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ABSTRACT
In statically-typed programming languages, the compiler en-
sures that method arguments are passed in the expected
order by checking the type of each argument. However,
calls to methods with multiple equally-typed parameters slip
through this check. The uncertainty about the correct ar-
gument order of equally-typed arguments can cause various
problems, for example, if a programmer accidentally reverses
two arguments. We present an automated, static program
analysis that detects such problems without any input ex-
cept for the source code of a program. The analysis lever-
ages the observation that programmer-given identifier names
convey information about the semantics of arguments, which
can be used to assign equally-typed arguments to their ex-
pected position. We evaluate the approach with a large
corpus of Java programs and show that our analysis finds
relevant anomalies with a precision of 76%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation, Languages, Reliability, Verification

Keywords
Anomaly detection, static analysis, method arguments, au-
tomated program analysis, maintenance

1. INTRODUCTION
In statically-typed programming languages, each param-

eter of a method has a type to ensure that only objects of
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the expected type are passed as arguments to the method.1

Unfortunately, type specifications are futile when a method
has multiple parameters of the same type. For example,
a method setEndPoints(int high, int low) requires two
int arguments. How can a programmer using this method
be sure that the arguments passed to setEndPoints() are
ordered correctly?

There are three kinds of problems related to equally-typed
method arguments, which we illustrate with examples from
real-world Java programs. First, a programmer can acciden-
tally reverse arguments and pass them in the wrong order
(Figure 1a). Such a mistake leads to unexpected program
behavior and affects the program’s correctness. Second,
equally-typed method parameters with badly chosen names
make using a method unnecessary difficult (Figure 1b). Iden-
tifier names play an important role for program understand-
ing [22] and code quality [7]. As this is particularly true for
equally-typed method parameters, inadequate names affect
the program’s understandability. Third, arguments that are
unusually ordered can confuse a reader of the source code.
An unusual argument order can be necessary, for example,
because the program’s semantics require to do the inverse of
the expected (Figure 1c). Naturally, an unusual argument
order raises the question whether a method call is correct.
Unless a comment explains the reason for such an anomaly,
it will negatively affect the program’s maintainability.

Problems related to equally-typed arguments are hard to
find. The main reason is that these problems involve the se-
mantics of the program, which are not explicit in the source
code but only exist in the mind of the programmer. Tra-
ditional compilers are oblivious to the order and names of
equally-typed arguments; a program compiles without any
warning as long as the types of arguments and parameters
match. The problem is compounded by the fact that bugs
caused by incorrectly ordered arguments may not raise an
exception, and therefore remain unnoticed during testing.
For instance, reversing the arguments of a call to setEnd-

Points(int high, int low) introduces a subtle semantic
error, which can remain unnoticed until late in the develop-
ment process.

Calls to methods with equally-typed arguments account
for a significant part of all method calls. Within a corpus of
programs comprising over 1.5 million lines of Java code, 11%
of all method calls (77,610 out of 683,504) have two or more
equally-typed arguments. That is, for 77,610 method calls

1We refer to formal parameters in a method declaration as
parameters and to objects passed to methods at a call site
as arguments.



(a) (b) (c)
Program Eclipse 3.5.1 Jython 2.5.1 Eclipse 3.5.1
Method
call

createAlignment(name, mode,
Alignment.R_INNERMOST,
count, sourceRestart,
adjust);

_pow(coerce(left), value, null) generateOptimizedBoolean(
currentScope, codeStream,
falseLabel, trueLabel,
valueRequired)

Called
method

Alignment createAlignment(
String name, int mode,
int count, int sourceRestart,
int continuationIndent,
boolean adjust)

PyFloat _pow(
double value, double iw,
PyObject modulo)

void generateOptimizedBoolean(
BlockScope currentScope,
CodeStream codeStream,
Label trueLabel, Label falseLabel,
boolean valueRequired)

Comment Bug caused by incorrect argument
ordering: The highlighted argu-
ments are not at the expected po-
sition. Triggered by our bug re-
port, the problem has been fixed
for Eclipse 3.7.

Badly chosen parameter names:
The method performs exponenti-
ation of two double parameters.
Renaming the first two parameters
to base and exponent would clar-
ify their semantics.

Noteworthy anomaly: trueLabel

and falseLabel are passed in the
inverse order of the method decla-
ration. A comment explaining this
anomaly has been added in Eclipse
3.6.

Figure 1: Examples of problems related to equally-typed method arguments.

the type system cannot ensure that the arguments passed by
the programmer are ordered correctly. As evidenced by var-
ious entries in public issue tracking systems and source code
repositories (for example, see [1, 2, 3, 4]), programmers are
susceptible to problems related to equally-typed arguments.

In this paper, we present an automated, static program
analysis to detect anomalies in the order of equally-typed
method arguments. The key observation that enables our
approach is that one can extract implicit semantic knowl-
edge from programmer-given names of identifiers. Our anal-
ysis leverages this knowledge by searching for inconsistencies
in the names given to method arguments and method pa-
rameters. The analysis extracts identifier names from the
source code of a program and compares the names used at
different call sites of a method with each other using string
similarity metrics. If reordering equally-typed arguments at
a particular call site fits the names used at other call sites
of this method significantly better, our system reports an
anomaly and proposes to reorder the arguments.

The anomalies detected by our analysis correspond to the
kinds of problems mentioned earlier. The analysis finds
bugs caused by accidentally reversed arguments, such as Fig-
ure 1a, because the names of these arguments often deviate
from normal naming practices. The analysis also reveals
badly chosen parameter names, such as Figure 1b, as these
names often do not allow to infer the correct argument order.
Finally, the analysis detects noteworthy anomalies, such as
Figure 1c, where reordering the arguments seems more in
line with other calls to the method than the current argu-
ment order. Our analysis find all examples given in Figure 1.

