread-safe class from Groovy.

posed optimization works as expected.
Our approach is enabled by two components. First, we

present a generator of concurrent performance tests, that
is, tests that run for a significant amount of time and have
a high degree of concurrency. The generated tests focus
on those parts of a class under test (CUT) that have been
changed from one version to another. Generating such tests
goes beyond the capabilities of existing generators of con-
current tests [41, 37], which focus on short tests that ex-
pose correctness bugs. Furthermore, our approach addresses
the problem of automatically finding a reasonable length
of tests for a particular CUT. Performance tests must be
long enough to allow for reliably measuring performance but
should not unnecessarily protract the testing process.

Second, we present a component that, given a set of con-
current performance tests, compares the performance of two
versions of the CUT and decides whether to report a per-
formance difference. For each generated test, this compo-
nent directly compares the two versions by measuring their
performance for the same test. This part of the approach
incorporates best practices for reliably measuring the per-
formance of concurrent Java programs.

As a motivating example, consider the class ExpandoMeta-

Class from the Groovy project (Figure 1). In a bug re-
port from October 2007, a user complained about a thread
safety problem caused by missing synchronization.1 The de-
velopers fixed the problem by making two methods of the
class synchronized. Unfortunately, this change significantly
decreased the performance of the class, and in May 2009,
a user complained that “as the number of concurrent re-
quests increases response times increase dramatically”.2 In
response to the second bug report, the developers replaced
the course-grained synchronization introduced in 2007 by
more fine-grained synchronization via a volatile field. 19
months of suboptimal performance passed between the first
change that degraded performance and the second change
that restored it. As the example illustrates, developers of
thread-safe classes are often unaware of performance changes
that come as a side effect of fixing correctness problems.

SpeedGun supports developers by finding performance re-

1Issue 2166 in Groovy’s bug database.
2Issue 3557 in Groovy’s bug database.

gressions and by confirming supposed performance improve-
ments. For the above example, SpeedGun could have helped
to detect the performance regression right after introduc-
ing it. For the first change, which introduces synchronized
methods, the analysis reports a performance regression. In
contrast, adding the more fine-grained synchronization of
Figure 1c would not have triggered a regression report be-
cause the performance is similar. Besides diagnosing regres-
sions, SpeedGun helps to verify supposed performance im-
provements. For the second change, which replaces coarse-
grained synchronization with fine-grained synchronization,
the analysis reports a performance improvement. Of course,
performance problems are not always as easy to spot as in
Figure 1. In the evaluation of this work, we encounter more
intricate examples, where a quick manual analysis cannot
accurately assess the performance impact of a change.

SpeedGun is designed to provide an automatic tool that is
easy to use in practice. To this end, the approach has three
properties. First, SpeedGun requires no input except for two
versions of the CUT, possibly accompanied by helper classes
that the CUT depends on. Second, the output of SpeedGun
is precise in the sense that each reported performance dif-
ference has been observed in executions of the CUT and
has been found to be larger than a configurable threshold.
Each report comes with a generated test suite to reproduce
the performance difference. Third, SpeedGun relieves de-
velopers from dealing with the difficulties of measuring the
performance of concurrent executions. Such performance
measurements are challenging, for example, because differ-
ent thread interleavings may expose different performance
properties and because just-in-time compilation and mem-
ory management influence performance in surprising ways.
Our approach incorporates various best practices for mea-
suring performance and lets developers benefit from them
without any effort.

To evaluate our approach, we apply SpeedGun to 113
pairs of thread-safe classes from four popular Java code
bases, where each pair consists of a class before and after
a change committed by the respective developers. Among
the 113 pairs of classes, the approach effectively finds 13 per-
formance differences, including the differences illustrated in
Figure 1. The reported performance differences mostly coin-
cide with a baseline established by manually inspecting the



pairs of classes. Moreover, the analysis reveals performance
changes that the developers of the classes were apparently
not aware of when changing the class, and it casts doubts
about some performance improvements expected by the de-
velopers.

In summary, this paper contributes the following:

• A generator of concurrent performance tests. It effi-
ciently creates long-running tests that have a high de-
gree of concurrency and that allow for comparing the
performance of two versions of a class.

• Algorithms for repeatedly executing generated tests
and for reliably measuring their performance to de-
cide whether a change influences the performance of a
CUT in a significant way. This part of the approach
could also be used independently of the first contribu-
tion, for example, with manually written performance
tests.

• An implementation to yield a practical tool and evi-
dence of its effectiveness. We show that the approach
is useful to detect performance regression bugs and
to verify supposed performance improvements in real-
world classes.

2. CHALLENGES FOR ACCURATE PER-
FORMANCE MEASUREMENT

A major challenge for automatic performance regression
testing is how to accurately measure performance. Since
addressing this challenge influences the design of the entire
approach, we discuss in the following the various sources of
non-deterministic performance of concurrent Java programs.

• Measurement accuracy. The JVM provides a nanosec-
ond timestamp, but its accuracy varies among plat-
forms. Our approach assumes a minimal measurable
time span tmin that can be measured accurately de-
spite inaccurate timestamps, and it creates tests that
run longer than tmin.

• Thread scheduling. Different executions of a concur-
rent test may lead to different thread interleavings,
which in turn may expose different performance prop-
erties. We mitigate the effect of different thread sched-
ules by repeatedly executing each generated test at
least rmin times, allowing the scheduler to trigger dif-
ferent thread interleavings and performance proper-
ties. Existing techniques for forcing different sched-
ules [15, 7, 36, 12] perturb the performance of the
scheduled program and therefore are not applicable in
our approach.

