
Change-aware Dynamic Program Analysis
for JavaScript

Dileep Ramachandrarao Krishna Murthy
Department of Computer Science

TU Darmstadt
Darmstadt, Germany

dileep.rk730@gmail.com

Michael Pradel
Department of Computer Science

TU Darmstadt
Darmstadt, Germany

michael@binaervarianz.de

Abstract—Dynamic analysis is a powerful technique to detect
correctness, performance, and security problems, in particular
for programs written in dynamic languages, such as JavaScript.
To catch mistakes as early as possible, developers should run
such analyses regularly, e.g., by analyzing the execution of a
regression test suite before each commit. Unfortunately, the high
overhead of these analyses make this approach prohibitively
expensive, hindering developers from benefiting from the power
of heavyweight dynamic analysis. This paper presents change-
aware dynamic program analysis, an approach to make a
common class of dynamic analyses change-aware. The key idea
is to identify parts of the code affected by a change through
a lightweight static change impact analysis, and to focus the
dynamic analysis on these affected parts. We implement the idea
based on the dynamic analysis framework Jalangi and evaluate it
with 46 checkers from the DLint and JITProf tools. Our results
show that change-aware dynamic analysis reduces the overall
analysis time by 40%, on average, and by at least 80% for 31%
of all commits.

Index Terms—program analysis, JavaScript

I. INTRODUCTION

Dynamic analyses help developers identify programming
mistakes by analyzing the runtime behavior of a program.
For example, the Valgrind analysis framework [1] is the basis
for various tools, e.g., to identify references of undefined
values via a memory analysis and unintended flows of data
via a taint analysis. More recently, the Jalangi framework [2]
has popularized dynamic analysis for dynamic languages, in
particular, JavaScript, and is the basis for several tools that
find, e.g., inconsistent types [3], optimization opportunities [4],
memory leaks [5], and various other code quality issues [6].

Given the power of these analyses, it would be desirable
to use them frequently during the development process. For
example, one could apply such analyses on each commit,
e.g., by running a regression test suite and analyzing its
execution. By running each analysis after each commit, the
analyses could warn developers about mistakes right when the
mistakes are introduced, similar to static checks performed by
a compiler or lint-like tools. An important prerequisite for this

This work was supported by the German Federal Ministry of Education
and Research and by the Hessian Ministry of Science and the Arts within
CRISP, by the German Research Foundation within the ConcSys and Perf4JS
projects, and by the Hessian LOEWE initiative within the Software-Factory
4.0 project.

promising usage scenario is that an analysis produces results
quickly.

Unfortunately, most dynamic analyses implemented on top
of general-purpose analysis frameworks, such as Valgrind and
Jalangi, are not only powerful but also heavyweight. Typically,
such an analysis imposes a significant runtime overhead,
ranging between factors of tens and hundreds. For projects
with large regression test suites, this overhead practically
prohibits running the analysis after every change. Such large
regression test suites are particularly common for dynamic
languages, where static checks are sparse and likely to miss
problems. For example, applying two dynamic analyses for
JavaScript, DLint [6] and JITProf [4], to the regression test
suite of the widely used underscore.js library1 takes over five
minutes on a standard PC, whereas running the test suite
without any analysis takes only about five seconds.

As a motivating example, consider Figure 1, which shows a
change in a piece of JavaScript code. Suppose to use a dynamic
analysis that warns about occurrences of NaN (not a number),
which may result in JavaScript when arithmetic operations are
applied to non-numbers, but it does not trigger any runtime
exception. Furthermore, suppose that the project’s regression
test suite has three tests that call the functions a, b, and e,
respectively, as indicated in the last three lines of the example.
In the original code, the analysis reports a NaN warning at
line 22. In the modified code, the analysis warns again about
line 22 and also about the newly introduced NaN at line 12.
Naively applying the dynamic analysis after the change will
analyze the executions of all code in Figure 1. However, most
of the code is not impacted by the change, and there is no
need to re-analyze the non-impacted code.

Existing approaches that reduce the overhead of dynamic
analysis use sampling. One approach is to sample the execu-
tion in an analysis-specific way, e.g., based on how often a
code location has been executed [4]. While such sampling
can significantly reduce the overhead, it still remains too
high for practical regression analysis. Another approach is
to distribute the instrumentation overhead across multiple
users [7]. However, this approach is not suitable for regression

1http://underscorejs.org



Old version:

1 var x=4, y, z;
2

3 function a() {
4 x = 42;
5 }
6 function b() {
7 c();
8 d();
9 }

10 function c() {
11

12 y = x / 2;
13 }
14 function d() {
15 /* expensive
16 * computation
17 * independent
18 * of x, y, z */
19 }
20 function e() {
21 // NaN warning
22 var n = "hi" - 23;
23 return n;
24 }
25

26 a();
27 b();
28 z = e();

New version:

1 var x=4, y, z;
2

3 function a() {
4 x = "aaa"; // changed
5 }
6 function b() {
7 c();
8 d();
9 }

10 function c() {
11 // new NaN warning
12 y = x / 2;
13 }
14 function d() {
15 /* expensive
16 * computation
17 * independent
18 * of x, y, z */
19 }
20 function e() {
21 // old NaN warning
22 var n = "hi" - 23;
23 return n;
24 }
25

26 a();
27 b();
28 z = e();

Fig. 1: Code change in a program to be analyzed dynamically.

analysis, where results are expected in short time and without
relying on users.

As a technique complementary to reducing the overhead of
dynamic analysis, regression test selection [8] can reduce the
number of tests to execute, which will also reduce the overall
analysis time. Regression test selection partly addresses the
problem but has the drawback that even after reducing the
number of tests, the analysis may still consider code that is
unaffected by a change. For example, in Figure 1, selecting the
test that calls function b will nevertheless cause the dynamic
analysis of function d, which is called by b but not affected by
the change. Furthermore, as a practical limitation, we are not
aware of any generic regression test selection tool available
for JavaScript, which is the target language of this paper.

This paper addresses the problem of reducing the time
required to run a dynamic analysis that has already been
applied to a previous version of the analyzed code. We present
change-aware dynamic analysis, or short CADA, an approach
that turns a common class of dynamic analyses into change-
aware analyses. The key idea is to reduce the number of code
locations to dynamically analyze by focusing on functions that
are impacted by a code change. When entering a function at
runtime, the dynamic analysis checks whether this function is
impacted, and only if it is impacted, analyzes the function. We
find that in practice, most code changes impact only a small
percentage of functions, enabling CADA to avoid analyzing
most functions.