The main appeal of the proposed technique is that it can
be applied with very little effort. The analysis requires no
input except for the source code of the program to analyze.
Instead of relying on additional information, such as formal
specifications, our technique infers knowledge about equally-
typed arguments from the source code. The output of the
analysis is precise in the sense that most of the reported
anomalies are indeed relevant problems. Experiments with
well-tested programs show a true positive rate of 72% for
seeded anomalies and of 76% for real anomalies.

To our knowledge, there is no other technique to auto-
matically find anomalies related to equally-typed arguments.

However, there exist two kinds of approaches to prevent ar-
gument ordering problems. The first approach are conven-
tions accepted by most programmers. For example, argu-
ments of methods moving data from a source to a sink are
often ordered so that the source argument is passed before
the sink argument. Conventions can prevent argument or-
dering bugs, but require careful and disciplined program-
ming. Also, there are cases where no obvious ordering of
arguments exists, and hence, conventions are of no use. The
second approach to prevent argument ordering problems is
better support by the programming language. Some lan-
guages, such as Scala, allow for named arguments, which
allow callers of a method to explicitly assign arguments to
method parameters. For example, one can call setEnd-

Points(high=myHigh, low=myLow). However, named argu-
ments are not available in all languages, and also introduce
additional boilerplate code, which may not be accepted by
programmers.

We envision multiple usage scenarios for our approach.
The analysis can be used during the development of a pro-
gram as an inexpensive, automated technique to find prob-
lems related to equally-typed arguments in an early stage
of development. For example, if a programmer accidentally
reverses two arguments, our analysis can spot this anomaly
and report a warning even before testing the source code.
Another usage scenario is maintenance of mature and well-
tested programs. While in this scenario, we expect few bugs
to be found, anomalies are nevertheless of interest, for ex-
ample, to add a comment explaining why an unusual order
of arguments is correct in a particular context.

We evaluate this work with twelve real-world Java pro-
grams from the DaCapo benchmark suite [6]. This corpus
of programs comprises over 1.5 million lines of source code.
We experiment both with real anomalies and with seeded
anomalies. The evaluation with seeded anomalies shows that
argument ordering anomalies can be found with high preci-
sion (that is, a low false positive rate) and with acceptable
recall (that is, an acceptable false negative rate). The sensi-
tivity of the analysis to anomalies can be controlled by pa-
rameters. Our default configuration leads to a precision of
72% and a recall of 38%. To evaluate the analysis’ ability to
find real anomalies, we analyze the unmodified DaCapo pro-
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Naming

Examples
Anomalies

(1) Name
Extraction

(2) Anomaly
Detection

void m(int a,
int b) {..}

m(a, b);
m(b, a);

(a,b)
(a,b)
(b,a)

m(b, a);

Reverse?

Figure 2: Overview and simple example.

grams. The analysis finds 29 anomalies, of which 22 (76%)
are relevant problems.

In summary, this work makes the following contributions:

• We introduce the concept of anomalies of equally-typed
arguments, that is, potential programming problems
that relate to the order of equally-typed method ar-
guments and that affect program correctness, program
understandability, and program maintainability.

• We present an automated analysis to detect anoma-
lies of equally-typed arguments based on programmer-
given names of identifiers. The analysis can be easily
applied to arbitrary programs, as it requires no input
except for source code.

• We present the results of applying the analysis to over
1.5 million lines of Java source code. Our results show
that relevant problems can be detected with high preci-
sion and acceptable recall, and that relevant problems
exist even in mature programs.

2. APPROACH
This section presents a static program analysis to detect

anomalies in the order of equally-typed method arguments.
Such anomalies are often caused by problems in the source
code that affect the program’s correctness, understandabil-
ity, or maintainability. The presented analysis is fully auto-
mated and requires no input except for source code.

Our approach consists of two steps (Figure 2). The first
step, name extraction, gathers identifier names that pro-
grammers have given to method arguments and method
parameters. The output of this step is a list of argument
naming examples for each method with equally-typed ar-
guments. These naming examples provide insights into the
semantics of arguments and can be used to determine the
order in which arguments should be passed. The second step
of the analysis is anomaly detection. It searches anomalies
in the naming examples by computing and comparing the
similarities between names used at different positions. An
anomaly occurs if the names of arguments deviate from typ-
ically used names and if a different argument order than the
order in the source code seems appropriate. The output of
the second step is a list of anomalies, each coming with a
proposal how to reorder arguments to avoid the anomaly.

The two steps of the analysis can be viewed as a front end
and a back end. While the front end, which extracts naming
examples from source code, is language-dependent, the back

end, which searches for anomalies, is language-independent.
A benefit of this separation is that one can easily adapt our
approach to other programming languages than Java. The
front end analyses two language elements, methods and iden-
tifiers of method call arguments, that can be easily mapped
to other commonly used languages.

2.1 Name Extraction
The goal of the name extraction step of our analysis is to

gather as many examples as possible showing how program-
mers name the arguments passed to a method. We extract
these examples from source code by analyzing method calls
and method declarations. As this work focuses on problems
related to equally-typed arguments, only methods with mul-
tiple parameters of the same type are considered.

The analysis traverses the abstract syntax tree and ex-
tracts from each method call two kinds of information: the
signature of the called method and the names of the argu-
ments passed to the method. In Java, different kinds of ex-
pressions can be passed as arguments. Our analysis extracts
names from the following expressions:

• Local variables: The name of a local variable is simply
its name.

