
A Framework for the Evaluation of Specification
Miners Based on Finite State Machines
Michael Pradel

Computer Science Department
ETH Zurich

Philipp Bichsel
Computer Science Department

ETH Zurich

Thomas R. Gross
Computer Science Department

ETH Zurich

Abstract—Software maintenance tasks, such as testing and pro-
gram understanding, can benefit from formal specifications that
describe how a program should use an API. Recently, there has
been increasing interest in specification miners that automatically
extract finite state specifications of method ordering constraints
from existing software. However, comparing different mining
approaches is difficult, because no common ground to evaluate
the effectiveness of specification miners has been established
yet. We present a framework for evaluating to which extent
specification miners find valid finite state descriptions of API
usage constraints. The framework helps in creating reference
specifications and includes metrics to compare mined specifica-
tions to the reference specifications. The metrics are tailored for
evaluating specification miners and account for imprecision and
incompleteness in mined specifications. We use the framework
to compare the effectiveness of three mining approaches and to
show their respective benefits.

Index Terms—Requirements/Specifications, Mining, Metrics/
Measurement

I. INTRODUCTION

Typical application programming interfaces (APIs) provide
a large set of methods to programmers. However, not every
method can be called at any point during the execution of
a program. Instead, programmers must be aware of method
ordering constraints that have to be respected to use an API
correctly. For instance, to use an input stream of the Java I/O
API, a programmer must instantiate a stream class, read from
the stream, and eventually close it.

Unfortunately, method ordering constraints of APIs are
usually not explicitly specified. To address this problem,
various approaches towards mining specifications have been
proposed [1]–[21]. Specification miners analyze existing client
programs that use an API, the library or framework that
provides the API, or other available data of a software
project, such as a version history. From this input, miners
extract specifications of commonly observed behavior. Mined
specifications can be used for different purposes, such as
finding programming errors [5], [7], [13], [18] and program
understanding [3], [12].

In this paper, we focus on specification miners that produce
finite state machines (FSMs) describing method ordering con-
straints. For example, Figure 1a shows an FSM describing the
usage of the java.util.Formatter class. In the FSMs given in
this paper, states represent the state of one or more objects;
transitions indicate method calls and how these calls change
the state of the involved objects.

The existence of specification miners that automatically
infer such FSMs leads to the question how to assess the effec-
tiveness of a mining approach. Currently, there is no common
ground on which to assess the quality of mined specifications.
As a result, it is difficult to evaluate specification miners in a
reproducible way and to compare them with each other.

The current state of the art to evaluate specification miners
is to manually classify mined specifications [11], [12], [14],
[16], [19] or to manually compare them to a reference [1],
[2], [5], [20]. A manual classification and comparison of
specifications risks to be subjective and is not reproducible.
Manual assessment is also limited to two outcomes: valid and
invalid. Another evaluation technique is to show the usefulness
of mined specifications for some task, such as finding bugs [5],
[7], [13], [18]. Unfortunately, this approach does not allow for
assessing the effectiveness of the mining approach itself.

To address the problems of current evaluation techniques,
we present a novel framework for the evaluation of specifi-
cation miners. The evaluation framework allows for assessing
the quality of mined specifications in a reproducible way. As
a result, one can compare different mining approaches in an
objective manner. The framework consists of two parts: First,
we present a lightweight specification mechanism that helps
to formalize knowledge of API method ordering constraints
given, for example, through informal API documentation.
Based on these lightweight specifications, our framework gen-
erates FSMs that serve as a reference, or “golden standard”, to
evaluate mined specifications. Second, we present metrics for
computing precision and recall [22] of a mined specification
with respect to a reference specification. Intuitively, precision
indicates how exact a mined specification is, while recall
indicates how complete it is. Both metrics range between 0%
and 100%, where 100% is the optimal result.

The most important property of our metrics is to account
for incompleteness and imprecision in mined specifications.
As a result, the metrics yield meaningful precision and recall
values even if the FSMs contain additional method calls or
miss important method calls, which is typically true for mined
specifications. Previously proposed techniques for comparing
FSMs are not robust enough against partial incorrectness of
mined specifications [23] or compare FSMs on a structural
level without considering the accepted language [24].

For example, consider the mined specification in Fig-
ure 1b. Compared to the reference specification in Figure 1a,

Formatter()

locale(), out(),
ioException()

format() flush()

format(), locale(), out(),
ioException()

close()

close()

ioException()

(a) Reference specification.

println() Formatter()
format()

close() println()

(b) Incomplete and imprecise mined specification.

Figure 1: Correct and complete specification of the Formatter
class and a mined specification.

Figure 1b contains some valid parts, but includes several
additional method calls and is missing large parts of the
reference specification. To assess the quality of the mined
specification, one can generate the reference in Figure 1a
using our framework and compare both FSMs by computing
precision and recall.

We use our evaluation framework to compare the results of
three dynamic mining approaches. They differ in their way
to extract subsequences of related method calls from large
method traces. The first approach [21] is method-centric and
extracts subsequences of calls based on the assumption that
calls issued within the execution of the same method are
related to each other. The second approach, which we devised
to improve the first, is object-centric and extracts subsequences
of calls to a particular API object (an instance of an API class)
and other, related objects. The third approach is a simpler
version of the second approach, which we call single-object.
Here, each subsequence includes calls to a single API object,
without considering any calls to other objects. Thus, the single-
object approach can only find specifications involving single
classes. We compare the results of these miners to 32 reference
specifications of classes from the Java standard library, which
we created using our framework. The results show the single-
object miner to be the most successful in mining this kind of
specifications. The miner achieves an average precision of 99%
and a recall up to 45%. One reason for the high precision is
that the single-object miner cannot consider calls to irrelevant
classes, because each FSM it mines describes a single class.