• Just-in-time (JIT) compilation. The JIT compiler may
optimize tests at arbitrary points while they are run-
ning and change their performance. To deal with the
influence of JIT compilation, we repeatedly run tests
during a warm-up phase and measure performance af-
terwards, during a steady-state phase. This approach
is common practice for measuring performance in a
managed runtime [19].

• Garbage collection. Memory management can influ-
ence the performance of a Java program [19]. To deal
with this influence, we trigger the garbage collector

ExpandoMetaClassInit v0 = new ExpandoMetaClassInit();
ExpandoMetaClass v1 = v0.unInitalizedExpandoMetaClass();
Class v2 = v1.getJavaClass();
ExpandoMetaClass x = new ExpandoMetaClass(v2, true);
x.getExpandoMethods();

String v4 = x.toString();
x.respondsTo(v4, v4, null);
x.isModified();
...

. . .

x.initialize();
x.getClassNode();
x.getProperties();
...

Thread 1 Thread N

Figure 2: Example of a generated test. The pre-
fix (above) creates an instance x of the CUT. The
suffixes (below) use x concurrently.

before starting a measurement. Although there is no
standardized way to force JVMs into running the gar-
bage collector, this best effort approach works well in
practice.

3. GENERATING CONCURRENT PER-
FORMANCE TESTS

The first part of our performance regression testing tech-
nique is a generator of concurrent performance tests. The
generator takes two versions of a class as its input and cre-
ates tests that exercise the common interface of both classes.
SpeedGun creates concurrent tests that consist of a sequen-
tial prefix followed by multiple concurrently executing suf-
fixes. Each prefix and suffix is a sequence of method calls
and field accesses, whose result (if any) is stored in a fresh
local variable. The prefix instantiates the CUT and calls
methods on the created instance to bring it into a state that
may expose performance problems. Suffixes run after the
prefix, each in a separate thread, and are executed concur-
rently with each other. The instance of the CUT created in
the prefix is shared by all suffixes.

Figure 2 shows a generated performance test for ExpandoMeta-
Class. The upper part is the prefix that creates an instance x

of the CUT. Before creating the shared instance x, the prefix
contains several other method calls that provide arguments
for creating x. The lower part shows parts of the concurrent
suffixes that exercise the shared instance x.

To accurately measure the performance of concurrent tests,
it is crucial to have tests that run for a significant amount
of time. In particular, the concurrent part of a test must
be significantly longer than the minimal measurable time
span tmin (Section 2). During our evaluation, tests typi-
cally have suffixes with several thousands of method calls to
meet this requirement. Another requirement is that perfor-
mance tests should have many concurrent threads to simu-
late the degree of contention that a thread-safe class may ex-
perience in real-world software. The need for long-running
tests with many threads distinguishes SpeedGun from ex-
isting approaches for generating concurrent tests [41, 37],
which create short tests with a small number of threads to
find concurrency-related correctness problems. Naively ex-
tending these existing test generation approaches to create
long tests does not scale. Furthermore, repeatedly execut-
ing short tests does not work well because the overhead for
creating and joining threads often outweighs differences in



the concurrent performance of two versions of the CUT.
Our approach to create concurrent performance tests has

three steps. First, SpeedGun analyzes the two versions of
the CUT and selects a set of methods to focus on. Second,
SpeedGun determines how long the tests for the given CUT
must be to allow for accurately measuring performance. This
step is important to obtain accurate measurements with-
out unnecessarily protracting the testing process by creating
overly long tests. Third, SpeedGun uses feedback-directed
random test generation to create a set of concurrent tests.
The remainder of this section elaborates on these three steps.

3.1 Choosing Methods Under Test
To compare the performance of two versions of a CUT,

SpeedGun generates tests that run with both versions. For
this purpose, the generator considers a method only if the
method is provided in the public interface of both classes.
As a result, the generated tests can test either version of the
class, depending on which class is loaded. We further extend
the test generator so that it focuses on methods and fields
that changed from the old to the new version of the CUT.
We call all methods that are directly or indirectly influenced
by these changes focus methods and prioritize them during
test generation. With this prioritization, the generated tests
exercise focus methods more intensively than other meth-
ods. This setup allows our approach to find performance
problems introduced in the new version of the class.

Instead of prioritizing focus methods, the test generator
could ignore methods that are not influenced by the changes.
However, because some methods of a CUT may require other
methods to be called first (for example, to establish a pre-
condition), the test generator also calls non-focus methods.

3.2 Determining the Length of Tests
The length of suffixes that the test generator creates is a

crucial parameter of our approach. Too short suffixes lead
to inaccurate performance measurements and the approach
cannot correctly identify performance differences. Too long
suffixes will waste time while creating and executing tests.
Instead, SpeedGun should repeat tests as often as possi-
ble within a given time budget because each repetition can
potentially trigger a different interleaving, that is, expose
different performance properties. Unfortunately, the rela-
tion between the running time of a test and the length of its
suffixes is CUT-specific. For example, a test of a particular
length may take longer for a CUT where each method is
synchronized than for a CUT that uses fine-grained locking.