• Field accesses: The name of a field access is the name
of the accessed field, ignoring the underlying expres-
sion on which the field is accessed.

• Method calls: The name of a method call is the name
of the called method, ignoring the underlying expres-
sion that yields the method receiver. In Java, getter
methods are a common naming practice. As the get

prefix does not convey any semantics relevant for our
approach, we remove this prefix from all method names
starting with get.

• Array accesses: The name of an array access is the
name of the array expression, that is, ignoring the in-
dex expression.

For instance, the following method calls provide two nam-
ing examples for the arguments of setEndPoints():

setEndPoints(highEP[i], lowEP);
setEndPoints(obj.h, getLow());

// ==> naming examples: (highEP, lowEP), (h, Low)

Our analysis cannot extract names from all expressions.
Some argument expressions, such as literals and the addition
of two numbers, are not analyzed because we cannot extract
unambiguous names from them. If one or more argument
of a method call has no unambiguous identifier name, the
analysis ignores the method call.

Besides calls to methods, there is another source of in-
formation about the names of method arguments. Formal
parameter names given in the declaration of a method are
often similar to the names used at call sites. Therefore,
we analyze all method declarations in a program and use
formal parameter names as an additional example of how
arguments are named. For example, the following method
declaration gives a naming example:

void setEndPoints(int high, int low) { .. }

// ==> naming example: (high, low)



We group naming examples so that all examples for the
same method signature and for the same argument type are
in one group. Grouping by method signature is useful be-
cause the argument names of one method are independent of
the argument names of other methods. Overloaded methods
are treated as different methods, because one cannot easily
map their parameters to each other. For instance, the fol-
lowing two variants of m() are treated as two methods, as
we do not know how to map a and b to x, y, and z:

void m(int a, int b) {..}
void m(int x, int y, int z) {..}

Grouping by argument type is required because some me-
thods expect equally-typed parameters of multiple types.
For instance, the following method expects two int param-
eters and two String parameters:

void m(int length, int offset,
String name, String msg) {..}

In this case, we analyze naming examples for m()’s int ar-
guments separately from naming examples for m()’s String

arguments.
In summary, the naming examples extracted by the first

step of our analysis are defined as follows:

Definition 1. The argument naming examples of a method
m() and a type T are a list of examples (Nc1 , .., Nck , Ndecl),
where

• Nc1 , .., Nck are the lists of names given to the argu-
ments of type T at call sites c1 to ck of m(), and

• Ndecl is the list of names given to the formal parame-
ters of type T in m()’s declaration.

2.2 Anomaly Detection
The second step of our analysis leverages the extracted ar-

gument naming examples to search for anomalies in the or-
der in which arguments are passed to a method. An anomaly
is a call of a method where arguments of the same type are
named in a way that suggests a different order than the order
in the source code. For instance, Figure 3a shows a list of
naming examples for setEndPoints()’s int arguments. We
refer to naming examples with N1, N2 etc. Example N5 is an
anomaly, because the first argument name, low, is similar to
names used at the second position, while the second name,
high, is similar to names used at the first position. Our
analysis detects such anomalies and proposes a way to avoid
them (here, by reversing the arguments of example N5).

To avoid overwhelming a user of our analysis with irrel-
evant reports, it is important to not report every unusual
argument name as an anomaly. Our analysis reports an
anomaly only if changing the order of arguments makes
the arguments significantly more similar to other arguments
used in their respective position then using the current or-
der. For instance, example N2 is not an anomaly, although
the name of the first argument is dissimilar to the other
names of arguments used at the first position. The reason
is that the second argument name of example N2 is similar
to other names at the second position; therefore, changing
the argument order would not increase the overall fit of N2

to the other naming examples.
The key idea of our analysis is that argument names used

at different call sites of a method are often similar to each

Algorithm 1 Anomaly detection based on string distance
between argument names.

Input: Argument naming examples N
Output: Permutations P of argument names that resolve

an anomaly
1: for all N ∈ N do
2: for all P ∈ permutations(N) do
3: score← 0
4: for all n ∈ N do
5: for all i ∈ {1, . . . , |N |} do
6: if (n, i) ∈ P then
7: score← score + scoreassign(n, i)
8: else
9: score← score− scoreassign(n, i)

10: end if
11: end for
12: end for
13: scorenorm ← score/|N |
14: if scorenorm ≥ t then
15: P ← P ∪ P
16: end if
17: end for
18: end for

other. We exploit this observation to detect anomalies by
comparing argument names using a string similarity metric.
Such a metric returns for each pair of strings a value in
the range between zero (dissimilar) and one (very similar or
equal). For each argument naming example, we compute the
similarity of a name used at a particular position with other
names used at this position and with other names used at
other positions. If a permutation of the current argument
order makes the names of an example more similar to the
other examples than the current order, then the analysis
reports an anomaly.

An alternative to using string similarity is to check whe-
ther names are equal. However, slight variations of an ar-
gument name, such as high and highEP, would make two
arguments seem different although they clearly mean the
same. A string similarity metric allows for quantifying the
similarity of names, and thus, to also consider variations of
names.

Algorithm 1 outlines our approach for detecting anoma-
lies. The algorithm takes a list of argument naming ex-
amples as input and iterates over all examples. For each
example, it goes through all possible permutations of the ex-
ample’s names. The core of the algorithm are lines 3 to 12.
Here, we compute a score that indicates how “normal” the
argument names are with a permutation P . That is, the
score expresses how similar the reordered names are to other
names found at their respective positions. If a permutation
of the current argument order has a high score, the analysis
reports an anomaly and proposes to reorder the arguments
according to the permutation.