In summary, the main contributions of this paper are:

1) A lightweight specification formalism to formally en-
code informal knowledge about method ordering con-
straints and an algorithm to translate these lightweight
specifications into FSMs.

2) Metrics to compute precision and recall of FSMs with
respect to a reference. The metrics are tailored for eval-
uating specification miners and account for imprecision
and incompleteness in mined specifications.

3) An empirical evaluation of three mining approaches us-
ing our evaluation framework, which shows the benefits
of the different approaches.

In the following section, we present the evaluation frame-
work itself. Section III describes three mining approaches,
which we compare in Section IV using our framework. Sec-
tion V relates our approach to previous work and Section VI
concludes the paper.

II. EVALUATION FRAMEWORK

Our framework evaluates mined specifications by comparing
them to reference specifications. We define reference specifi-
cation (or short, reference) as an FSM providing a precise
and complete description of all method ordering constraints
relevant for an API class or a group of related API classes.
For example, Figure 1a shows the reference specification
for the Formatter class. A fundamental question is whether
specification miners should find complete specifications, or
rather focus on smaller FSMs that omit rarely used methods
and describe typical usages. Our framework compares mined
specifications with complete specifications and assumes that
miners strive for completeness. Complete specifications are
more valuable for testing and verification and can be used as
a basis for extracting smaller FSMs.

The evaluation framework consists of two parts: The first
part addresses the problem of obtaining reference specifica-
tions by providing a semi-automatic approach to formalize
existing, informal knowledge about method ordering con-
straints into FSMs. The second part addresses the problem
of measuring how similar a mined specification is to a given
reference. We present metrics to compute precision and recall.
The metrics account for imprecision and incompleteness in
mined specifications.

A. Building Reference Specifications

Method ordering constraints of real-world APIs are complex
and involve many methods. As a result, manually formalizing
them as FSMs is time-consuming and error-prone. To facilitate
this process, we present a lightweight, yet concise and precise
representation of ordering constraints between methods, which
we call Method Constraint Groups (MCGs). Our framework
requires a human to encode method ordering constraints with
MCGs, and then, automatically translates them into FSMs.
The starting point for creating MCGs can be any commonly
accepted source of knowledge describing the usage of an API,
such as documentation or reference books.

MCGs organize all methods that are relevant for an API
usage into groups based on their ordering constraints. The
methods of a group do not impose any ordering constraints on
each other, that is, they can be called in any order. Moreover,
all methods of a group share the same constraints with respect
to the methods in other groups. A method may be part of more
than one group, which can be necessary to express different
contexts in which a method may be used.

A MCG g consists of:
• a group identifier

ID Methods Enables Disables Final

0 - 1 - No
1 Formatter() 2,3,5,6 1 No
2 Formatter.locale(), Formatter.out() - - No
3 Formatter.format() 4 - No
4 Formatter.flush() - 4 No
5 Formatter.ioException() - - No
6 Formatter.close() 7 2,3,4,5,6 Yes
7 Formatter.ioException() - - Yes

Table I: Method Constraint Groups that describe ordering
constraints between methods of java.util.Formatter.

Algorithm 1 Translate method constraint groups into an FSM

Input: Method constraint groups G = {gi | 0 < i < n}
Output: FSM F representing the constraints of G

/* worklist of (state, group) pairs: */
1: W ←W ∪ {(initialState(F), gi) | gi ∈ enables(g0)}

/* map from sets of enabled groups to states: */
2: S ← {enables(g0) 7→ initialState(F)}
3: while W 6= ∅ do
4: (s, g)← take from W

/* groups enabled at destination state: */
5: E ← (S−1(s) ∪ enables(g)) \ disables(g)
6: if E ∈ domain(S) then
7: d← S(E)
8: else
9: d← create a new state

10: S ← S ∪ {E 7→ d}
11: W ←W ∪ {(d, genabled) | genabled ∈ E}
12: for all m ∈ methods(g) do
13: Add transition s

m−→ d to F
14: isF inal(d)← isF inal(g)

• a set of methods
• enables, a set of identifiers of groups whose methods are

enabled by calling a method from g
• disables, a set of identifiers of groups whose methods are

disabled by calling a method from g
• final, a Boolean value indicating whether calling methods

from g can terminate the API usage
Table I shows MCGs that describe the ordering constraints

of methods from Formatter. As a convention, each set of
MCGs has an empty group 0 that enables all groups not
requiring a preceding call. As in the example in Table I,
group 0 is often used to enable constructor calls. Instantiating
a Formatter (group 1) enables most other groups and, at
the same time, disables the constructor because calling the
constructor again should not be part of the specification.
Calling close() (group 5) disables most groups, since calling
methods such as format() after close() leads to an exception.

While MCGs provide a precise and concise notation to
encode ordering constraints between API methods, they cannot
be easily compared to mined specifications given as FSMs.
Therefore, we devised Algorithm 1, which translates MCGs
into FSMs. Each state of the FSM build by Algorithm 1

represents a group of enabled methods, that is, methods that
may be called in this state. The map S keeps track of the
methods enabled in each state. If a transition leads to a new
set of enabled methods, a new state is created (line 9). The
algorithm maintains a worklist W of (state, group) pairs; for
each pair (s, g) in W , the algorithm still must consider the
methods of g as outgoing transitions of s. The worklist W
is empty if and only if all call sequences that are permitted
according to the MCGs are part of the language accepted by
the FSM. The algorithm is guaranteed to terminate because
there is a finite number of groups and methods.