To relieve developers from manually setting the length of
tests, SpeedGun determines a reasonable length for a partic-
ular CUT with an automatic heuristic analysis. The analysis
assumes a fixed length ts of the steady-state phase during
which SpeedGun measures performance and a minimal num-
ber rmin of times that a test should be repeated to expose
diverse performance properties. Let rT be the number of
times one can repeat a test T within ts, and let tT be the
average time taken to execute T . Then the following three
(in)equalities describe the constraints within which to search
for a reasonable test length:

ts ≈ rT · tT (1)

rT > rmin (2)

tT > tmin (3)

Algorithm 1 Find a reasonable length of tests for a CUT.

Input: Old and new version of the CUT
Output: Length of suffixes for testing the CUT
1: lmin ← startMin
2: lmax ← startMax
3: while lmin < lmax and tries < maxTries do
4: lcurrent ← (lmin + lmax)/2
5: T ←random test with suffixes of length lcurrent

6: tT1, rT1 ← execute T with old version
7: tT2, rT2 ← execute T with new version
8: tooShort← tT1 ≤ tmin or tT2 ≤ tmin

9: tooLong ← rT1 ≤ rmin or rT2 ≤ rmin

10: if tooShort and tooLong then
11: Abort (cannot find a reasonable length)
12: else if !tooShort and !tooLong then
13: return lcurrent . Found a reasonable length
14: else if tooShort then
15: lmin ← lcurrent . Try longer tests
16: else if tooLong then
17: lmax ← lcurrent . Try shorter tests
18: end if
19: end while
20: Abort (cannot find a reasonable length)

(1) ensures to repeat the test rT times within the steady
state phase. (2) ensures that the test gets at least the mini-
mal number of repetitions. (3) ensures that executing a test
takes long enough to measure its performance, on average.

Given these generic constraints and a particular CUT,
SpeedGun performs a binary search for a reasonable test
length (Algorithm 1). The algorithm repeatedly creates a
random test (line 5, details in Section 3.3) and executes it
for both versions of the CUT (lines 6 and 7). We measure
how long the test takes on average for each version, tT1 and
tT2, and how many repetitions are possible within ts, rT1

and rT2. For these measurements, we repeatedly execute
the test until the total time exceeds ts. If the average test
running time is below the minimal measurable time tmin for
one of the two versions, then the algorithm explores larger
test lengths (line 16). Likewise, if the number of repetitions
is below the minimal acceptable number rmin of repetitions,
the algorithm explores smaller test lengths (line 17). The bi-
nary search continues until the algorithm finds a test length
that satisfies constraints (1) to (3). To bound the time spent
in the algorithm, it is aborted after trying maxTries lengths
without finding a length that satisfies the constraints. Simi-
larly, the algorithm aborts the search if it finds a test length
to be too small and too large at the same time. If the al-
gorithm fails to propose a reasonable test length, SpeedGun
may fall back on a specified maximum test length. During
our experiments, the algorithm always succeeds to find a
reasonable test length.

The presented approach to find a reasonable test length
for a particular CUT is a heuristic and may not work well
for all CUTs. A limitation of the approach is that it extra-
polates the performance of the CUT from a small number
of tests and measurements. As we show in our evaluation,
the approach works well for classes from popular libraries.



3.3 Generating Performance Tests
We build upon an existing generator of concurrent unit

tests [41].3 It uses feedback-directed, random test genera-
tion, which was first described in [39] for sequential tests.
The basic idea is to construct sequences of statements by
randomly choosing fields, methods, and method arguments,
by executing partial tests, and by extending sequences only
if they do not lead to an exception.

SpeedGun requires tests with a large number of suffixes
that each contain a large number of method calls. Naively
applying feedback-directed random test generation to create
such tests is impractical. The reason is that to create a call
sequence of length l, the test generator executes partial call
sequences of length 1, 2, . . . , and l. That is, creating a se-

quence with l calls requires executing at least l2+l
2

calls. For
example, naively generating a suffix with 2,000 calls requires
over 2 million calls during the test generation process. Since
SpeedGun generates many suffixes that each have thousands
of calls, this naive approach does not scale very well.

We address this challenge by creating smaller suffixes and
by repeating them to obtain tests of the desired length. To
obtain a suffix of length l, the approach creates a call se-
quence of length

√
l and repeats it

√
l times. This approach

is a pragmatic compromise between creating diverse tests
and taking a reasonable amount of time for generating tests.

To create tests with a high degree of contention, Speed-
Gun supports an arbitrary number of threads and creates
tests with a configurable number N of suffixes. We expect
users of the approach to choose N depending on typical us-
age scenarios of the CUT.

4. TEST EXECUTION AND PERFOR-
MANCE MEASUREMENT

Given a generated performance test, the analysis executes
the same test for both versions of the CUT and measures the
performance. As described in Section 2, measuring the per-
formance of a concurrent Java program is challenging. We
address this challenge by repeatedly measuring the steady-
state performance of each test and by only accepting mea-
surements that vary within specified bounds. In summary,
the test execution and performance measurement compo-
nent of the approach consists of four steps:

1. Estimate how often to repeat the test to fill a spec-
ified warm-up period tw and a specified steady-state
period ts.

2. Randomly decide which of the two versions to test first.

3. Gather execution times for one version.

4. Gather execution times for the other version.

To run a test for specified warm-up and steady-state pe-
riods, SpeedGun repeatedly executes it. Repeating a test
more often for one version than for the other version can
influence the measured performance because the JIT com-
piler may optimize a method only after it has been called a
particular number of times. To avoid skewing the measured
performance, our first step is to estimate a single number
of repetitions to be used for both versions. To this end, we
run the test for both versions for a period ts and count the

3http://thread-safe.org

Algorithm 2 Gather execution times of a test.