To find the functions affected by a change, a lightweight,
static change impact analysis reasons about dependences be-
tween functions based on their read and write operations, and

produces a function dependence graph. Starting from functions
that are modified in a particular change, the approach then
propagates the change to all possibly impacted functions. Key
to the success of our approach is that the change impact
analysis is efficient. To this end, we use a scalable yet not
provably sound analysis. We find that, despite the theoretical
unsoundness, the analysis is sufficient in practice, in the spirit
of soundiness [9].

For the example in Figure 1, the change impact analysis
determines that function a has been changed and that, as
a result of this change, also function c is impacted by the
change. By only applying the dynamic analysis to these
functions, but not to any others, the approach reduces the
number of analyzed functions from five to two. As a result, the
change-aware analysis reports the newly introduced warning at
line 12. To obtain the set of all warnings in the program, one
can combine the warnings found by the change-aware analysis
for the current version with warnings found for previous
versions of the program.

To evaluate the CADA approach, we apply it to the version
histories of seven popular JavaScript projects. Without our
approach, analyzing the changed versions of the projects takes
133 seconds, on average over all commits. CADA reduces the
analysis time by 40%, on average, and by at least 80% for 31%
of all commits. Comparing CADA to naively running non-
change-aware analyses on every version, we find that CADA
does not miss any warnings reported by the class of dynamic
analyses targeted in this paper.

In summary, this paper contributes the following:

• An approach for turning a common class of dynamic
analyses into change-aware dynamic analyses without
modifying the analyses themselves.

• A lightweight, static change impact analysis for Java-
Script. We believe this analysis to be applicable beyond
the current work, e.g., for helping developers to under-
stand the impact of a potential change or for test case
prioritization.

• Empirical evidence that the approach significantly re-
duces the time required to apply heavyweight dy-
namic analysis. As a result, such analyses become more
amenable to regular use, e.g., at every commit.

II. PROBLEM STATEMENT

The following section describes the problem that this paper
tackles. We consider dynamic analyses that reason about the
behavior of a program to identify potential programming
mistakes and that report warnings to the developer. Given a
program P and inputs I , such a dynamic analysis A produces
a set of warnings A(P, I) =W . We assume that each warning
is a pair of a code location l ∈ L and a description d ∈ D
of the problem, i.e., W = L × D. For example, for the left-
hand side of the motivating example in Figure 1, an analysis
that identifies occurrences of NaN produces a warning (line 22,
“NaN created”).

2



This paper focuses on dynamic analyses that, to identify
a particular warning, reason about runtime events triggered
by a locally confined set of code locations, such as all code
in a single function. We call this class of analyses locally
confined dynamic analyses. Many existing analyses fall into
this category, including checkers of code quality rules, such
as those in DLint [6], and performance profilers, such as those
in JITProf [4]. In contrast, locally confined dynamic analyses
do not include analyses that require tracking values through
the entire program, e.g., information flow analysis or whole
program dependence analysis.

During the development process, a program evolves by
applying changes. Let P, P ′, P ′′, ... be different versions of a
program. The goal of our work is to apply a dynamic analysis
to every new version that appears during the development
process, so developers can immediately react to any warnings
caused by the most recent change. For a change from P to P ′,
suppose to have a mapping µ : W → W ′ of warnings from
version P to warnings for the subsequent version P ′. There
are three sets of warnings:
• Old warnings that remain present in the new version:
Wold = {w′ ∈ W ′ | ∃w ∈ W so that µ(w) = w′}.

• Newly introduced warnings:
Wnew = {w′ ∈ W ′ | @w ∈ W so that µ(w) = w′}.

• Warnings that got fixed by the change:
Wfixed = {w ∈ W | @w′ ∈ W ′ so that µ(w) = w′}.

A naive but computationally expensive approach to obtain
these three sets is to apply the analysis to every version, which
yields a set of warnings for each version:

A(P, I) =W, A(P ′, I) =W ′, ...

The problem addressed in this paper is how to reduce the
time required to apply a locally confined dynamic analysis to a
new version of a program, after a previous version has already
been analyzed. Specifically, we are looking for a change-aware
variant of the analysis called ACA, with the following two
properties:

W ′CA =Wold ∪Wnewwhere ACA(P, P
′, I) =W ′CA (1)

time(ACA(P, P
′, I)) < time(A(P ′, I)) (2)

The first condition guarantees that the change-aware analysis
does not miss any newly introduced warnings compared to a
full analysis and reports all warnings remaining from the pre-
vious version. The second condition ensures that the execution
time taken by the change-aware analysis is lower than the time
taken by the full analysis. For the example in Figure 1, the
change-aware analysis should find the old warning at line 22
and the newly introduced warning at line 12, while taking less
time than an analysis of the entire code.

Given the abundance of existing dynamic analyses, we aim
for an approach that does not focus on a specific analysis but
that applies across several locally confined dynamic analyses
and that can be used without changing the analyses themselves.

Change
identification

Dependence
analysis

Change
propagation

Targeted
dynamic analysis

Program Program’ Inputs

Changed
functions

Function
dependence graph

Impacted
functions

Warnings

Fig. 2: Overview of the approach.

III. APPROACH

To address the problem defined in Section II, we present
CADA, an approach that turns a locally confined dynamic
analysis into a change-aware analysis. Figure 2 summarizes
our approach. The input to CADA are two versions of the
same program and a set of inputs to exercise the program,
such as a regression test suite. The core of the approach is
a static change impact analysis that, given the two versions
of the program, determines the set of code locations that
are potentially affected by the change. The change impact
analysis consists of three steps. First, CADA analyzes the
differences between the two versions to determine the set of
modified code locations (“Change identification”). This step
is purely syntactic and does not reason about the effects
of changes. Second, a dependence analysis of the modified
program extracts a graph that summarizes the dependences
between code locations (“Dependence analysis”). This step
reasons about the semantics of the code based on calls and
on read and write operations. Third, CADA propagates the
information that a code location has been modified through
the dependence graph to compute the set of all code locations
impacted by the change (“Change propagation”). Finally, the
set of impacted code locations is provided to the dynamic
analysis, which analyzes the modified program while focusing
on the impacted code (“Targeted dynamic analysis”).

An important design decision is at what level of granularity
to compute the impact of a change and which code locations
to analyze dynamically. Three possible options are at the
file level, at the function level, and at the statement level.
A file level approach would determine for each source code
file whether any code in this file is impacted by the change,
and then perform the dynamic analysis on all code in the
impacted files. A disadvantage of a file level approach is that,
because a single file may contain large amounts of code, the
approach may unnecessarily analyze large amounts of code.
For example, many JavaScript libraries are implemented in a

3



single file to ease their distribution. In this case, any change in
the library would cause the entire code to be analyzed, which
defeats the purpose of change-aware analysis.