Figure 1a is the result of applying the translation algorithm
to the MCGs in Table I. We have chosen a rather simple exam-
ple to illustrate the translation. As we show in Section IV-A,
FSMs describing all possible call sequences of an API usage
can be very large. For example, the complete specification for
LinkedList and its iterators ListIterator and Iterator consists
of 41 states and 465 transitions. In contrast, the correspond-
ing MCGs contain 16 groups, where one group summarizes
35 methods that impose exactly the same constraints on other
methods and no constraints on each other.

Another table-based description of FSMs are state transition
tables, which have one row for each state and one column for
each possible input (here: method). The large number of states
and methods required for specifications of real-world APIs
leads to large state transition tables, making them impractical
for formalizing method ordering constraints.

By formalizing informal knowledge into MCGs and apply-
ing Algorithm 1, one can obtain reference FSMs that formally
encode method ordering constraints. The advantage of using
MCGs, instead of directly formalizing into FSMs, is that
MCGs reduce the complexity of specifying large API classes
by grouping methods according to their constraints.

B. Comparing Mined Specifications to
Reference Specifications

Based on a set of reference specifications, we can evaluate
to what extent mined specifications match the reference. For
this purpose, we require a measure of similarity between a
mined specification M and a reference specification R. In the
following, we present two novel metrics to compute precision
and recall of M with respect to R. Precision indicates what
proportion of M matches R, that is, how exact M is, while
recall indicates what proportion of R is present in M , that is,
how complete M is.

The main challenge is to compute precision and recall in a
way that accounts for noise and incompleteness in mined spec-
ifications. For example, consider the reference specification in
Figure 1a and the three mined specifications in Figures 2a, 2b,
and 1b. Each of the mined specifications partially matches the
reference and our metrics should reflect these similarities.

To account for imprecision and incompleteness, our metrics
use the k-tails algorithm [25]. This algorithm was originally
proposed to synthesize FSMs from samples of their behavior.
The k-tail of a state are all method call sequences of length k
accepted in this state. For example, the 2-tail of the initial

state of Figure 2a contains four call sequences: Formatter-
locale, Formatter-out, Formatter-format, and Formatter-close.
The algorithm merges two states if they have the same k-tail.
The parameter k controls how long the common tails of two
states must be to get merged. We use a variant of the algorithm
in which two states s1 and s2 are merged if the k-tail of s1 is
included in the k-tail of s2. Variations of the k-tails algorithm
are widely used to mine specifications [1], [8], [16], [26] and
in other applications that synthesize FSMs [27], [28]. To the
best of our knowledge, we are the first to apply the k-tails
algorithm for comparing FSMs.

The following paragraph describes our algorithms for com-
puting recall and precision of an FSM M with respect to an
FSM R. Both algorithms are similar, and therefore, presented
together. To compute precision (recall), we proceed as follows:

1) Compute the deterministic and minimal union automa-
ton U of M and R and mark all transitions in U that
come from M (from R).

2) Compute U ′ by applying the k-tails algorithm to U
while propagating which transitions are marked. Make
U ′ deterministic and minimize it.

3) Let m be the number of marked transitions in U ′.
4) Compute the intersection of U ′ and R (intersection

of U ′ and M) and let mt be the number of marked
transitions in U ′ taken while computing the intersection.
The intersection (or product automaton) accepts all
sentences accepted by both U ′ and R (U ′ and M).
That is, when building the intersection all transitions
required by both FSMs are taken. Transitions that are
taken while computing the intersection but that are not
marked correspond to unnecessary (missing) transitions
in M .

5) The precision (recall) of M with respect to R is mt

m .
To propagate which transitions are marked, we adapt the k-

tails algorithm and classical algorithms to minimize FSMs and
to make FSMs deterministic [29] in a straightforward way: If
a new transition t is created from transitions t1, . . . , tn, then
t is marked if and only if at least one of t1, . . . , tn is marked.

Figure 3 illustrates computing the recall of Figure 1b with
respect to the reference in Figure 1a. First, we compute the
union of both FSMs, as shown in Figure 3a. Transitions
coming from the reference FSM are marked with italic font.
Applying the k-tails algorithm with k = 2 (a discussion on
choosing k follows below) leads to the FSM in Figure 3b.
Next, we make the FSM deterministic and minimize it, which
gives Figure 3c. Note that the markings of transitions are
propagated; all italic transitions in Figure 3c originate from the
reference specification. Finally, we compute m and mt: There
are 19 marked transitions, that is, m = 19 (multiple labels
at one arrow count as multiple transitions). When computing
the intersection of the mined specification in Figure 1b and
Figure 3c, we use three of the marked transitions, that is,
mt = 3. Thus, the recall is 3/19 = 16%.

As the example illustrates, using the k-tails algorithm helps
to find otherwise non-obvious similarities between FSMs. In
contrast, an exact comparison of FSMs often cannot identify

Formatter()
locale(), out()

format() flush()

format(), locale(), out()

close()

close()

(a) Almost complete mined specification.

Formatter()
format()

close()

(b) Incomplete mined specification.

Figure 2: Mined specifications for Formatter.