Input: Test T ; Number of repetitions rw and rs for the
warm-up phase and the steady-state phase, respectively

Output: Set M of execution times or inconclusive
1: runGarbageCollection()
2: repeat(T, rw) . Warm-up phase
3: M← ∅ . Start of steady-state phase
4: repeat
5: M←M∪ repeatAndMeasure(T, rs)
6: until mmin measurements done
7: while σ(M) >M · σstop do
8: M←M∪ repeatAndMeasure(T, rs)
9: if |M| = mmax then

10: if σ(M) ≤M · σacceptable then
11: return M
12: else
13: return inconclusive
14: end if
15: end if
16: end while
17: return M . End of steady-state phase

repetitions achieved. From these numbers, we compute how
often to repeat the test during the warm-up phase and dur-
ing the steady-state phase, respectively, giving two numbers
rw and rs that are used for both versions of the class.

The second step is to randomly decide which of the two
versions to test first. A random decision avoids biasing the
measurements towards one of the two versions. For exam-
ple, always running the old version before the new version
may give a performance advantage to the new version be-
cause the executions of the old version may trigger some JIT
optimization from which the new version benefits.

The third and the fourth steps, gathering execution times
for both versions, are the core of the test execution and per-
formance measurement component. Algorithm 2 summa-
rizes how to gather execution times for a given test T and
for given numbers of repetitions rw and rs. Before start-
ing any measurements, the algorithm triggers the garbage
collector. Then, the algorithm repeats the test rw times as
the warm-up phase. Finally, during the steady-state phase
(lines 3 to 17), the algorithm builds a set M of execution
times of the test. The basic idea is to repeatedly measure
the time required for executing the test rs times until the
standard deviation σ(M) of the measured execution times
is below a specified percentage of the mean of the measured
execution times, that is, belowM·σstop. This approach mit-
igates the various sources of non-deterministic performance
by taking additional measurements as long as the measured
execution times are spread out over a large range of values.
The algorithm starts with a minimum number mmin of mea-
surements (lines 4 to 6) and adds measurements until the
standard deviation is below the threshold (lines 7 to 16), or
until a maximum number mmax of measurements is reached.
If mmax is reached, then the series of measurements is re-
jected as inconclusive, unless the standard deviation is below
a threshold M · σacceptable.

We have two thresholds, M · σstop to stop measuring im-
mediately andM·σacceptable to accept a series of mmax mea-
surements, is to provide a knob to account for unavoidable
variations of the measured performance. For example, such
variations may occur if the machine used for performance



Algorithm 3 repeatAndMeasure(T, r)

Input: Test T ; Number of repetitions r
Output: Execution time t
1: t← 0
2: repeat
3: Execute prefix of T
4: Setup threads for suffixes of T
5: start← currentT ime() . Start measurement
6: for each thread do
7: Execute a suffix of T
8: end for
9: t← t+ currentT ime()− start . Stop measurement

10: Clean up threads
11: until r repetitions done
12: return t

measurements runs other CPU-consuming processes.

4.1 Measurement Scopes
Algorithm 2 uses a function repeatAndMeasure() to re-

peatedly execute a test and to measure its performance. Al-
gorithm 3 shows our default implementation of repeatAnd-
Measure(). The algorithm repeatedly executes the prefix
and the suffixes of the test and measures the time from start-
ing the suffixes until all suffixes have terminated. That is,
the measurement excludes the time to set up threads and the
time for executing the prefix. The rationale to exclude these
computations is that they are independent of the CUT’s
concurrent performance. Alternatively to the measurement
scope in Algorithm 3, one can measure the time spent for ex-
ecuting each individual suffix by moving the measurement
statements into the for-loop, that is, around line 7. The
main difference between these two measurement scopes is
that Algorithm 3 includes the time until the last suffix has
terminated, whereas the alternative measurement scope con-
siders each suffix in isolation. Furthermore, the alternative
measurement scope has a higher measurement overhead be-
cause it involves more measurements.

Depending on how the CUT is used in a program, both
measurement scopes may represent the CUT’s perceived con-
current performance. If the program splits a sequential task
into parallel subtasks that all use the CUT, the program may
have to wait for all subtasks to finish before making progress.
In this case, the approach described in Algorithm 3 reflects
what developers are interested in. In contrast, if the pro-
gram has multiple, independent threads that use the CUT,
then there is no need to wait until all suffixes finish and the
alternative measurement scope is more appropriate. Our
implementation supports both approaches. We focus on Al-
gorithm 3 in the remainder of the paper.

4.2 Inconclusive Tests
Some performance tests may lead to inconclusive results.

SpeedGun ignores these measurements when deciding whe-
ther to report a performance difference. There are three
reasons for inconclusive tests. First, a test execution may
be inconclusive because the test raises an exception or leads
to a deadlock. Such misbehavior may, for example, be due
to a thread safety problem in the CUT, such as the bug in
Figure 1a. Second, we reject a test execution as inconclusive
if the number of repetitions rs, which is necessary to fill the
steady-state period, is below rmin. The rationale for reject-

ing such tests is that a small number of repetitions may
result in a non-representative sample of the performance
space of the test. Third, Algorithm 2 may reject a series
of measurements as inconclusive if the standard deviation is
above the threshold after reaching the maximum number of
measurements.