A statement level approach would compute the dependences
between all statements in the code and then analyze only
those statements that are impacted by a change. Even though
this approach is the most precise among the three options,
we discard it because of its computational cost. The ultimate
goal of CADA is to save time, and precisely computing all
statement-level dependences is likely to take a significant
amount of time for complex programs.

To balance the tradeoff between precision and computa-
tional cost, CADA computes dependences at the function level.
That is, the static change impact analysis determines which
functions are affected by a change, and the dynamic analysis
selectively analyzes only the impacted functions. To ease the
presentation, we assume that all code is inside some function.
This assumption is true for JavaScript, except for top-level
scripts, which our implementation handles as special, top-level
functions.

The remainder of this section presents the steps outlined in
Figure 2 in detail.

A. Change Identification

The first step of CADA compares the original and the
modified program to determine the changed functions, that
is, the set of functions that have been syntactically modified.
At first, the approach uses a standard line differencing tool,
such as the Unix “diff” utility, to compute which lines in the
modified program have been modified. These lines also include
all newly added lines. Next, the approach parses the modified
program into an AST and traverses the AST in a depth-
first manner. During the traversal, CADA visits all nodes that
represent functions, i.e., for JavaScript, function declaration
and function expression nodes2. The approach keeps track of
the code locations that mark the beginning and the end of
each function. Finally, after traversing the ASTs of all files of
the program, the approach matches each modified line to the
innermost function that contains the line, and reports functions
with at least one changed line as changed functions.

For the example in Figure 1, the line differencing tool
identifies line 4 as the only modified line. After traversing the
AST, the approach identifies function a as the only changed
function.

B. Dependence Analysis

Based on the changed functions, CADA computes the set
of impacted functions. Ideally, this set contains exactly all
those functions whose execution is affected by the changed
functions. To determine the impacted functions, we compute
a graph that represents the dependences between functions:

Definition 1 (Function dependence graph). A function depen-
dence graph is a directed graph Gdep = (N , E) where
• each node f ∈ N represents a function, and

2See ES6 tree specification: https://github.com/estree/estree.

S

e

a

d

b

c

Call dependence

Def-use dependence

Fig. 3: Function dependence graph for the new version of the
program in Figure 1.

• each edge (f1, f2) ∈ E represents that function f2

depends on function f1, i.e., that f1 influences f2.

CADA considers two kinds of dependences for the function
dependence graph: definition-use dependences, which express
that one function reads a value that may be defined in the
other function, and call dependences, which express that one
function may be called by another function. We represent
these two kinds of dependences as two separate function
dependence graphs GDU and GC , respectively. The overall
function dependence graph is the union of both graphs, i.e.,
there is an edge between two particular functions if at least
one of GDU and GC contains such an edge.

1) Definition-use Dependences: To compute definition-
use dependences, we build upon an inter-procedural, flow-
insensitive analysis of read-write relations between code loca-
tions. Specifically, given a set L of code locations, the analysis
extracts definition-use pairs (d, u), where d, u ∈ L and where
d writes a value that may be read by u. For example, consider
the code on the right-hand side of Figure 1. The assignment
at line 4 writes into variable x, which may be read by the
expression x / 2 at line 12. Hence, the pair of locations
(line 4, line 12) is a definition-use pair.

CADA accesses the results of the definition-use analysis
via two maps. The map usesOf : L 7→ 2L assigns to a code
location that writes a value the set of code locations that may
read this value. Conversely, the map defsOf : L 7→ 2L assigns
to a code location that uses a value the set of code locations
that may define this value.

To compute the function-level definition-use dependences of
a program, CADA iterates over all locations of the program
that write a value into memory. For each such location d ∈ L,
the analysis computes the set of locations usesOf (d) that may
read the value. Next, the analysis lifts these locations to the
function level using an auxiliary map fctOf : L → F that
assigns to each location its syntactically enclosing function
f ∈ F . Finally, the analysis adds function level edges that
represent the definition-use relations to GDU , specifically, an
edge (fctOf (d), fctOf (u))) for each u ∈ usesOf (d).

For example, consider Figure 3, where the dashed edges
show the definition-use dependences between the functions in
the running example in Figure 1. The S node represents the
entire script; all other nodes represent functions. There are
edges (a, c) and (S, c) because the use of x at line 12 may
read either the value written at line 4, which is contained in

4



function a, or the value written at line 1, which is contained
in the script S.

2) Call Dependences: In addition to definition-use de-
pendences, CADA also considers caller-callee dependences
between functions and summarizes them into a function de-
pendence graph GC . For a call of fcallee by a function fcaller,
the analysis creates two kinds of dependence edges. First, it
adds an edge (fcaller, fcallee) because a change in fcaller may
impact whether and how fcallee is called. Second, the analysis
adds an edge (fcallee, fcaller) if and only if fcallee returns a
value back to fcaller. To resolve function calls, CADA again
builds upon the definition-use analysis by querying defsOf for
the location where a function is defined.

We refine this basic approach by removing a particular
kind of call dependence that arises due to a common coding
idiom in JavaScript. The coding idiom addresses the lack of
encapsulation in JavaScript files by wrapping all code of a file
into an immediately invoked function expression (IIFE) of the
form: (function() { /* code */ })(). Since all code
inside the function is called from the IIFE, there would be a
direct or indirect call dependence from the IIFE to all functions
invoked in the file. As a result, any change of code in the
IIFE would cause all functions to be marked as impacted. To
avoid adding these overly conservative dependences, CADA
identifies IIFEs and does not consider any call dependence
edge starting from an IIFE.

For our running example, the solid edges in Figure 3 show
the call dependences. Most dependences are uni-directional,
except for (S, e) and (e, S) because function e returns a value
to the script S.

3) Computing Dependences Efficiently: Because the overall
goal of CADA is to speed up the dynamic analysis, it is crucial
that the static dependence analysis is efficient, in particular
for complex programs. Ideally, the function dependence graph
contains an edge (f, g) if and only if f definitely influences g.
However, soundly and precisely computing this graph is prac-
tically impossible for real-world JavaScript code, e.g., because
of dynamically computed property names, dynamically loaded
code, and effects of native functions that are unknown to the
static analysis. Instead of aiming for a sound static dependence
analysis, CADA efficiently approximates a sound and precise
dependence graph. Specifically, the analysis does not handle
the with construct, code that is dynamically loaded via eval,
dynamically computed property names, and side effects of
getter and setter functions.