Formatter()

locale(), out(),
ioException()

format() flush()

format(), locale(), out(),
ioException()

close()

close()

ioException()

println() Formatter()
format()

close() println()

(a) Union of mined specification and reference specification.

println() Formatter()
format(), locale(), out(),

ioException(), flush(), close()

Formatter()

format()

close() println()

(b) Result of applying k-tails algorithm to (a).

println()
Formatter()

format() flush(), locale(),
out(), ioException()

format(), flush(),
locale(), out(),
ioException(),

close()
close() format(), flush(), locale(),

out(), ioException(), close()

println()

(c) Deterministic and minimal union of (b).

Figure 3: Computation of recall using our metric with k =
2. Transitions printed in italics originate from the reference
specification.

the similarity of two states because this similarity is hidden in
non-matching parts of the FSMs. Instead, using k-tails allows
for merging states that are equivalent within the limited visual
range of the next k transitions. As a result, our metrics can
find states to be similar even if they are not exactly equivalent,
which leads to more reasonable recall and precision values
than an exact comparison, in particular for incomplete and
imprecise specifications.

The parameter k of the k-tails algorithm controls how
much imprecision and incompleteness our metrics accept. A
smaller k merges more states, leading to a less precise FSM

that accepts a more general language. Hence, our metrics
detect more similarities but risk to consider states to be
equivalent that incidentally share the same k-tail. In contrast,
a larger k leads to a more precise FSM, that is, our metrics
tolerate less imprecision and incompleteness. Since there is
no perfect k, we compute recall and precision for k = 1, 2, 3
and without using k-tails (that is, comparing FSMs exactly),
and average the results to get final values for recall and
precision. We empirically found this solution to be practical
for comparing FSMs. For illustration, the following table gives
precision and recall computed with our metrics for the mined
specifications in Figures 2a, 2b, and 1b.

Mined FSM Precision Recall
k=1 k=2 k=3 Exact Avg. k=1 k=2 k=3 Exact Avg.

Figure 2a 100% 100% 100% 100% 100% 86% 86% 86% 77% 84%
Figure 2b 100% 100% 100% 100% 100% 43% 43% 43% 38% 42%
Figure 1b 30% 60% 0% 0% 23% 20% 16% 0% 0% 9%

III. MINING API USAGE SPECIFICATIONS

This section presents three approaches to mine FSMs that
describe ordering constraints of API methods. We compare the
effectiveness of the mining approaches in Section IV using
the evaluation framework presented in Section II. The miners
dynamically analyze existing programs that use an API and
summarize their API usage. The input to each miner is a
method trace, that is, a sequence of method calls observed
during program execution. At first, the miners extract sub-
traces, that is, subsequences that each contain calls relevant for
a particular API usage and, ideally, do not include irrelevant
calls. Then, these subtraces are summarized into FSMs.

Extracting subtraces from a large method trace is one of
the most challenging aspects of dynamic specification mining,
because typical method traces intermingle different API usages
and contain many irrelevant method calls. The three mining
approaches discussed in this section use different techniques
to extract subtraces. First, we use a previously presented,
method-centric approach. It is method-centric in the sense
that it extracts subtraces by focusing on calls issued within a
particular method. Second, we present a novel, object-centric
approach, which we devised as an improvement of the first
approach. The miner is object-centric in the sense that it
focuses on calls centered around one object. It includes calls to
a main object but also to other, related objects. Third, we use a
simplified version of the object-centric approach, called single-
object, which extracts subtraces that each contain calls to a
single API object. In contrast to the object-centric approach,
no calls to other objects are considered.

To gather method traces to be used as input to our miners,
we instrument programs that use a particular API. An instru-
mented programs writes all method call and method return
events in a log file. Concretely, we log the object identities
and types of caller, callee, arguments, and the return value
(if any), as well as the name of each called method. Our
instrumentation only includes calls (returns) from (to) the
instrumented program and ignores calls within libraries. In
the following, we detail the three mining approaches.

A. Method-centric Specification Mining

The method-centric specification mining approach extracts
subtraces by focusing on method calls issued within the
execution of a certain method. As a first abstraction, all
methods called within a given method are extracted. Then,
the subtrace is further refined, for example, by filtering calls
based on packages and by merging objects on which the same
set of methods is called.

After extracting subtraces from a method trace, the miner
summarizes them into FSMs. At first, similar subtraces are
grouped together. The miner considers two subtraces to be
similar of they involve objects on which the same sets of
methods are called. For example, two subtraces involving a
collection on which iterator() is called and an iterator on which
hasNext() and next() are called are grouped together. Then,
all similar subtraces are mapped into an FSM by creating a
state for each called method and creating a transition between
two states if two methods are observed consecutively. This
technique for summarizing subtraces into FSMs is used by
all three miners we evaluate in this paper. An example of the
summarization follows in Section III-B.

B. Object-centric Specification Mining

To illustrate the object-centric mining approach consider
Figure 4. Figure 4a shows a method that downloads data from
a given URL using the java.net API. Executing the method
produces a trace of method calls that intermingles several API
usages, such as the trace on the left of Figure 4b.

To extract subtraces that each contain calls relating to a
particular API class, we extract object usage traces from the
method trace. Each object usage trace contains calls centered
around a particular API object, but also other related calls. An
object usage trace includes the following information:
• A core object o.
• All calls to o.
• For each parameter p of a call to o:

– The (constructor) call that returned p.
– All calls on p before it is passed to o.

• For each return value r of a call to o:
– All calls on r after its return from o.