We represent a permutation as a set of assignments of
arguments to a position:

P ⊆ N × {1, . . . , |N |}
= {(n, i) | P assigns name n to position i}

The score of a permutation is computed based on a score
for assignments, scoreassign(n, i), which indicates how well
a name n fits position i. The overall score of a permutation



Ex. Arg. 1 Arg. 2

N1 high low
N2 h Low
N3 high low
N4 highEP lowEP
N5 low high

(a) Arguments.

high highEP h low lowEP Low

high 1 0.93 0 0 0 0
highEP0.93 1 0 0 0 0
h 0 0 1 0 0 0
low 0 0 0 1 0.91 1
lowEP 0 0 0 0.91 1 0.91
Low 0 0 0 1 0.91 1

(b) String similarities.

scoreassign(low, 1) = max(0, 0− 0.98) = 0

scoreassign(low, 2) = max(0, 0.98− 0) = 0.98

scoreassign(high, 1) = max(0, 0.73− 0) = 0.73

scoreassign(high, 2) = max(0, 0− 0.73) = 0

scorenorm({high→ 1, low → 2})

=
0.98 + 0.73− 0− 0

2
= 0.86

(c) Score computation for example N5.

Figure 3: Examples of anomaly detection.

is the sum of all scoreassign of assignments that are part of
the permutation, minus all scoreassign of assignments that
are not part of the permutation. That is, the assignments
of a permutation influence its score positively (line 7), while
all other possible assignments influence its score negatively
(line 9).

Including positive and negative scores for assignments into
the overall score of a permutation makes the algorithm more
robust to cases where an argument seems to fit multiple po-
sitions. In this case, our algorithm cannot choose a single
permutation as the most suitable, and computing a high
score for any permutation would be misleading. If a permu-
tation includes highly ranked assignments but also rejects
other highly ranked assignments, the overall score includes
high positive and high negative assignment scores that com-
pensate for each other. Thus, the overall score expresses
the uncertainty resulting from multiple apparently suitable
permutations.

The score for assigning an argument name n to a posi-
tion i, scoreassign(n, i), indicates how well a name n fits
position i. To compute scoreassign, we combine the string
similarity between n and all other names in the naming ex-
amples of the method. At first, we compute the average
similarity simili of n to the arguments used elsewhere at
position i:

simili = Avg(simil(n, n′) |
n′ is argument at position i in others examples)

Then, we compute the average similarity similothers of
n to arguments used in other examples at positions other
than i:

similothers = Avg(simil(n, n′) |
n′ is argument at position j 6= i in other examples)

Finally, we combine both intermediate values into the re-
sult:

scoreassign(n, i) = max(0, simili − similothers)

Subtracting similothers from simili is important to ad-
just the result of simili to the degree to which all argu-
ments passed to the method resemble each other. The ar-
gument names of some methods vary a lot and one cannot
infer any useful information from them. For example, the
arguments passed to Map.put(Object key, Object value)

typically have diverse names, from which our analysis can-
not infer the order of arguments. To deal with such cases, we
subtract similothers, which can be thought of as a measure
for noise, from simili. As a result, the score for assigning n
to i is normalized to the amount of knowledge we can infer

from the given names, and thus, is higher if we have more
confidence in the result.

The last step of Algorithm 1 is to select permutations for
which we know with a certain confidence that they make
the order of arguments more “normal” than the current or-
der. At first, the score is normalized with respect to the
number of equally-typed arguments of the method (line 13).
The normalized score, scorenorm, ranges between zero (def-
initely no anomaly) and one (definitely an anomaly). Then,
the algorithm selects all permutations with a score above a
certain threshold t and outputs them (line 14). We discuss
how to set the threshold t in Section 3.4.

The output of the described algorithm is finally trans-
formed into anomalies to be presented to the user. The
algorithm yields a set of argument permutations that each
avoid an anomaly. For each such permutation, the method
call from which the unusually ordered arguments have been
extracted is an anomaly. We report these anomalies, along
with the permutations.

2.2.1 Example
Figure 3 illustrates the anomaly detection technique with

an example. Figure 3a shows five naming examples for the
method setEndPoints(). Suppose that N1 has been ex-
tracted from the declaration of setEndPoints() and that
N2, . . . , N5 are gathered from calls to the method. The al-
gorithm traverses these naming examples and analyzes each
permutation of the given argument names, that is, five per-
mutations that each reverse the first and second argument
of an example.

We compute the string similarities between all involved ar-
gument names (Figure 3b). Different string similarity met-
rics provide different results here. The shown numbers are
computed with the SoftTFIDF metric. We discuss and com-
pare several metrics in in Section 3.4.

The argument names of example N5 deviate from the
other naming examples. Their names suggest to reverse the
arguments, that is, to order them according to the permuta-
tion {(high, 1), (low, 2)}. Figure 3c illustrates how our algo-
rithm computes the score that indicates how “normal” this
permutation would be. The computation combines scores
for each assignment of the permutation. For example, as-
signing low to position 2 has a score of scoreassign(low, 2) =
0.98, because simili = 0.98 and similothers = 0. The overall
score for the permutation is computed by adding the scores
for included assignments (low assigned to position 2 and
high assigned to position 1) and by subtracting the scores
for all other assignments (low assigned to position 1 and
high assigned to position 2). Finally, the score is normal-



Table 1: Programs used for the evaluation, their
size, and how many method calls they con-
tain (equally-typed arguments (ETA) and named,
equally-typed arguments (NETA)).