The analysis transforms the program into an AST and com-
putes dependences in three passes through the AST. The first
two passes compute the definition-use pairs by computing the
scope and type of both variables and object properties through
an inter-procedural, flow-insensitive analysis. The result of the
first two passes are the defsOf and usesOf maps.

Based on these maps, the third pass computes the function-
level definition-use dependences and call-graph dependences.
Table I summarizes the actions performed during the third
pass, which traverses the AST in a depth-first manner. The
actions add edges to the two graphs GDU and GC , and they

update two auxiliary data structures: a stack F of enclosing
functions and the set Freturns of functions that return a
value. For each relevant node type, the table shows how the
analysis updates these data structures when entering the node
before traversing the node’s children (“Pre”) and after having
traversed its children (“Post”). Actions 1 and 2 maintain the
stack of enclosing functions. Actions 3 and 4 implement the
extraction of definition-use dependences described in Sec-
tion III-B1. Actions 5 and 6 extract call dependences as
described in Section III-B2. After the AST traversal, to finalize
the call dependence graph GC , the analysis adds an inverse
edge for each existing edge (fcaller, fcallee) in GC if and only
if fcallee is in the set Freturns of functions that return a value.

C. Change Propagation

Based on the function dependence graph, the next step of
CADA is to propagate the impact of a source code change
through the graph. At first, the approach marks all changed
functions, as described in Section III-A, in the function de-
pendence graph. Then, CADA computes the transitive closure
of the marked nodes by following the dependence edges in
the graph. As a result, all nodes that are directly or indirectly
impacted by the source code change are marked. CADA
reports the set of functions that correspond to the marked
nodes as the impacted functions.

For the running example, function a is the only changed
function. Propagating this change along the edges in Figure 3
yields a set of two impacted functions: a itself and c, which
is influenced by a via a definition-use dependence.

D. Targeted Dynamic Analysis

The final step of CADA is to reduce the overhead of a
dynamic analysis by focusing the analysis on the impacted
parts of the code. The main idea is to selectively analyze only
those functions of the program that are impacted by a change.
That is, whenever the execution of the analyzed program
enters a function, the analysis checks whether to analyze this
function. If the function is not an impacted function, then
the function body is executed without any analysis, i.e., our
change-aware approach avoids the analysis overhead for this
function.

Selectively analyzing code at the function level has the
advantage that the check whether to analyze a piece of code
is done only once per function execution. More fine-grained
selective analysis, e.g., at the level of individual statements,
would involve many more checks. As each check imposes
additional runtime overhead, a fine-grained selective analysis
might defeat the purpose of selectively analyzing particular
code locations.

For example, suppose to execute the right-hand side of
Figure 1. CADA focuses the analysis on the two impacted
functions a and c. That is, the other three functions and
the main script of the program are not analyzed, effectively
reducing the overhead imposed by the analysis. Furthermore,
suppose that the dynamic analysis checks for operations that
produce a NaN value. The targeted dynamic analysis detects

5



TABLE I: Actions performed to extract dependences during a depth-first AST traversal.

Node type When Action

1 Script, function declaration, or
function expression

Pre Push the script or function to stack F

2 Script, function declaration, or
function expression

Post Pop the script or function from stack F

3 Variable declaration or assign-
ment expression d

Pre For each u ∈ usesOf (d), add edge (fd, fu) to GDU where fd = topOf(F ) and
fu = fctOf (u)

4 Object expression
{p1 : v1, . . . , pn : vn}

Pre For each pi and for each u ∈ usesOf (pi), add edge (fd, fu) to GDU where fd =
topOf(F ) and fu = fctOf (u)

5 Call expression with callee
fcallee

Pre For each function f i
callee ∈ defsOf(fcallee), add edge (fcaller, f

i
callee) to GC where

fcaller = topOf(F )
6 Return statement Pre Add topOf(F ) to Freturns

the newly introduced NaN-warning at line 12. In contrast,
the dynamic analysis does not again find the NaN-warning at
line 22, which is already known from analyzing the previous
version of the program.

E. Reporting Warnings

After analyzing the changed version of the program with
a targeted dynamic analysis, CADA reports all warnings
detected by the dynamic analysis as well as warnings found in
the previous version. To map warnings across versions, we use
the Unix “diff” utility to map lines from the previous version
of the code to lines from the changed version of the code. Re-
porting all mapped warnings from the previous version would
be incorrect because a change may fix a warning. To avoid
incorrectly reporting fixed warnings, we only map previously
detected warnings that occur in functions not impacted by the
change. Because these warnings certainly have not been fixed
by the change (otherwise, their surrounding function would
be an impacted function), propagating them from the previous
version is correct. In contrast, all warnings within impacted
functions are detected by the targeted dynamic analysis, and
we do not have to map them from previously found warnings.

IV. IMPLEMENTATION

We implement CADA for dynamic analyses of JavaScript
code. The static change impact analysis builds upon Esprima3

for parsing and upon Tern [10] for computing definition-use
information. The output of the static analysis is a list of
functions that need to be analyzed dynamically. The selective
dynamic analysis is implemented on top of Jalangi [2]. It
supports selective analysis at the function level by generating
two variants of each function body: one with the original code
and one with instrumented code. Our implementation is open
source and available for download.4

V. EVALUATION

Our evaluation aims at answering the following research
questions:
• How effective is CADA in reducing the overall analysis

time of dynamic analyses?

3http://esprima.org
4https://github.com/drill89/Change-aware-Dynamic-Analysis

TABLE II: Projects used for the evaluation.

Project Release LoC Test
cases

Test exec.
time

(millisecs)

Changed
fcts.

(avg.)

Backbone 1.3.3 1,946 1,101 508 3.6
Backbone LayoutMgr 1.0.0 1,159 756 6367 1.5
BigNumber 2.4.0 2,737 80,355 1,432 2.3
Bootstrap Datepicker 1.7.0 2,115 900 2,107 2.7
Cal-Heatmap 3.5.4 3,476 1,244 4,179 1.8
Countdown 2.6.0 1,366 3,456 702 4.7
Underscore 1.8.3 1,626 1,541 4,826 2.3

• Does CADA miss any warnings that the non-change-
aware version of a dynamic analysis finds, and if yes,
which ones?

• How much does the configuration of each part of our
approach impact the execution time and the correctness
of CADA?

• How is the total time that CADA takes distributed across
the individual steps of the approach?