The miner creates an object usage trace for each instance
of an API class on which at least two methods are called;
instances with only one call cannot contribute any constraints
between the methods of the API class.

Figure 4b illustrates the extraction of object usage traces.
The miner creates three traces of calls centered around the
instances of URL, BufferedReader, and HashMap respectively.
Note that an object usage trace can contain calls to methods
of different API classes. For example, the second object
usage trace on the right of Figure 4b contains a call to
InputStreamReader(), which shows the origin of the parameter
to BufferedReader().

During our experiments with the Java standard library, we
found several API classes that should be specified together in
one FSM. A typical example is the interplay of a collection

public class Downloader {
private HashMap<String, Integer> history;
public void download(String address) {
URL url = new URL(address);
BufferedReader reader = new BufferedReader(

new InputStreamReader(url.openStream()));
String rawData = reader.readLine();
while (rawData != null) {
rawData = reader.readLine();

}

int number = 0;
if (history.containsKey(address))
number = history.get(address);

history.put(address, number + 1);

reader.close();
}

}

(a) Different API usages that are intermingled. Calls to
API methods are highlighted.

One execution trace:

URL()
URL.openStream()
InputStreamReader()
BufferedReader()
BufferedReader.readLine()
BufferedReader.readLine()
HashMap.containsKey()
HashMap.put()
BufferedReader.close()

Three object usage traces:

URL()
URL.openStream()

InputStreamReader()
BufferedReader()
BufferedReader.readLine()
BufferedReader.readLine()
BufferedReader.close()

HashMap.containsKey()
HashMap.put()

(b) Method trace from executing download() and object usage traces extracted by
the object-centric miner.

Figure 4: Extracting object usage traces from method traces.

InputStream
Reader()

Buffered
Reader()

Buffered
Reader.

readLine()

Buffered
Reader.
close()

BufferedReader.readLine()

Figure 5: FSM mined from Figure 4 using the object-centric
approach.

class, such as LinkedList, and its Iterators. Specifying these
classes in isolation cannot express constraints such as that a
LinkedList must not be modified while iterating over it. Object
usage traces can contain calls to several related objects, so that
specifications involving multiple classes, such as LinkedList
and Iterator, can be mined.

After extracting object usage traces for all instances of
API classes from a method trace, the miner summarizes them
into FSMs using the same technique as the method-centric
miner. For example, the object usage trace for the instance of
BufferedReader in Figure 4 results in the FSM in Figure 5.

C. Single-object Specification Mining

The single-object mining approach is a variation of the
object-centric approach. For each instance of an API class,
we extract a subtrace containing all calls to this instance but
no other calls. Similarly to the object-centric approach, we
only consider API objects on which at least two methods are
called. For example, the subtraces extracted from the trace on
the left of Figure 4b would be the same as given on the right
of Figure 4b, except that the call to InputStream() is missing.

The part of the miner that summarizes subtraces into FSMs
is shared with the other two approaches. As a result of
considering calls to a single object in each subtrace, each
mined specification only covers a single class. Hence, the
single-object approach cannot mine specifications of method
ordering constraints involving multiple classes, such as the
interplay between a collection and its iterators.

IV. EXPERIMENTS

The following section describes results from using our eval-
uation framework. We formalize specifications of 32 classes
from the Java standard library and use them as a reference
for evaluating specifications mined from twelve Java programs
with the three mining approaches presented in Section III.
Our experiments show that MCGs help to formalize FSMs
that describe method ordering constraints of complex APIs.
Furthermore, we show the evaluation framework to provide
insights into the benefits of different mining approaches. We
also use the framework to analyze the relation between the
quality of method traces and the quality of mined specification
from the traces. The results show that recall is bound by the
coverage of an API in method traces. Finally, we compare
our metrics to other metrics and a manual grading of mined
specifications.

Table II lists the programs we analyze during our ex-
periments and the number of runtime events generated by
them. Overall, we analyze 47 million runtime events. We
analyze programs from different domains, including several
networking programs. The reason for selecting networking
programs is that we focus our experiments on the java.net
and java.util APIs. Most of the traces result from running
unit tests or benchmark suites. Three programs are run as part
of the DaCapo benchmark suite [30]. Programs for which no
automated execution was possible were executed manually.
The last column of Table II gives the origin of the traces.

A. Creating Reference Specifications with MCGs

We select 32 widely used classes from the java.net and
java.util API and formalize their method ordering constraints
using the approach described in Section II-A. For each class,
we extract information on method ordering constraints from
the corresponding API documentation (Javadoc) and a widely
used reference book [31]. We describe these constraints using
MCGs. Table III shows the number of methods of each
class and the number of groups required to summarize the

Program Description Runtime events

Eclipse Integrated development environment 498,328 B
luindex Text indexing tool 1,511,632 B
PMD Source code analyzer 295,750 B
Diego MP3 streaming server 10,482 M
JGroups Reliable Multicast Communication 10,100,253 T
jo! Web server 29,091,779 T
OpenCHAT Chat server 84,591 M
Soap-Stone Network benchmarking application 4,146,130 B
Testingpoint Server monitoring 142,081 M
Voldemort Distributed database 82,888 T
XBrowser Web browser 435,575 M
Yafta FTP client 142,061 M

Sum 46,541,550

Table II: Programs and number of events analyzed for each.
The last column states whether traces were obtained by
running benchmarks (B), unit tests (T), or by executing the
program manually (M).