4.3 Test Oracle
The final step of SpeedGun is a test oracle that analyzes

the execution times measured for all conclusive tests to de-
cide whether to report a performance difference between
the two version of the CUT. For each test and version of
the CUT, the test execution and performance measurement
component produces one set of execution times. That is, for
each test Ti in a set of tests T = {T1, · · · , Tn}, there are two
sets Mi,old and Mi,new of execution times.

For each such test, the oracle decides whether one of the
two versions outperforms the other by checking two condi-
tions. First, the oracle checks whether there is a statistically
significant difference between the measured execution times.
We use the methodology described in [19]: Compute the
mean execution time and its confidence interval (confidence
level: 98%) for bothMi,old andMi,new, and check whether
the confidence intervals overlap. If and only if the confidence
intervals do not overlap, the oracle concludes that one ver-
sion outperforms the other for the given test. Second, the
oracle checks whether the measured performance difference
is above a threshold δreport. The threshold avoids reporting
small differences that developers may not consider relevant,
and we discuss its value in Section 5.4. Formally, the oracle
considers the old version to outperform the new version if

Mi,old +
ci,old

2
<Mi,new−

ci,new

2
and

Mi,new

Mi,old

−1 > δreport

(4)
and likewise, it considers the new version to outperform the
old version if

Mi,new +
ci,new

2
<Mi,old−

ci,old
2

and
Mi,old

Mi,new

−1 > δreport

(5)
where ci,new and ci,old are the sizes of the confidence inter-
vals for Mi,new and Mi,old, respectively.

Checking whether one version outperforms the other ver-
sion partitions the set T of tests into three subsets: Tnone,
where none of the two versions outperforms the other; Told,
where the old version outperforms the new version; and
Tnew, where the new version outperforms the old version.
The oracle reports a performance regression if:

|Told| ≥ |Tnone| and |Told| > |Tnew| (6)

In contrast, the oracle reports a performance improvement
if:

|Tnew| ≥ |Tnone| and |Tnew| > |Told| (7)

That is, the test oracle informs the developer if one of the
two versions outperforms the other in more tests than vice
versa, and if this one version outperforms the other in at
least as many tests as the number of tests without a clear
winner. The rationale for the second condition is to avoid
false warnings in cases where many tests are in Tnone.



Table 1: Classes used in the evaluation and how
many of them we manually classify as performance-
influencing. For classes marked with *, we analyze
the entire version history.

Code base Class Methods Pairs of classes

Total Perf.-infl.

Pool GenericObjectPool 54–56 3 3
Collections StaticBucketMap 19 1 1
Groovy ExpandoMetaClass* 31–71 63 10
JodaTime DateTime* 35–105 36 1
JodaTime ISOChronology* 10–12 10 0

Total 113 15

5. EVALUATION
To evaluate the effectiveness of SpeedGun, we apply the

implementation to thread-safe classes from real-world Java
code bases. We run the analysis on 113 pairs of versions of
classes and compare the performance differences reported by
SpeedGun to performance differences expected after manual
inspection (Section 5.3). Furthermore, we evaluate the sen-
sitivity of SpeedGun to the threshold for reporting perfor-
mance differences (Section 5.4), and we evaluate the perfor-
mance of SpeedGun itself (Section 5.5).

5.1 Implementation
Our implementation takes two Jar files, each containing a

version of the CUT and helper classes, as its input. Tests are
executed reflectively [39, 41], which our initial experiments
show to be comparable to normal execution when measuring
the relative performance of two versions of a CUT. To run
a single test with both versions of the CUT, we modify the
class loader so that it loads from the respective Jar file. We
use reflective execution to avoid the significant overhead of
creating .class files for each generated test and for invoking
the JVM for each test execution.

5.2 Experimental Setup
We apply SpeedGun to five thread-safe classes from four

Java code bases: Apache Commons Pool, Apache Commons
Collections, Groovy, and JodaTime (Table 1). To assess how
many relevant warnings the analysis reports, we apply it to
pairs of versions of classes with an expected performance dif-
ference. Furthermore, to assess whether the analysis reports
irrelevant warnings, we apply the analysis to pairs of versions
of classes without an expected performance difference. All
classes in Table 1 come with manually written test. How-
ever, even though all classes are supposed to be used con-
currently, only one of them (GenericObjectPool) has multi-
threaded tests. All existing tests focus on correctness and
do not attempt to measure performance. Since no existing
tests or tool can automatically identify performance-related
changes in the version histories of these classes, we perform a
systematic, manual analysis of the version histories to estab-
lish a baseline for evaluating our approach. For the baseline,
we expect a performance difference if:

• The developers explicitly mention a change of concur-
rent performance in the commit message.

• The change explicitly addresses a reported, concurren-
cy-related performance bug.

• The change adds or removes synchronization (for ex-
ample, by adding or removing the synchronized key-
word), or the change increases or decreases the scope
of synchronization (for example, by replacing a syn-
chronized method with a synchronized block smaller
than the method).

To gather pairs of classes for the evaluation, we systemati-
cally analyze the version histories of thread-safe classes using
two strategies. First, we perform a keyword-based search for
bug reports related to concurrency and performance, simi-
lar to [28]. For each bug that contains a fix, we include the
pair of classes with the buggy class and the fixed class. This
first strategy yields pairs of versions for which we expect a
performance difference.