A. Experimental Setup
To answer these questions, we evaluate our approach by

applying 46 dynamic checkers to the version histories of
seven popular JavaScript projects. Table II lists the projects
we consider. To obtain different versions of these projects, we
download ten consecutive commits just before the commit that
corresponds to the release in Table II, excluding commits that
do not change any code. The table shows the number of test
cases in the developer-provided test suites and how long it
takes to execute these test suites for the release given in the
table. The last column of the table reports the percentage of
functions that are syntactically changed in a single commit,
on average.

To dynamically analyze these projects, we use the analyses
provided by the DLint [6] and JITProf [4] tools. Both tools
consist of a set of dynamic checkers, 39 in DLint and seven in
JITProf, giving a total of 46 checkers. We include all checkers
of these tools, without modifying them in any way. Almost all
checkers are locally confined dynamic analyses. One exception
is a checker in JITProf that searches for “inconsistent object
layouts”, i.e., an object usage pattern that often spans across
multiple functions. The checker reports a warning only if it
observes both the creation of an object and its usage. We

6



do not remove such non-locally confined checkers during our
experiments to study their impact on our results (Section V-C).

All experiments are done on a machine with an Intel Core
i5-3230 CPU with 2.6GHz and 6GB of memory, running 64-
bit Ubuntu 14.04, node.js 4.4.5, and Chromium 50.0.2661.102.

B. Reduction of Analysis Time

The primary goal of our work is to reduce the time required
to run a heavyweight dynamic analysis. To evaluate the
effectiveness of CADA in achieving this goal, we analyze
each version of each project in two ways. First, we run the
full dynamic analysis on the given code, without taking into
account what parts of the code have changed compared to
the previous version. This run takes an amount of time tfull.
Second, we run CADA, which analyzes what parts of the
code have changed compared to the previous version. Running
CADA, including its static change impact analysis, takes an
amount of time tCADA. To measure the reduction of analysis
time by CADA, we compute the performance improvement as
1 − tCADA

tfull
. This measure of reduction ignores the one-time

effort of running the full analysis because this effort amortizes
over time.

Figure 4 summarizes the performance improvements of
CADA over full dynamic analysis. Each graph shows the
improvements for all ten commits of a project, giving the
results for DLint and JITProf separately. For example, ap-
plying the change-aware variant of DLint to BigNumber
reduces the analysis time by over 99% for seven of the ten
commits. CADA significantly reduces the analysis time for
most commits, projects, and analyses. Overall, the approach
reduces the analysis time by 40%, on average, and by at least
80% for 31% of all commits.

Even though CADA proves effective in most cases, the
performance improvement is negative for some commits.
For example, the approach adds between 8% and 12% of
analysis time when analyzing four commits of Countdown
with JITProf. The reason is that the additional time spent on
static change impact analysis sometimes does not outweigh
its benefits, because the set of functions found to be impacted
contains most functions of the program. Fortunately, these
cases are rare and only impose a relatively small negative
performance impact. Section V-D discusses variants of our
approach that further reduce the analysis time, at the expense
of precision.

C. Warnings Missed by Change-Aware Analysis

Our approach may miss warnings introduced in a change
for two reasons. First, due to the unsoundness of the static
change impact analysis, CADA may mark a function as not
impacted even though the change impacts the function. As
a result, dynamically analyzing only the impacted functions
would miss any warnings found in the miss-classified function.
Second, applying CADA to a non-locally confined dynamic
analysis may lead to missed warnings because the occurrence
of a warning at an impacted code location lw may depend on
whether another, non-impacted code location lo gets executed.

For example, consider an analysis that tracks objects and warns
about a particular object usage pattern, but that tracks an object
only if the analysis observes the object creation. If the program
creates an object at a non-impacted location lo, a change-aware
variant of the analysis will miss any misbehavior that occurs
at an impacted code location lw. Such an analysis falls outside
of the class of locally confined dynamic analyses that CADA
is designed for (Section II), and we therefore accept missing
such warnings.

To evaluate how prevalent the two kinds of missed warnings
are, we compute the set of all warnings introduced in a partic-
ular commit and compare this set to the warnings reported
by CADA. For this purpose, we execute the full dynamic
analysis on each version of the program, which yields sets
W1, W2, etc. of warnings. Next, we compute for each pair of
consecutive versions i and i+1, the set W∆ of warnings that
are present in Wi+1 but not in Wi. After computing W∆ for
a particular pair of consecutive versions, we check whether
the set of warnings reported by CADA for the newer version
lacks any of the warnings in W∆. If we find such warnings,
we call them missed warnings.

The last column of the “CADA” block of Table III shows
the percentage of all newly introduced warnings that the
approach misses, on average per commit. For most projects
and analyses, no warnings are missed. An exception to this
overall result are runs of JITProf on Backbone LayoutMan-
ager, Bootstrap Datepicker, and Underscore. The reason for
these missed warnings is the “inconsistent object layouts”
checker in JITProf [4]. As discussed in Section V-A, this
checker falls outside of the class of locally confined dynamic
analyses that CADA is designed for.

Beyond the warnings missed by this single checker, we do
not observe any other kind of missed warnings. In particular,
we do not observe any missed warnings due to the imprecision
of the static change impact analysis. This result confirms our
design decision to use a practical static analysis that favors
efficiency over soundness.

D. Comparison with Alternative Approaches

To evaluate whether CADA’s benefits can be achieved with
simpler means, we compare our approach to four simpler
variants of the approach:

• No removal of IIFE call dependences. In this variant,
we do not remove call dependences related to imme-
diately invoked function expressions, as described in
Section III-B2.

• Only definition-use dependences. This variant builds the
function dependence graph based on only definition-use
dependences, i.e., without considering call dependences.

• Only call dependences. Inversely, this variant considers
only call dependences, without considering definition-use
dependences.