API class/interface MCGs FSM

Methods Groups States Transitions

java.net.DatagramSocket 28 15 7 80
java.net.MulticastSocket 15 10 5 34
java.net.Socket 41 23 14 207
java.net.URL 16 5 5 57
java.net.URLConnection 43 14 21 318
java.util.ArrayDeque 36 7 6 49
java.util.ArrayList 32 17 41 407
java.util.Collection 15 7 6 24
java.util.Deque 36 7 6 49
java.util.EnumMap 17 8 7 42
java.util.EnumSet 18 7 6 27
java.util.Formatter 7 8 4 13
java.util.HashMap 17 8 7 42
java.util.HashSet 18 7 6 27
java.util.Hashtable 20 8 7 48
java.util.IdentityHashMap 17 8 7 42
java.util.LinkedHashMap 17 8 7 42
java.util.LinkedHashSet 18 7 6 27
java.util.LinkedList 51 17 41 465
java.util.List 30 17 41 405
java.util.Map 17 8 7 42
java.util.NavigableMap 38 8 7 84
java.util.NavigableSet 29 7 6 42
java.util.PriorityQueue 20 7 6 29
java.util.Queue 19 7 6 28
java.util.Set 18 7 6 27
java.util.SortedMap 23 8 7 54
java.util.SortedSet 24 7 6 33
java.util.StringTokenizer 6 6 4 14
java.util.TreeMap 38 8 7 84
java.util.TreeSet 29 7 6 42
java.util.WeakHashMap 17 8 7 42

Average 24.1 9.2 10.2 91.4

Table III: Reference specifications with sizes of method con-
straint groups and the corresponding finite state machines.

constraints between these methods. On average, the constraints
between 24 methods are represented in 9 groups.

Using our framework, we translate the MCGs into FSMs.
The last two columns of Table III show the size of the gener-
ated FSMs in terms of their number of states and transitions.
All FSMs are minimized, and hence, can be considered to

0%
20%
40%
60%
80%

100%

Precision Recall F-measure

Method-centric
Object-centric
Single-object

Figure 6: Comparison of three mining approaches.

be the most concise possible representation of the method
ordering constraints. On average, the reference specifications
contain 10 states and 91 transitions. In view of the 9 groups
required to encode the same specifications, we conclude that
MCGs are an effective help to formalize FSMs.

B. Evaluating Specification Miners

We use the 32 reference specifications and the metrics
presented in Section II-B to evaluate the three specification
miners presented in Section III. For each miner, we compute
precision and recall of all mined specifications with respect to
all reference specifications. In addition to precision and recall,
we compute the F-measure, the harmonic mean of precision
and recall, which is typically used to combine precision
and recall into a single value. Then, we select for each
reference specification the mined specification with maximum
F-measure, that is, the mined specification that is closest
to the reference. For 15 out of 32 reference specifications,
a specification with non-zero F-measure is mined; for the
other 17, no matching specification can be mined, because
the specified API class is not used in the method traces that
we use as input.

Figure 6 shows the average precision, recall, and F-measure
achieved using the three mining approaches. The results are
averaged over all reference specifications with a non-null F-
measure. The method-centric miner achieves an F-measure
of 18%. The object-centric miner improves the F-measure
to 25%, with a precision of 88%. The single-object miner
achieves the best results with a precision of 99%, a recall of
19%, and an F-measure of 30%. The high precision results
from considering calls to only one class per FSM, which
avoids including any irrelevant calls by construction for the
prize of not mining specifications involving multiple classes.
The recall achieved by all three miners is rather low (below
20%). As we discuss in Section IV-C, low recall can be
partly attributed to the quality of the traces we analyze. Yet,
there seems potential to improve the recall in all three mining
approaches.

As the results show, our evaluation framework helped us
to significantly enhance the method-centric miner. Having ap-
propriate metrics to assess the quality of mined specifications
allowed us to achieve a relative improvement over the method-
centric miner of 73% (for the F-measure).

Besides the miners described in Section III, we experiment
with other mining approaches. For example, we adapt the
FSM summarization of the object-centric and the single-object
approach in such a way that all subtraces with a core object of
the same class are summarized into one FSM. That is, more
subtraces go into a single FSM, providing the opportunity
to cover more API usages, while risking to include more
irrelevant call sequences. Our evaluation framework confirms
this reasoning: The specifications mined with this approach
have higher recall but lower precision.

C. Influence of API Coverage

We analyze how the coverage of an API in a set of method
traces influences the results of mining specifications from
these traces. For each reference specification, we compute the
specification coverage as the proportion of methods in the
specification that are called at least once in the analyzed traces.

Figure 7 shows precision and recall depending on the
specification coverage of each reference specification. The
results show that recall is bound by coverage, which confirms
the intuition that the quality of a dynamic specification miner
cannot exceed the quality of the analyzed traces. The closer
the recall achieved by a miner is to the diagonal displayed
in the lower part of Figure 7, the more of the available
information is extracted by the miner. Our results show that
the single-object miner gets closer to this boundary then the
other mining approaches, and hence, makes best use of the
coverage provided by the traces. In contrast to recall, there is
no clear relation between precision and coverage. This result
is not surprising, since low precision results from considering
method calls that are not relevant for a specification, and
hence, do not affect coverage.

Interpreting our results, one should be aware that our notion
of coverage does not fully reflect the quality of method traces.
For example, a trace containing all required API method calls
in random order has 100% coverage, but is not useful for
mining correct specifications. Nevertheless, one can assume
that most parts of a program use an API correctly, and hence,
larger coverage coincides with more relevant call sequences
that a miner can learn from.