Second, we consider the entire version history of three
classes and analyze every change of these classes (that is,
source code differences, commit messages, and associated
bug reports) and classify the change as performance-influen-
cing or not according to the criteria given above. This sec-
ond strategy yields pairs of versions for which we expect a
performance difference and pairs of versions for which we do
not expect a performance difference. The inspection of ver-
sion histories has been done by two of the authors to reduce
the risk of misclassifying a change.

Table 1 summarizes the pairs of classes used in the eval-
uation. For classes marked with *, we consider the entire
version history. In total, the marked classes have 154 pairs
of versions. We ignore 26 because either the old or the new
version fails to compile, and we ignore 15 because the test
generator cannot create tests for one of the two versions.
For example, this may happen when the class contains a
correctness bug that raises an exception. We consider all
remaining 113 pairs of classes, of which we manually clas-
sify 15 as performance-influencing. Table 2 gives details for
all class pairs with performance-influencing changes. The
“Baseline” column of Table 2 shows which kind of perfor-
mance difference we expect based on the manual inspection.

For each pair of classes, we run SpeedGun with 8 and 64
concurrent threads. In total, it generates 996 tests for the
113 pairs of classes. On average, there are 10 method calls
in a test prefix and 111 method calls in a method suffix. We
use the following parameters and thresholds. The warm-up
phase tw is 10 seconds; the steady-state phase is 20 seconds
for 8 threads and 40 seconds for 64 threads. Based on ini-
tial experiments, we assume that the minimal measurable
time span tmin is five milliseconds. For determining the test
length, we use σstop = 0.01, σacceptable = 0.02, mmin = 3,
mmax = 5, maxTries = 20, and rmin = 50. The test or-
acle uses δreport = 0.05 (Section 5.4 evaluates the influence
of the threshold). To avoid biasing the results towards a
particular platform, all experiments are done on two hard-
ware platforms and with two different JVMs: (1) Intel Core
i7 CPU (1.7 GHz, 8 cores) with Oracle JDK 1.7.0 13-b20
for 64-bit systems; (2) Intel Xeon CPU (2.53 GHz, 8 cores)
with OpenJDK IcedTea7 2.1.3, running in a virtualized en-
vironment (VMWare vSphere). Unless noted otherwise, the
results from both platforms coincide.

5.3 Reported Performance Differences
Applying the analysis to the 113 pairs of classes listed in

Table 1 results in 13 reports about a performance difference.
Based on these results, we can distinguish four cases.



Table 2: Changes and how they influence the concurrent performance of the changed class. The arrows
indicate the performance influence of a change according to the baseline and to SpeedGun, where ↘ means
performance regression, ↗ means performance improvement, and → means no performance difference. The
last columns show the speedup measured by SpeedGun (averaged over all tests executed on the Intel Core
i7 platform). For all pairs of classes that are not listed, we neither expect a performance difference nor does
SpeedGun report any.

ID Code base Class Revision Description Performance

Baseline SpeedGun

8 thr. 64 thr.

(1) Pool GenericObjectPool 774007 Finer-grained locking to avoid deadlocks de-
scribed in Issue 125

↗ ↗ 1.52 ↗ 1.57

(2) Pool GenericObjectPool 603449 Replace synchronized methods with volatile
fields to address Issue 113

↗ ↗ 1.30 ↗ 1.38

(3) Pool GenericObjectPool 602773 Fix of a performance problem (Issue 93) by in-
troducing more fine-grained locking

↗ ↗ 2.09 ↗ 2.20

(4) Collections StaticBucketMap 1076039 Fix of a correctness bug (Issue 334) by adding
synchronization

↘ ↘ 0.64 ↘ 0.61

(5) JodaTime DateTime v2.1 Newer version is reported to decrease perfor-
mance over v1.5.2 due to additional synchroniza-
tion (Issue 153)

↘ ↘ 0.91 ↘ 0.91

(6) Groovy ExpandoMetaClass d3da3a44 Add synchronized blocks to fix correctness prob-
lem

↘ ↘ 0.48 ↘ 0.52

(7) Groovy ExpandoMetaClass 1c947d6b Replace synchronized collections with project-
internal concurrent collections

↗ ↗ 1.08 ↗ 1.29

(8) Groovy ExpandoMetaClass 2b09801e Add synchronized block to fix correctness prob-
lem

↘ → →

(9) Groovy ExpandoMetaClass feff5190 Synchronize methods to fix correctness bug (Is-
sue 2166)

↘ ↘ 0.92 ↘ 0.96

(10) Groovy ExpandoMetaClass 83629dc1 Patch to improve (sequential) performance → ↗ 1.39 ↗ 1.38

(11) Groovy ExpandoMetaClass 77822d4c Replace project-internal concurrent collections
with java.util.concurrent collections

↗ → →

(12) Groovy ExpandoMetaClass 6e349cd9 Large patch without any obvious effects on per-
formance

→ ↘ 0.88 ↘ 0.91

(13) Groovy ExpandoMetaClass 26fc2100 Replace synchronized methods with volatile field
to fix performance bug (Issue 3557)

↗ ↗ 1.50 ↗ 1.42

(14) Groovy ExpandoMetaClass d92c12ab Replace volatile fields with synchronized meth-
ods to fix correctness problem

↘ ↘ 0.95 ↘ 0.95

(15) Groovy ExpandoMetaClass 48269129 Replace synchronized method with volatile fields
to address performance problem (Issue 4182)

↗ ↗ 1.03 →

(16) Groovy ExpandoMetaClass cdc39843 Supposed performance improvement by replac-
ing synchronized method with explicit locks

↗ → →

(17) Groovy ExpandoMetaClass d38da33c Replace volatile field with synchronized method
to fix correctness bug

↘ → →

Neither expected nor reported a difference.
For 96 pairs of classes (85%), we do neither expect a per-

formance difference, nor does SpeedGun report any. That
is, for most changes of a class, the analysis does not bother
developers with unnecessary reports.