Program LOC Method calls

Total ETA NETA

Avrora 69,393 20,276 3,179 878
Batik 186,460 47,655 6,127 2,694
DayTrader 12,325 4,613 311 103
Eclipse 289,641 280,289 26,097 13,595
FOP 102,909 32,806 2,796 1,266
H2 120,821 53,221 5,210 1,607
Jython 245,016 85,729 15,785 2,480
Lucene 124,105 41,092 5,667 1,422
PMD 60,062 21,394 2,601 507
Sunflow 21,970 8,139 1,200 537
Tomcat 161,131 54,462 4,974 1,482
Xalan 172,300 33,828 3,663 1,650

Sum 1,566,133 683,504 77,610 28,221

ized to the number of arguments in the example, giving the
result of 0.86.

If 0.86 is greater than the threshold t, an anomaly is
reported for the method call from which N5 has been ex-
tracted. Since our default configuration is t = 0.6, the anal-
ysis reports this anomaly, together with the permutation:

Anomaly (confidence 86%):
setEndPoints(low, high);

Permutation to avoid the anomaly:
setEndPoints(high, low);

3. EVALUATION
The following section reports the results of evaluating our

anomaly detection technique with real-world Java programs.
We address the following main questions:

• How effective is our technique in finding anomalies?
We address this question with an automated, large
scale evaluation involving thousands of anomalies. Our
results show a tradeoff between precision and recall.
For example, one can find 14% of all anomalies with a
precision of 92%, or 54% of all anomalies with a preci-
sion of 19%. Our default configuration gives 38% recall
and 72% precision.

• Which anomalies exist in mature and well-tested pro-
grams? The default configuration of our technique
finds 29 anomalies in the DaCapo benchmarks, out
of which 22 (76%) are relevant problems.

• How sensitive are the results on parameters of our anal-
ysis, such as the threshold for anomalies? We perform
a sensitivity analysis of four parameters and discuss
our default configuration.

We use all programs of the DaCapo benchmark suite (ver-
sion 9.12) [6].2 Table 1 lists these programs along with their

2There are twelve programs for 14 benchmarks: DayTrader
is part of the tradebeans and the tradesoap benchmarks;
Lucene is part of the luindex and lusearch benchmarks in [6].

number of non-comment, non-blank lines of code (LOC).
In total, the programs sum up to over 1.5 million LOC. The
last three columns of Table 1 show the total number of calls,
the number of calls with equally-typed arguments (ETA),
and the number of calls with named, equally-typed argu-
ments (NETA). In total, 77,610 calls have equally-typed ar-
guments. Our analysis can extract names from 28,221 calls.

We use two separate techniques in this evaluation. On
the one hand, we perform an automated evaluation with
seeded anomalies (Sections 3.1 and 3.2). On the other hand,
we assess the effectiveness of our approach in finding real
anomalies (Section 3.3).

3.1 Automated Evaluation Technique
Parts of our evaluation use an automated evaluation tech-

nique. It is based on seeding anomalies in programs that
are assumed to be free of problems related to equally-typed
arguments. By seeding anomalies, we know by construction
where relevant anomalies reside, so that the evaluation is not
biased by a human deciding whether a reported anomaly is
relevant. This automated technique allows us to evaluate
our analysis on a large scale and in an objective way.

To seed an anomaly, we take a method call with equally-
typed arguments and change the order of these arguments.
We then assess whether the analysis detects the seeded ano-
maly and how many other warnings it reports. To measure
the effectiveness of the analysis, we compute precision and
recall. Precision means the percentage of seeded anomalies
among all reported anomalies. Recall means the percent-
age of reported anomalies that are true positives among the
seeded anomalies.

To compute precision and recall for a program, we seed
anomalies one by one and run the analysis each time on
the entire program. That is, we analyze a program having
a single relevant anomaly and assess whether our analysis
finds it. The number of true positives is one if the analysis
detects the seeded anomaly, and zero otherwise. Any other
reported anomalies are considered false positives. That is,
precision and recall for the seeded anomaly are:

precision =
#true positives

#true positives + #false positives

recall =

{
1 if the seeded anomaly is found
0 otherwise

The overall precision for the program is the mean value over
all anomalies for which some anomaly was reported by the
analysis. The overall recall for the program is the mean value
over all seeded anomalies. A similar evaluation technique
has been used by others [26].

To make the results of the automated evaluation tech-
nique more meaningful and to ensure the technique’s fea-
sibility, we refine the described approach. First, we adapt
the assumption that all analyzed programs are free of rele-
vant anomalies by taking into account known true positives.
Concretely, we know about 22 calls that expose a relevant
anomaly (details in Section 3.3), and therefore, ignore them
during the automated evaluation. Second, we ignore calls
to methods with five or more equally-typed arguments for
performance reasons. For a method with n equally-typed
arguments, we run the analysis n!−1 times; thus, calls with
many arguments impose a significant performance problem.
However, only around 1% of all calls with equally-typed ar-



Table 2: Precision and recall of detected anomalies.

Program Prec. (%) Recall (%) F-measure (%)

Avrora 95 43 59
Batik 94 38 54
DayTrader 93 45 61
Eclipse 12 42 19
FOP 47 36 41
H2 94 36 52
Jython 47 28 35
Lucene 98 32 48
PMD 94 49 64
Sunflow 49 56 52
Tomcat 49 29 36
Xalan 97 26 41

Average 72 38 47

guments have five or more arguments, so this restriction
does not affect the generality of the evaluation. Third, we
apply the automated evaluation only to calls with named
arguments. For other calls, our technique does not apply
and we know without experimenting that the analysis does
not report any anomalies. Including these refinements, we
seed a total of 48,543 anomalies in the corpus of programs
and run the analysis for each of them.