• Only changed functions. This variant removes most of
CADA’s change impact analysis and considers exactly
those functions as impacted that are syntactically mod-

7



-100%

-50%

0%

50%

100%

08a486c

b016194

5a6a824

82bdb89

32d89dc

24779ae

fe908db

f6d8c3e

a530dbe

e4c85af

B
ac

kb
on

e

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

0032310

b5285dd

4f93b20

ea42789

ad704dc

b4f2181

2182c59

99067bd

65e21f2

4bc0fe6

B
ig

N
um

be
r

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

b9861f1

71c8a41

29ad865

e59d342

28bc6a7

18be15d

5b929fc

f7991cc

bab4584

cbc1b86

C
al

-H
ea

tm
ap

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

b518639

104ba2a

51d93a9

a0e5f4c

012fe2b

5500925

0f8895e

ce591c8

1e68f06

28e9704

U
nd

er
sc

or
e

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

74afc0e

37aa244

b35256a

f8e65fe

921cde9

fc719cc

8f03a15

b811797

a4c6184

5ae3117

B
ac

kb
on

e 
La

yo
ut

M
an

ag
er

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

d351cd5

a297976

8e472a0

0309d22

d58e500

6657b91

480905b

599e4c7

d7ac9b1

07cc339

B
oo

ts
tra

p 
D

at
ep

ic
ke

r

Commits

Dlint JITProf

-100%

-50%

0%

50%

100%

b994821

d5db13f

f61db2f

faaa1b0

b2289b7

f1fc4ec

f6d2c55

1a642e8

2a47052

472b65e

C
ou

nt
do

w
n

Commits

Dlint JITProf

Fig. 4: Performance improvements of CADA over full dynamic analysis for different commits and projects.

ified by a change, i.e., we do not compute a function
dependence graph.

We evaluate these variants of CADA with respect to their
effectiveness in reducing the analysis time and their ability to
find warnings introduced by a change. The execution time
of each variant includes only those components of CADA
necessary for the variant. For example, the “only changed
functions” variant saves the time for computing a function
dependence graph.

Table III summarizes the results of the comparison. Each
block in the table presents the results of a variant, with the
“CADA” block being the full approach. The values are aver-

ages over all commits. The results show that simplifying the
approach reduces its effectiveness in one of two ways. On the
one hand, the variant that keeps call dependences due to IIFEs
increases the number of impacted functions, which reduces
the performance improvements, while slightly reducing the
number of missed warnings. Since the missed warnings are
all due a single JITProf checker that is outside of the class of
analyses targeted by this work, we use the full CADA approach
as our default. On the other hand, the other three variants
reduce the set of functions classified as impacted, which in
turn increases the performance improvement. However, this
improvement in performance comes at the cost of missing

8



TABLE III: Comparison of different variants of our approach. All values are averages over commits.

CADA Include Only call Only def- Only
IIFE deps. deps. use deps. changed fcts.

Project Ti
m

e
of

fu
ll

an
al

ys
is

(m
ill

is
ec

on
ds

)

N
um

be
r

of
fu

nc
tio

ns

N
um

be
r

of
w

ar
ni

ng
s

Im
pa

ct
ed

fu
nc

tio
ns

(%
)

Pe
rf

.i
m

pr
ov

em
en

t
ov

er
fu

ll
an

al
ys

is
(%

)

M
is

se
d

w
ar

ni
ng

s
(%

)

Im
pa

ct
ed

fu
nc

tio
ns

(%
)

Pe
rf

.i
m

pr
ov

em
en

t
ov

er
fu

ll
an

al
ys

is
(%

)

M
is

se
d

w
ar

ni
ng

s
(%

)

Im
pa

ct
ed

fu
nc

tio
ns

(%
)

Pe
rf

.i
m

pr
ov

em
en

t
ov

er
fu

ll
an

al
ys

is
(%

)

M
is

se
d

w
ar

ni
ng

s
(%

)

Im
pa

ct
ed

fu
nc

tio
ns

(%
)

Pe
rf

.i
m

pr
ov

em
en

t
ov

er
fu

ll
an

al
ys

is
(%

)

M
is

se
d

w
ar

ni
ng

s
(%

)

Im
pa

ct
ed

fu
nc

tio
ns

(%
)

Pe
rf

.i
m

pr
ov

em
en

t
ov

er
fu

ll
an

al
ys

is
(%

)

M
is

se
d

w
ar

ni
ng

s
(%

)

Backbone
- DLint 5,651 149.8 3 11 45 0 46 9 0 10 46 0 4 52 67 2 51 67
- JITProf 2,774 149.8 26 11 2 0 46 -28 0 10 16 0 4 9 4 2 3 13

Backbone LayoutManager
- DLint 7,675 72.6 1 15 23 0 30 15 0 6 27 0 11 25 0 2 28 0
- JITProf 6,476 72.6 49 15 11 6 30 5 0 6 14 71 11 13 10 2 14 100

BigNumber
- DLint 874,448 74 5 30 75 0 87 27 0 26 76 0 24 88 0 3 78 100
- JITProf 390,638 74 0 30 74 0 87 25 0 26 75 0 24 89 0 3 52 8

Bootstrap Datepicker
- DLint 39,442 135 1 37 39 0 63 9 0 27 40 100 7 71 0 2 86 100
- JITProf 11,855 135 163 37 23 86 63 -3 17 27 29 91 7 50 85 2 60 94

Cal-Heatmap
- DLint 224,201 226 161 80 46 0 80 46 0 17 86 99 8 91 100 1 96 0
- JITProf 52,325 226 2346 80 22 0 80 22 0 17 73 93 8 78 96 1 83 87

Countdown
- DLint 8,508 21.9 1 50 57 0 80 22 0 43 59 0 30 78 0 21 99 0
- JITProf 3,040 21.9 12 50 37 0 80 9 0 43 43 0 30 55 0 21 98 0

Underscore
- DLint 178,664 170 1 27 53 0 39 52 0 26 54 0 2 97 0 1 96 100
- JITProf 53,302 170 4 27 53 50 39 53 50 26 54 0 2 88 50 1 88 100

Average 132,786 121.3 198 36 40 10 61 19 5 22 49 32 12 63 29 5 67 55

warnings. For example, the variant that analyzes only the
changed functions, saves 67% of the execution time of a full
dynamic analysis, but misses 55% of the warnings, on average.

We conclude from these results that all steps of our approach
are indeed required to effectively reduce the time required to
run dynamic analyses without unnecessarily missing warnings.

E. Time Breakdown

To better understand where CADA spends its efforts, Fig-
ure 5 shows a breakdown of the execution time spent in
different steps of the approach. Each bar shows the percentage
of the overall time spent on (1) statically analyzing the
impact of changes, (2) instrumenting the source code, and
(3) executing the test suite while dynamically analyzing its
execution. Step 1 reduces the time taken for step 3. Step 2
is independent of the change-awareness of an analysis and
must also be done for a full dynamic analysis. Overall, the
results show that the static analysis is cheap relative to the
dynamic analysis, which confirms our decision to build upon
a lightweight static analysis. For the Backbone project, CADA
spends on above-average percentage of time on the change
impact analysis. The reason is that this project has a relatively

 0

 20

 40

 60

 80

 100

Backbone+D
lint

Backbone+JITProf

Backb LayoutM
gr+D

lint

Backb LayoutM
gr+JITProf

BigN
um

ber+D
Lint

BigN
um

ber+JITProf

Bootstr D
atep+D

lint

Bootstr D
atep+JITProf

C
al-H

eatm
ap+D

Lint

C
al-H

eatm
ap+JITProf

C
ountdow

n+D
Lin

C
ountdow

n+JITProf

U
nderscore+D

lint

U
nderscore+JITProf

P
er

ce
nt

ag
e 

of
 o

ve
ra

ll 
tim

e

Project and analysis

Dynamic analysis
Instrumentation

Change impact analysis

Fig. 5: Breakdown of the execution time spent in different
steps of CADA.

high number of functions to analyze statically compared to the
time taken by the full dynamic analysis (see Table III).