Report of expected performance difference.
For eleven pairs of classes, SpeedGun reports a perfor-

mance difference that we expect based on our manual in-
spection. These reports include several performance regres-
sions that are apparently unintended side effects of fixing
correctness problems. For example, the analysis reports a
performance regression for Change (9) in Table 2, which
is the regression from Figure 1(b). By reporting the perfor-
mance regression right after applying the change, SpeedGun

could have helped the developers to avoid this apparently
unintended performance degradation. The analysis reports
a performance improvement for Change (13), which is the
improvement from Figure 1(c). For this change, SpeedGun
could have helped the developers to check whether the sup-
posed optimization works as intended. For change (15),
SpeedGun identifies a small performance difference when
testing with 8 threads but cannot measure any difference
when testing with 64 threads.

Expected performance difference not reported.
For four pairs of classes, SpeedGun does not report a per-

formance difference even though we expect it based on our
initial manual inspection. Close inspection reveals that the
changes indeed do not significantly influence the CUT’s per-



formance:

• Change (8) fixes a thread safety bug by adding a small
synchronized block that uses the instance of Expando-

MetaClass as the lock. SpeedGun does not report any
performance difference because the change does not
reduce the overall performance of the CUT in a signif-
icant way.

• After change (11), the CUT uses concurrent collections
from java.util.concurrent instead of project-specific
concurrent collection classes. The commit message is
“Faster class info access”, suggesting that the devel-
opers expect a performance improvement. However,
SpeedGun does not confirm this expectation.

• Change (16) addresses a reported performance prob-
lem by replacing synchronized methods with explicit
read and write locks. Although the developers seem to
expect a performance improvement, SpeedGun does
not confirm this expectation.

• Change (17) makes two methods synchronized, which
(at first sight) seems to reduce performance. The rea-
son why SpeedGun does not report a performance dif-
ference is that all call sites of the two methods are in
other synchronized methods. That is, the change does
not add any locking and therefore, there is indeed no
performance difference.

These four examples illustrate that SpeedGun can help
in verifying whether an expected performance difference is
measurable in practice. Traditionally, developers manually
develop micro-benchmarks for this purpose. Our analysis
relieves developers from this cumbersome task and supports
them in accurately measuring performance.

Report of unexpected performance difference.
For two pairs of classes, SpeedGun reports a performance

difference that we do not expect based on our initial manual
analysis:

• Change (10) is a relatively large change entitled “Per-
formance patch”. The patch introduces several opti-
mizations that improve the sequential performance of
the CUT. Although none of the changes is directly re-
lated to synchronizing concurrent threads, improving
the sequential performance also influences the concur-
rent performance, which is why our analysis reports an
improvement.

• Similar to Change (10), Change (12) is a relatively
large patch. According to the commit message it fixes
several correctness bugs. Based on our limited knowl-
edge of the CUT, we suspect that the change degrades
the sequential performance and therefore also the con-
current performance of the CUT.

These two examples illustrate that, even though Speed-
Gun aims at finding differences in the concurrent perfor-
mance of a CUT, it may also report differences that are not
directly related to concurrency. Developers that apply opti-
mizations, such as Change (10), will not be surprised if an
analysis reports a performance improvement. Therefore, we
consider this behavior of the analysis to be acceptable.
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Figure 3: Sensitivity of reported warnings to the
threshold δreport for reporting warnings. The dashed
vertical line indicates the default configuration.

5.4 Sensitivity to Threshold
SpeedGun decides when to report a performance differ-

ence based on a threshold δreport. Figure 3 shows how this
threshold influences the precision and the recall of the anal-
ysis. Precision is the number of reported warnings that are
expected according to Table 2 divided by the total number
of warnings. Recall is the number of warnings detected as
expected divided by the total number of expected warnings.
The figure shows that with a small threshold, the analy-
sis detects more relevant warnings but also produces many
more irrelevant warnings than with a large threshold. Our
default configuration is δreport = 5%, which is a pragmatic
compromise between reporting too many and too few warn-
ings. The results in Figure 3 are from the Intel Core i7
platform; the Intel Xeon platform gives similar results.

5.5 Performance of the Analysis
The running time of SpeedGun ranges between one hour

and six hours per pair of classes. Most of the time is spent in
repeatedly executing generated tests, which is necessary to
accurately measure performance. Since the analysis is fully
automated, we consider this running time to be acceptable.

6. LIMITATIONS
There are several limitations to be addressed in future

work. First, the test generator may create tests that do not
represent realistic usage scenarios, and therefore report per-
formance differences that are not relevant in practice. To
address this limitation, one may leverage real-world usage
traces [5] or existing code that uses the CUT [50] to fo-
cus test generation on realistic scenarios. Second, the test
generator may fail to create a test that triggers a particu-
lar performance problem and therefore miss a performance
difference, for example, because triggering the problem re-
quires a specific setup. Improvements in test generation may
mitigate this limitation, but non-exhaustive testing will al-
ways risk to miss problems. Third, SpeedGun does not
distinguish concurrency-related performance changes from
sequential performance changes. One way to address this
limitation is to apply the approach only to changes that are
known to influence the concurrent behavior of a CUT. As
an alternative, one could generate sequential tests to find
sequential performance differences, and leverage this knowl-
edge to mark them as unrelated to concurrency.