3.2 Precision and Recall
Using the automated evaluation technique described in

Section 3.1, we measure precision and recall of our analysis.
Table 2 shows the results for each program. On average,
the analysis obtains a precision of 72% while having a recall
of 38%. That is, almost three out of four reported anoma-
lies point to a relevant problem in the source code, while
the analysis finds an acceptable ratio of all seeded anoma-
lies. The average F-measure, that is, the harmonic mean of
precision and recall, is 47%.

While the precision for many programs is over 90%, one
program, Eclipse, has a remarkably low precision of only
12%. The reason is that Eclipse has many more calls with
named, equally-typed method arguments than the other pro-
grams, increasing the probability to have false positives.
Since we apply the analysis to the entire program for each
seeded anomaly, these false positive influence the precision
value each time, giving a lower precision for Eclipse.

3.3 Anomalies in Mature Programs
In addition to the automated evaluation with seeded ano-

malies, we also evaluate what kinds of anomalies our analysis
finds in the programs as they are shipped with the DaCapo
benchmarks. As these programs are mature and well-tested,
we do not expect to find any serious errors related to equally-
typed arguments. Such errors are likely to change the behav-
ior of a program, and therefore, are typically found at some
point while using the program. Nevertheless, our analysis
can detect relevant anomalies that are worth the attention
of programmers or maintainers, for example, to add a com-
ment explaining an unusual piece of source code.

In total, our analysis reports 29 anomalies. We manually
inspect these anomalies and classify them as follows:

• Contrary to our expectations, one anomaly is a bug af-
fecting the program’s correctness. Figure 1a shows the

relevant source code fragments. The buggy class con-
tains a set of public, overloaded methods that call each
other and that pass multiple int arguments. There is
an anomaly because the programmer passes the argu-
ments in the wrong order at one call site. We were sur-
prised to find such a bug and reported it to the Eclipse
developers, who fixed it immediately (see bug 333487
in the Eclipse bug tracking system). This bug could
remain unnoticed because the public method contain-
ing the buggy call is not called in the analyzed code
base.

• Ten anomalies can be classified as naming bugs [19]. In
these cases, the programmers chose parameter names
that do not clarify the expected order of arguments.
As identifier names are crucial for equally-typed ar-
guments, fixing these naming bugs would improve the
understandability of the program. Figure 1b shows
an example of a naming bug in a method computing
exponentiation. The names of the two double param-
eters, value and iw, do not reveal which of the param-
eters refers to the base and which to the exponent. Of
course, deciding about the quality of an identifier name
is difficult and to some extent a matter of taste. We
therefore classify only anomalies with obviously mis-
leading names as naming bugs and count debatable
cases as false positives.

• Eleven anomalies can be classified as noteworthy and
should be considered by the developers to improve the
program’s maintainability. These anomalies show un-
usual argument orders that seem incorrect but are in-
tended in their specific context. Figure 1c is an ex-
ample, where two labels, falseLabel and trueLabel,
are passed as arguments. The arguments are ordered
in such a way that falseLabel is bound to the formal
parameter trueLabel, while trueLabel is bound to the
formal parameter falseLabel. One can improve the
maintainability of such source code by adding a com-
ment explaining why a seemingly incorrect argument
order is required in a particular situation. For the ex-
ample in Figure 1c, a comment has been added by the
developers in a later version of Eclipse.

• Finally, seven anomalies are false positives. They pro-
vide no insight to a developer and, ideally, would not
be reported. Three false positives are from naming
examples where all names are very similar, such as
testLocation, location, location1 and location2.
Two false positives are from methods where any argu-
ment ordering is legal, such as the computation of a
vector cross product. Since the analysis is based on
heuristics and programmer-given identifier names, we
cannot avoid false positives entirely.

In summary, 22 of 29 reported anomalies (76%) point
to problems in the source code that are relevant for the
program’s correctness, understandability, or maintainability.
This true positive rate is in line with the findings obtained
using the automated evaluation technique (Section 3.2). Gi-
ven that the analysis requires no input except for source
code, this rate is quite satisfactory. Existing anomaly detec-
tion techniques, which search for other kinds of anomalies,
often obtain lower true positive rates, for example, 29% [33],



Table 3: Precision and recall with and without in-
cluding formal parameter names.

Parameter names Precision Recall F-measure

Included 72% 38% 50%
Not included 55% 35% 43%

37.5% [27], 38% [31], and 70% [19]. For a fair comparison,
we use the same procedure to obtain these numbers for each
paper: at first, accumulate results from all programs ana-
lyzed in the respective paper, and then, compute the overall
true positive rate.

3.4 Parameter Calibration
The presented analysis involves certain choices and pa-

rameters that have a strong influence on the overall results.
Instead of arbitrarily fixing a particular configuration, we
use the automated evaluation technique to assess how these
parameters influence precision and recall of the analysis.
The following explains the parameters and the results of a
sensitivity analysis of them. We report results from varying
each parameter individually while using default values for
the others. Furthermore, we report on varying all parame-
ters, which helped us to find a suitable default configuration.

3.4.1 Threshold for Anomalies
The threshold for anomalies determines how deviant from

other examples a call must be to be considered an anomaly.
In Algorithm 1, we call this threshold t. We experiment with
values in the range between 0.1 (little deviance from other
examples) and 1.0 (maximal deviance from other examples).

Figure 4a shows precision and recall with different thresh-
olds. The results illustrate the typical tradeoff between op-
timizing an analysis for precision and for recall. A higher
threshold leads to less reported anomalies, and hence, in-
creases precision while decreasing recall. In contrast, one
can obtain a higher recall with a lower threshold for the price
of losing precision. The default configuration is a threshold
of 0.6.