9



VI. RELATED WORK

a) Reducing the Overhead of Dynamic Analyses: A
feedback-directed instrumentation technique reduces the over-
head of crash diagnosis by distributing the analysis across
multiple users [7]. Our work differs by considering arbitrary
locally confined dynamic analyses instead of a single analysis,
by reducing the overhead on a single machine instead of
relying on a crowd of users, and by exploiting which code
has been changed. JITProf [4] reduces its runtime overhead
through function-level and instruction-level sampling. The
sampling approach is oblivious of changes in the code and
hence complementary to CADA.

Our approach targets instrumentation-based dynamic analy-
ses. Alternative ways to implement dynamic analyses could
also benefit from making the analysis change-aware. First,
a dynamic analysis can be implemented by modifying the
underlying runtime engine [11], [12]. Even though such an
implementation typically yields lower overheads than a source-
to-source translation, the overhead still remains non-negligible.
Second, a dynamic analysis can be implemented by partly
emulating the VM within the JavaScript application [11],
which yields overheads comparable to those of Jalangi. Our
lightweight, static change impact analysis could enable these
approaches to selectively analyze particular functions, which
would reduce the runtime overhead.

Staged analysis combines a dynamic analysis with a static
analyses that eliminates unnecessary runtime checks. A staged
analysis typically targets one particular dynamic analysis, such
as a data detector [13], [14], a runtime monitor to check
finite-state properties [15], and information flow analysis [16].
In contrast, CADA reduces the overhead of arbitrary locally
confined dynamic analyses.

b) Change-Aware Program Testing and Analysis:
KATCH [17] steers symbolic execution to code that has been
changed. Our work differs by analyzing not only the changed
but also other impacted code locations. There are several
approaches for change-aware detection of concurrency bugs,
e.g., by prioritizes schedules [18], by prioritizing tests [19]
, by selecting interleavings to exercise [20], or by generat-
ing regression tests [21]. All these approaches focus on a
particular kind of problem in concurrent programs, whereas
CADA addresses a general class of dynamic analyses for
arbitrary programs. Retrospec5 is a prototype of a regression
test selection tool for JavaScript. Regression test selection and
change-aware dynamic analysis are complementary, and we
leave combining them as future work.

c) Change Impact Analysis: Various existing analyses
estimate the impact of a code change. A major difference
to all existing change impact analyses is that we use the
analysis to reduce the overhead of a dynamic analysis. Ryder
and Tip [22] propose a call graph-based, static analysis that
determines which tests exercise code impacted by a change
and which changes may affect a particular test. Chianti [23] is
an extended version of the idea. Both differ from CADA by

5https://github.com/ericsteele/retrospec.js

reasoning about the impact of changes on tests, and vice versa,
instead of the impact of changes on individual functions of
the program. Another difference is that CADA considers both
call dependences and definition-use dependences. Law and
Rothermel [24] propose a dynamic change impact analysis that
reports all code entities as impacted that are executed after a
changed code entity. Other work reduces the runtime overhead
of the technique based on an execute-after relation [25]. In
contrast to both, CADA uses a static change impact analysis
because the goal is to reduce the effort of dynamically analyz-
ing the program. Our work also differs by computing impact
based on definition-use dependences, finding code to be not
impacted by a change even though this code executes after the
changed code.

Tochal [26] is a change impact analysis for JavaScript that
combines static and dynamic analysis to report to a developer
which code entities may be affected by a change. In contrast
to our work, Tochal relies on a dynamic analysis of the entire
program. Our dependence analysis is related to static program
slicing [27], [28]. In contrast to most slicing approaches, we
do not aim for an executable subset of the program, but instead
identify a subset of functions worth analyzing dynamically.

d) Dynamic Analysis of JavaScript: The dynamic na-
ture of JavaScript has motivated various dynamic analyses
beyond those considered here, including type inconsistency
analysis [3], analysis of library conflicts [29], determinacy
analysis [30], profilers to detect performance problems [5],
[31], and dynamic data race detectors [32], [33], [34], [12]. A
recent survey [35] gives a comprehensive summary of more
dynamic analyses for JavaScript.

e) Static Analysis of JavaScript: Static analyses for Java-
Script roughly fall into two categories. On the one hand, sound
static analyses overapproximate the possible behavior of a
program [36], [37], often at the price of considering only a
subset of the language[38], [39], [40]. On the other hand,
various analyses sacrifice soundness for practicality [41], [42],
[43], e.g., by assuming that some dynamic language features
are not used [44] or by adding runtime checks to compensate
for the unsoundness of the static analysis [45]. The change
impact analysis of CADA belongs to the second category,
enabling the analysis to efficiently run on real-world code.

VII. CONCLUSIONS

This paper presents change-aware dynamic analysis, a
technique that significantly reduces the runtime overhead of
dynamic analyses by focusing the analysis on changed code
locations. The approach is enabled by a lightweight static
change impact analysis that computes a set of functions to
analyze dynamically. We evaluate CADA by applying 46
dynamic checkers to the version histories of seven widely used
JavaScript projects. Our results show that making the analyses
change-aware reduces the overall analysis time by 40%, on
average, and by at least 80% for 31% of all commits. Our work
is a step toward bringing dynamic analysis at the fingertips of
developers, who will benefit from finding problems early by
frequently running these analyses.

10



REFERENCES

[1] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Conference on Programming Lan-
guage Design and Implementation (PLDI). ACM, 2007, pp. 89–100.

[2] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selec-
tive record-replay and dynamic analysis framework for JavaScript,”
in European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2013, pp. 488–498.

[3] M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dynamic type inconsis-
tency analysis for JavaScript,” in International Conference on Software
Engineering (ICSE), 2015.

[4] L. Gong, M. Pradel, and K. Sen, “JITProf: Pinpointing JIT-unfriendly
JavaScript code,” in European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2015, pp. 357–368.