7. RELATED WORK

7.1 Performance Analysis
Existing dynamic analyses find performance problems re-

lated to excessive memory usage [55, 54], repeated computa-
tions [38], and latency in GUI applications [31]. Grechanik
et al. describe a dynamic analysis that selects a subset of
given inputs to find performance problems [22]. StackMine
analyzes call stack traces of many program executions to au-
tomatically detect likely performance problems [23]. In con-
trast to these approaches, which use manually created input
to exercise the program under test, SpeedGun is driven by
automatically generated tests.

Other work focuses on understanding performance prob-
lems, for example, by profiling [27, 24, 1] and by systemat-
ically narrowing down the set of potential root causes [52].
Attariyan et al. tracks a performance problem back to a
part of the input of the program by comparing different in-
puts [3]; instead, our approach compares different versions of
a class with the same input. PerfDiff compares executions of
a program on different platforms to find and localize perfor-
mance problems [60]. Instead, SpeedGun compares multiple
versions of a program on a single platform.

Studies of performance bugs show that SpeedGun ad-
dresses a relevant problem: unnecessary synchronization that
intensifies thread competition commonly causes performance
bugs [28], 22% of all performance bugs are regressions [58],
and 14% of all performance bugs are release-blocking [58].

7.2 Regression Testing
McCamant and Ernst propose to detect correctness prob-

lems that result from changes by comparing abstractions of
dynamically observed behavior [34]. Jin et al. propose to
compare two versions of a class by dynamically comparing
their behavior and by presenting the user a ranked list of ob-
served behavioral differences [29]. Their work and our work
share the idea of generating unit-level tests for regression
testing. In contrast to both [34] and [29], SpeedGun targets
performance problems. McKeeman proposes to test suppos-
edly equivalent programs, such as multiple compilers for the
same language, by comparing them with each other [35].
This idea, called differential testing, has also been used to
test system programs [9] and refactoring engines [14]. In
contrast to differential testing, SpeedGun compares two ver-
sions of the same program.

Some large projects have manually written performance
regression tests [56, 10]. Foo et al. propose to identify perfor-
mance problems exposed by such tests by analyzing correla-
tions between performance metrics [18]. Our work improves
upon these approaches by creating tests automatically.

7.3 Concurrency Bugs
Various approaches find concurrency-related correctness

bugs, such as data races [16, 44], atomicity violations [2, 17,
46], and violations of inferred invariants [33, 47]. Our own
previous work generates multi-threaded unit tests and com-
pares their concurrent execution to linearizations [41]. These
analyses target correctness problems and therefore comple-
ment SpeedGun, which targets performance problems.

Another line of research to help detecting concurrency
bugs are approaches to influence the scheduler by adding
random delays [15], by exploring interleavings systemati-
cally [36, 12] or randomly [7], by forcing schedules that ex-

pose potential concurrency bugs [45, 40, 32, 30, 26], and by
forcing schedules that cover yet uncovered interleavings [25,
57, 49]. By influencing the scheduler, these approaches also
influence the performance of a concurrent program, and
therefore are not directly applicable in our approach.

7.4 Test Generation
Various techniques to generate sequential tests have been

proposed, such as random test generation [13, 39, 11], tech-
niques based on model checking [51], and techniques based
on symbolic execution [20, 53, 9]. Recent work extends
these ideas to multi-threaded test generation [41, 37, 48]. In
contrast to these existing approaches, SpeedGun addresses
the challenges of generating concurrent performance tests.
Zhang et al. propose mixed symbolic-concrete test genera-
tion that focuses on paths that are estimated to have a high
performance impact [59]. Wise generates tests that expose
the worst-case complexity of a program [8]. Both approaches
do not address concurrent programs. Avritzer and Weyuker
describe algorithms to create tests for concurrent telecom-
munication systems [4]. Their approach is limited to systems
that can be modeled as Markov chains.

SpeedGun is part of a line of work that combines dynamic
analyses with test generation targeted at a particular anal-
ysis [43, 42, 41]. In contrast to the existing approaches,
SpeedGun targets performance problems.

8. CONCLUSIONS
This paper presents SpeedGun, an automatic approach to

detect performance differences between versions of thread-
safe classes. The approach is enabled by combining a gen-
erator of concurrent performance tests and a component
that addresses the challenges of evaluating concurrent per-
formance on a virtual machine. To validate the practical-
ity of SpeedGun, we evaluate its effectiveness on a collec-
tion of 113 pairs of real-world Java classes. The evaluation
shows that the analysis effectively identifies performance dif-
ferences between versions of these classes, including perfor-
mance regressions that the developers were not aware of.
Although the implementation targets Java classes, the re-
sult is not Java-specific and we expect the approach to work
for other object-oriented languages.

The analysis presented here fills the gap between existing
techniques targeted at correctness of concurrent programs
and traditional approaches to assess and enhance their per-
formance, such as profiling and manually written micro-
benchmarks. By filling this gap with an automatic analysis,
SpeedGun is the foundation of a practical tool that brings
developers a step closer towards meeting the conflicting goals
of correctness and performance of concurrent programs.

Our implementation and artifacts to reproduce our results
are available at http://mp.binaervarianz.de/SpeedGun/.
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