D. Comparison with Other Metrics

It is an interesting question how well our metrics and
previously proposed ones match an intuitive notion of the
quality of mined specifications. To answer it, we manually
assign precision and recall values to a set of mined FSMs
and compare this manual grading to our metrics and those
of [23] and [32]. We randomly select 18 mined FSMs and
compare it to the reference specification of StringTokenizer,
which is chosen because sufficiently many FSMs are mined for
it. Among the 18 mined specifications, there are six from each
miner. Five of them contain at least one call to StringTokenizer
(that is, they are related to the reference specification), while
one has no call to StringTokenizer at all (that is, it is obviously
unrelated). To manually grade the mined FSMs we use the
following procedure: For the precision value, we divide the

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
re

ci
si

on

Coverage

Method-centric
Object-centric
Single-object

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

R
ec

al
l

Coverage

Figure 7: Precision and recall depending on coverage of the
API by the analyzed traces.

number of transitions that are labeled with a method occurring
in the reference specification and that are in a “correct”
position by the total number of transitions. For the recall value,
we describe the reference specification by a set of simple
temporal properties, such as “n() must occur after m()” or “m()
can be called multiple times”. Then, we divide the number of
temporal properties expressed in the mined specification by
the total number of temporal properties.

Figure 8 shows precision, recall, and F-measure of the
different metrics against the manually assigned values. Quante
and Koschke’s metric gives a single similarity value, which
we compare to the F-measure. Linearity expresses that a
metric matches the manual grading. For all three values, our
metric is closest to the manually assigned values. Furthermore,
the figures illustrate that Quark’s metric often gives 0% or
100%, which is caused by not considering imprecision and
incompleteness of mined specifications. Quante and Koschke’s
metric gives non-zero similarities even for mined specifications
that are obviously unrelated to the reference.

The correlation between manual grades and the metrics
confirms our interpretation of Figure 8:

Our metric Quark Quante et al.

Precision 91% 54% -
Recall 74% 58% -
F-measure/Similarity 86% 44% 37%

Our metric correlates more to the manual grading than pre-
viously proposed metrics and provides acceptable correlations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 (m

et
ric

s)

Precision (manual)

Our metric
Quark’s metric

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l (

m
et

ric
s)

Recall (manual)

Our metric
Quark’s metric

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1F-
M

ea
su

re
/S

im
ila

rit
y

(m
et

ric
s)

F-Measure (manual)

Our metric
Quark’s metric

Quante and Koschke’s metric

Figure 8: Comparison of three metrics with respect to manual grading of 15 mined specifications. Linearity indicates high
agreement of a metric and the manually assigned values.

for all three values. We conclude that our metric matches an
intuitive notion of the quality of mined specifications.

V. RELATED WORK

A. Specification Mining

Existing specification miners can be grouped into miners of
method ordering constraints and miners of other specifications.
Many miners of the first group mine FSMs: Ammons et al.
pioneered to mine specifications of method call sequences
from dynamic execution traces using a probabilistic FSM
learner [1]. SMArTIC is a specification mining framework that
structures the mining process into trace filtering, trace cluster-
ing, probabilistic FSM learning, and merging of FSMs [8].
Javert mines FSMs describing typical method call sequences
by first mining traces for a set of pre-defined micro-patterns,
and then merging them into larger FSMs [15]. Ghezzi et al.
present a dynamic analysis to synthesize FSMs using graph
transformations [17]. Other miners producing FSMs or regular
expressions include [2], [4], [9], [11], [13], [20], and [21]. Our
evaluation framework is applicable to all of the above mining
approaches. Apart from FSM miners, there are approaches for
mining method ordering constraints into other formats, such as
pairs of related methods [5], [7], [14] and extended FSMs [16].

B. Evaluation of Specification Miners

Lo and Khoo propose a framework for empirically assessing
automaton-based specification miners [23]. Their approach
generates traces from a given FSM R and feeds them to a
specification miner. The FSMs produced by the miner are
then compared to R. Precision and recall are computed as the
proportion of traces from one FSM that are accepted by the
other (and vice versa). The approach is appropriate to evaluate
how accurately a miner summarizes traces that include a well-
defined set of method calls. However, it ignores extracting
subsequences of semantically related method calls from a
large execution trace, which is one of the most challenging
parts of dynamic specification mining. Our framework can
evaluate the entire mining process and uses robust metrics
to measure precision and recall. Lo and Khoo’s metrics fail
to find similarities between two FSMs if the traces of one

are not accepted by the other (and vice versa). Instead, our
metrics account for imprecision and incompleteness in the
mined specifications using the k-tails algorithm, and hence,
can detect more similarities between FSMs.

Quante and Koschke propose a metric for the distance
between FSMs, which is inspired by Levenshtein’s string
distance [32] (with a corrected version in [33]). Applying the
distance metric to two FSMs gives a value d between zero
and one. We compute the similarity as 1− d to compare their
metric with ours. Our way to compare a mined FSM to a
reference improves over their approach in two ways. First, we
provide two values, precision and recall, giving a more fine-
grained estimate of how similar two FSMs are than a single
value. Second, Quante et al.’s metric gives reasonable results
for similar FSMs, but fails to identify dissimilarities. As shown
in Section IV-D, even FSMs with disjoint alphabets can have
a non-zero similarity. In contrast, our metrics are guaranteed
to return precision and recall zero for disjoint FSMs.