[5] S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “Meminsight:
platform-independent memory debugging for javascript,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, 2015,
pp. 345–356.

[6] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: Dynamically
checking bad coding practices in JavaScript,” in International Sympo-
sium on Software Testing and Analysis (ISSTA), 2015, pp. 94–105.

[7] M. Madsen, F. Tip, E. Andreasen, K. Sen, and A. Møller, “Feedback-
directed instrumentation for deployed javascript applications,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 899–910.

[8] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Softw. Test., Verif. Reliab., vol. 22, no. 2, pp.
67–120, 2012.

[9] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: a manifesto,” Commun. ACM, vol. 58, no. 2,
pp. 44–46, 2015.

[10] M. Haverbeke, “Tern code analysis engine,” http://ternjs.net/, Accessed
in January 2017.

[11] E. Lavoie, B. Dufour, and M. Feeley, “Portable and efficient run-time
monitoring of javascript applications using virtual machine layering.” in
ECOOP, 2014, pp. 541–566.

[12] E. Mutlu, S. Tasiran, and B. Livshits, “Detecting javascript races that
matter,” in European Software Engineering Conference and Interna-
tional Symposium on Foundations of Software Engineering (ESEC/FSE),
2015.

[13] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran, “Efficient and precise datarace detection for multithreaded object-
oriented programs,” in Conference on Programming Language Design
and Implementation (PLDI), 2002, pp. 258–269.

[14] C. Flanagan and S. N. Freund, “Redcard: Redundant check elimination
for dynamic race detectors,” in European Conference on Object-Oriented
Programming. Springer, 2013, pp. 255–280.

[15] E. Bodden, L. J. Hendren, and O. Lhoták, “A staged static program anal-
ysis to improve the performance of runtime monitoring,” in European
Conference on Object-Oriented Programming (ECOOP). Springer,
2007, pp. 525–549.

[16] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged information
flow for JavaScript,” in Conference on Programming Language Design
and Implementation (PLDI). ACM, 2009, pp. 50–62.

[17] P. D. Marinescu and C. Cadar, “Katch: high-coverage testing of software
patches.” in ESEC/SIGSOFT FSE, 2013, pp. 235–245.

[18] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware preemption
prioritization,” in ISSTA, 2011, pp. 133–143.

[19] T. Yu, W. Srisa-an, and G. Rothermel, “Simrt: an automated framework
to support regression testing for data races,” in ICSE, 2014, pp. 48–59.

[20] V. Terragni, S. Cheung, and C. Zhang, “RECONTEST: effective regres-
sion testing of concurrent programs,” in ICSE, 2015, pp. 246–256.

[21] M. Pradel, M. Huggler, and T. R. Gross, “Performance regression testing
of concurrent classes,” in International Symposium on Software Testing
and Analysis (ISSTA), 2014, pp. 13–25.

[22] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented pro-
grams,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering, PASTE’01,
Snowbird, Utah, USA, June 18-19, 2001, 2001, pp. 46–53.

[23] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. C. Chesley, “Chianti: a
tool for change impact analysis of Java programs,” in OOPSLA, 2004,
pp. 432–448.

[24] J. Law and G. Rothermel, “Whole program path-based dynamic impact
analysis,” in Proceedings of the 25th International Conference on
Software Engineering, May 3-10, 2003, Portland, Oregon, USA, 2003,
pp. 308–318.

[25] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in 27th Inter-
national Conference on Software Engineering (ICSE 2005), 15-21 May
2005, St. Louis, Missouri, USA, 2005, pp. 432–441.

[26] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid DOM-sensitive
change impact analysis for JavaScript,” in ECOOP, 2015, pp. 321–345.

[27] M. Weiser, “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4,
pp. 352–357, 1984.

[28] F. Tip, “A survey of program slicing techniques,” J. Prog. Lang.,
vol. 3, no. 3, 1995. [Online]. Available: http://compscinet.dcs.kcl.ac.uk/
JP/jp030301.abs.html

[29] J. Patra, P. N. Dixit, and M. Pradel, “Conflictjs: Finding and understand-
ing conflicts between javascript libraries,” in ICSE, 2018.

[30] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy
analysis,” in PLDI, 2013, pp. 165–174.

[31] M. Selakovic, T. Glaser, and M. Pradel, “An actionable performance
profiler for optimizing the order of evaluations,” in International Sym-
posium on Software Testing and Analysis (ISSTA), 2017, pp. 170–180.

[32] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race detection for
web applications,” in Conference on Programming Language Design
and Implementation (PLDI), 2012.

[33] V. Raychev, M. Vechev, and M. Sridharan, “Effective race detection
for event-driven programs,” in Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2013.

[34] S. Hong, Y. Park, and M. Kim, “Detecting concurrency errors in client-
side java script web applications.” in ICST, 2014, pp. 61–70.

[35] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and
C. alexandru Staicu, “A survey of dynamic analysis and test generation
for javascript,” ACM Computing Surveys, 2017.

[36] M. Madsen, F. Tip, and O. Lhoták, “Static analysis of event-driven
node.js javascript applications,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, 2015, pp. 505–519.

[37] F. Logozzo and H. Venter, “RATA: Rapid atomic type analysis by
abstract interpretation—application to JavaScript optimization,” in CC,
2010, pp. 66–83.

[38] R. Chugh, D. Herman, and R. Jhala, “Dependent types for JavaScript,”
in Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2012, pp. 587–606.

[39] A. Guha, C. Saftoiu, and S. Krishnamurthi, “Typing local control and
state using flow analysis,” in European Symposium on Programming
(ESOP), 2011, pp. 256–275.

[40] P. Thiemann, “Towards a type system for analyzing JavaScript pro-
grams,” in European Symposium on Programming (ESOP), 2005, pp.
408–422.

[41] M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis of
JavaScript applications in the presence of frameworks and libraries,” in
ESEC/SIGSOFT FSE, 2013, pp. 499–509.

[42] A. Feldthaus and A. Møller, “Semi-automatic rename refactoring for
JavaScript,” in OOPSLA, 2013.

[43] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip, “Correlation
tracking for points-to analysis of javascript,” in ECOOP 2012 - Object-
Oriented Programming - 26th European Conference, Beijing, China,
June 11-16, 2012. Proceedings, 2012, pp. 435–458.

[44] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript,”
in Symposium on Static Analysis (SAS). Springer, 2009, pp. 238–255.

[45] B. Hackett and S. Guo, “Fast and precise hybrid type inference for
JavaScript,” in Conference on Programming Language Design and
Implementation (PLDI). ACM, 2012, pp. 239–250.

11