3.4.2 Minimum Number of Examples
The minimum number of examples determines how many

naming examples for a method we require to draw any con-
clusions about the method at all. If we have fewer examples
than this minimum number, our analysis ignores all calls
to the method. Note that the names of formal parameters
serve as an additional naming example. We experiment with
values in the range between 2 and 10.

Figure 4b shows the influence of this parameter. Sim-
ilarly to the threshold for anomalies, one must choose it
considering the tradeoff between precision and recall. The
default configuration is to require at least two naming exam-
ples. This value allows for analyzing methods called a single
time, if formal parameter names are considered as naming
examples.

3.4.3 Inclusion of Formal Parameter Names
This parameter controls whether to consider the names of

formal parameters given in the declaration of a method as
an additional example of names for the method’s arguments.
We experiment with enabling and disabling this option.

Table 3 compares precision and recall with and without in-
cluding formal parameters names. Including formal param-
eters leads to better precision and recall values, confirming
our expectation that formal parameter names are good ex-
amples to learn from. The default configuration includes
formal parameter names.

3.4.4 String Similarity Metric
There are various metrics to measure the similarity or

distance of two strings. We experiment with five metrics,
which have been found to be successful [9].

Figure 4c compares the results obtained with the five
metrics. Interestingly, choosing the string similarity met-
ric significantly influences the overall results. Two metrics,
TFIDF and SoftTFIDF, that tokenize strings before com-
paring them give the best F-measure. The classical Lev-
enshtein distance, which is the minimum number of edits
needed to transform a string into another, leads to a higher
precision but a lower recall. Our default is to use TFIDF.

3.4.5 Influence of Parameters on Each Other
The parameters of our analysis can influence each other.

For instance, including formal parameter names as an addi-
tional example increments the number of examples available
for each method. Thus, deciding whether to include formal
parameter names influences the choice of the minimum num-
ber of examples. To find a suitable configuration to be used
as our default, we experiment with combinations of the four
parameters. Based on our results from varying a single pa-
rameter at a time, we combine the following values with each
other:

• Threshold for anomalies: 0.3, 0.4, 0.5, 0.6, 0.7

• Minimum number of examples: 2, 3, 4, 5

• Inclusion of formal parameters: true, false

• String similarity metric: all five metrics

In total, we analyze all programs with 5 ·4 ·2 ·5 = 200 con-
figurations. Table 4 shows the configurations that maximize
either precision, recall, or F-measure. Our analysis obtains
the best precision (92%) using the Levenshtein string simi-
larity metric with a high number of minimum examples and
a high threshold for anomalies. Unfortunately, this config-
uration also leads to a very low recall (14%). The analysis
obtains the best recall using the TFIDF metric, a small min-
imum number of examples, and a low threshold for anoma-
lies. Finally, the analysis maximizes the F-measure using
the values shown in the last line of Table 4, which is why we
select this configuration as the default configuration.

3.5 Performance
Our implementation analyzes all programs from Table 1

together in less than two minutes. The smallest program,
Daytrader, takes 4.9 seconds, while the largest program,
Eclipse, requires 51.8 seconds. On average, analyzing a pro-
gram takes 9.8 seconds (median: 5.9 seconds). The running
time strongly correlates with the number of calls in a pro-
gram (Pearson correlation coefficient: 93%).

4. DISCUSSION
Our approach depends on some properties of the analyzed

program. First of all, there must be some code base to learn



0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Threshold for anomalies

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10

(b) Minimum number of examples

Precision
Recall

F-Measure

0%

20%

40%

60%

80%

100%

JaroWinkler

Levenshtein

MongeElkan

SoftTFIDF

TFIDF

(c) String similarity metric

Figure 4: Parameters of the analysis and their influence on precision and recall.

Table 4: Results with different parameterizations.

Configuration Results Comment

Threshold MinEx FormParams Metric Prec. Rec. F-meas.

0.6 5 TRUE Levenshtein 92% 14% 24% maximum precision
0.3 2 TRUE TFIDF 19% 54% 28% maximum recall
0.6 2 TRUE TFIDF 72% 38% 47% maximum F-measure, default configuration

from. That is, our approach cannot give useful suggestions
on a newly created project. However, this limitation is mit-
igated by including formal parameter names as naming ex-
amples, which allow the analysis to detect an anomaly even
for the first call to a method.

Another prerequisite is that arguments have extractable
names. The analysis ignores arguments given via expressions
that have no names, such as literals, or ambiguous names,
such as mathematical expressions. For example, the analysis
ignores the following call:

int total, current;
m(5, total - current);

Similarly, the analysis does not consider equally-typed ar-
guments passed as Java varargs.

While our approach has up to 92% precision, the maxi-
mum recall is only 54%. We found two main reasons for this
limitation. First, methods that are used in various contexts
often have very diverse argument naming examples. For in-
stance, arguments to Map.put(Object key, Object value)

typically have domain-specific names, so that the analysis
cannot reason about one call based on names from another.
Second, the recall of our approach is bounded by the ex-
planatory power of argument names. Short and meaningless
names, such as i or j, not only can confuse programmers,
but also prevent our analysis from inferring the semantics of
an argument from its name.

5. RELATED WORK
Identifier names are the subject of several studies, which

generally agree on the importance of well chosen names. A
study [22] involving 100 human participants shows that ex-
pressive names are important for program understanding.
In particular, the study shows that single letter names im-
pede program understanding compared to appropriate full

word names. Another study [7] shows that instances of bad
naming practices correlate with poor code quality (measured
in terms in FindBugs [20] warnings). Our analysis detects
poor names of multiple equally-typed method parameters,
that is, in a situation where meaningful names are crucial
for programmers.

Høst and Østvold [19] propose an analysis to detect nam-
ing bugs. They combine two analyses to check whether the
implementation of a method is consistent with its name.
Their approach is based on implicit knowledge about method
names that has been extracted from a large corpus of pro-
grams. Some of the anomalies detected by our approach
are also caused by inappropriate identifier names. How-
ever, our analysis addresses argument names and the order
in which arguments are passed, while Høst and Østvold an-
alyze names of methods.

There are several approaches that address the inability
of type systems to discern different usages of variables hav-
ing the same type. Guo et al. [15] dynamically infer ab-
stract types for variables of primitive types by analyzing
how these variables interact, for example, through an as-
signment. Similarly, Hangal and Lam [17] propose a static
analysis to infer dimensions that refine the type information
of primitive type and string variables. Our analysis differs
by analyzing programmer-given identifier names instead of
the interactions of values or variables. Furthermore, we use
the inferred knowledge for finding anomalies in a program.
In [17], dimensions inferred from a program version that is
assumed to contain no errors are used to report inconsisten-
cies introduced by later revisions of the program. In con-
trast, our analysis can detect inconsistencies within a single
version of a program. One could combine the techniques
in [15, 17] with ours by using inferred type refinements for
finding problems related to equally-typed arguments.



Lawall and Lo [21] present an analysis that infers type-
like groups for int constants by analyzing the variables with
which these constants are combined. Based on these groups,
the analysis detects anomalies of variable-constant pairs,
such as the incorrect use of a constant. Similar to us, Lawall
and Lo address a weakness of type checkers by extracting im-
plicit knowledge from source code. However, instead of an-
alyzing similarities between identifier names, their approach
leverages common programming idioms.

There are several approaches to explicitly refine standard
types through additional information. For example, Green-
fieldboyce and Foster [14] propose adding type qualifiers to
Java to express atomic properties, such as that a variable
is read-only. Their approach requires programmers to an-
notate variables with additional information, and hence, is
orthogonal to an automated analysis like ours.

Erwig et al. [12] define a unit system for spreadsheet lan-
guages, which derives type-like information from headers of
spreadsheet tables. Similarly to our approach, their work
leverages user-provided natural language terms to search for
errors caused by inconsistencies. While Erwig et al. deal
with an otherwise untyped language, our approach addresses
problems caused by a too coarse-grained existing type sys-
tem. Another difference is that our analysis is robust against
similar but different names, whereas the analysis in [12] re-
quires header names to match precisely.

Our work belongs to a class of techniques that search in-
teresting anomalies in a program based on the assumption
that most parts of the program are correct. Engler et al. [10]
statically search for violations of system-specific rules by in-
ferring “beliefs” of programmers. Hangal and Lam [16] dy-
namically infer invariants and report violations of these in-
variants as potential bugs. A static analysis by Lu et al. [25]
extracts correlations between variable accesses to find un-
usual pieces of code that can cause inconsistent updates and
concurrency bugs. While these approaches share with our
work the general idea of anomaly detection, the analysis
presented here is unique in searching for problems related
to equally-typed arguments.

Another group of anomaly detection techniques focuses on
method calls and the order in which methods are called. PR-
Miner [23] statically mines rules saying that calling a set of
functions within some context implies calling another func-
tion. Chang et al. [8] detect missing condition checks by in-
ferring graph-based rules from source code. Thummalapenta
and Xie [32] target exception handling rules and how to find
their violations automatically. Wasylkowski et al. [34, 33]
present analyses to statically detect missing method calls.
Similarly, Nguyen et al. [27] and Monperrus et al. [26] learn
usage patterns to find code locations where a particular call
seems to be missing. Again, all these anomaly detection ap-
proaches differ from our work in the kind of anomalies they
search.

Our analysis extracts implicit knowledge from source code,
instead of relying on formal specifications or other special in-
put that is not available for many programs. Work on min-
ing specifications follows a similar idea by inferring finite
state machines describing method call sequences [5, 35, 24,
30, 13, 29, 28], algebraic specifications [18], or invariants [11]
from source code or program executions. In contrast to these
approaches, we do not attempt to formalize specifications in
this work, but instead leverage the inferred knowledge to
find anomalies.

6. CONCLUSIONS
Equally-typed method arguments slip through checks of

the type system that ensure that arguments are ordered as
expected by a method. Unfortunately, such arguments can
be responsible for problems concerning the correctness, un-
derstandability, and maintainability of a program. In this
work, we present an automated analysis to detect anomalies
related to equally-typed arguments. The analysis is based
on similarities between programmer-given identifier names.
Experiments with a large corpus of Java programs show that
the analysis finds relevant problems with high precision.

The presented approach can serve as a low-cost tool for
programmers and maintainers. During development, pro-
grammers can use the analysis to find problems related to
equally-typed arguments early. For example, one can think
of an IDE extension that highlights unusually ordered ar-
guments just as a programmer types a method call. During
maintenance of programs, our approach can find noteworthy
pieces of source code that should be enhanced, for example,
by adding a comment explaining an anomaly.

Our work is part of a stream of research on extracting
implicit knowledge from source code, program executions,
or other software engineering artifacts. With few excep-
tions, identifier names have not yet been used in this con-
text. Our work contributes by leveraging implicit knowledge
from identifier names for detecting anomalies.

For our implementation see:

http://mp.binaervarianz.de/issta2011
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