Bogdanov and Walkinshaw propose an algorithm to struc-
turally compare two FSMs [24]. The algorithm computes pairs
of states (one from each FSM) with similar incoming and
outgoing transitions and expresses the difference between the
FSMs in terms of added and removed transitions. Their metrics
are based on a purely structural comparison of FSMs, whereas
our metrics compare the languages accepted by two FSMs.

Several approaches evaluate the quality of mined specifica-
tions through manual classification in “valid” and “invalid”
specifications [11], [12], [14], [16], [19]. This approach is
subjective and gives results that are hard to reproduce and
compare. Another approach to validate mined specifications is
to manually compare them to some reference, such as informal
documentation or manually formalized specifications [1], [2],
[5], [20]. In contrast, our evaluation framework supports the
automatic comparison with a set of reference specifications.
Another evaluation approach is to show the usefulness of
mined specifications for some task, such as finding bugs [5],
[7], [13], [18]. Similarly, some approaches are validated by
checking programs with the mined specifications and con-
sidering rarely violated specifications to be valid [6], [10].

The drawback of such approaches is that they do not allow
for comparing the quality of mined specifications. Finally,
one can evaluate specifications by comparing the results from
mining different programs, assuming that commonly found
specifications describe typical behavior [21].

C. Other Related Work

Cornelissen et al. [34] propose a methodology and a set
of metrics for evaluating trace reduction techniques. Their
methodology focuses on trace reduction for the purpose of
visualization and mainly uses quantitative metrics, such as
trace size reduction, whereas we focus on the qualitative
assessment of mined specifications.

A problem related to comparing FSMs is measuring the sim-
ilarity between graphs. Several approaches to error-correcting
graph matching have been proposed [35], which try to match
one graph to another while changing the graphs if neces-
sary. Since FSMs are particular graphs, error-correcting graph
matching algorithms can be used to compare FSMs. However,
graph similarity measures can find FSMs to be similar that
actually describe very different languages, because they do
not consider the particular semantics of certain nodes, such as
initial and final states.

VI. CONCLUSIONS

Specifications of method ordering constraints can support
software maintenance tasks, such as testing and program
understanding. Although various approaches to automatically
mine such specifications have been proposed, no evaluation
technique has been established that allows comparing different
miners on a common ground. This paper presents an evalua-
tion framework to systematically assess the quality of mined
specifications describing method ordering constraints of APIs.
The framework helps building a set of reference specifications
and provides metrics to compare mined specifications to the
references. We use the framework to evaluate three mining
approaches and show their respective benefits and drawbacks.
Using the framework helped us to significantly improve the
mining technique of our previously presented miner.

ACKNOWLEDGMENTS

Thanks to David Lo, Zoltán Majó, Mathias Payer, and the
anonymous reviewers for their comments on this paper. Also
thanks to Jochen Quante for clarifying questions on his metric.

REFERENCES

[1] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” in
POPL, 2002, pp. 4–16.

[2] J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extraction of
object-oriented component interfaces,” in ISSTA, 2002, pp. 218–228.

[3] T. Xie and D. Notkin, “Automatic extraction of object-oriented observer
abstractions from unit-test executions,” in ICFEM, 2004, pp. 290–305.

[4] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and F. I. Vokolos,
“Scenariographer: A tool for reverse engineering class usage scenarios
from method invocation sequences,” in ICSM, 2005, pp. 155–164.

[5] W. Weimer and G. C. Necula, “Mining temporal specifications for error
detection,” in TACAS, 2005, pp. 461–476.

[6] V. B. Livshits and T. Zimmermann, “DynaMine: Finding common error
patterns by mining software revision histories,” in ESEC/FSE, 2005, pp.
296–305.

[7] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining temporal API rules from imperfect traces,” in ICSE, 2006, pp.
282–291.

[8] D. Lo and S.-C. Khoo, “SMArTIC: Towards building an accurate, robust
and scalable specification miner,” in FSE, 2006, pp. 265–275.

[9] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining object
behavior with ADABU,” in WODA, 2006, pp. 17–24.

[10] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: From usage scenarios to specifications,” in
ESEC/FSE, 2007, pp. 25–34.

[11] S. Shoham, E. Yahav, S. Fink, and M. Pistoia, “Static specification
mining using automata-based abstractions,” in ISSTA, 2007, pp. 174–
184.

[12] J. Henkel, C. Reichenbach, and A. Diwan, “Discovering documentation
for Java container classes,” IEEE T. Software Eng., vol. 33, no. 8, pp.
526–543, 2007.

[13] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in ESEC/FSE, 2007, pp. 35–44.

[14] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive
inference of function precedence protocols,” in ICSE, 2007, pp. 240–
250.

[15] M. Gabel and Z. Su, “Javert: Fully automatic mining of general temporal
properties from dynamic traces,” in FSE, 2008, pp. 339–349.

[16] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in ICSE, 2008, pp. 501–510.

[17] C. Ghezzi, A. Mocci, and M. Monga, “Synthesizing intensional behavior
models by graph transformation,” in ICSE, 2009, pp. 430–440.

[18] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/FSE, 2009, pp. 383–392.

[19] C. Le Goues and W. Weimer, “Specification mining with few false
positives,” in TACAS, 2009, pp. 292–306.

[20] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifi-
cations from natural language api documentation,” in ASE, 2009, pp.
307–318.

[21] M. Pradel and T. R. Gross, “Automatic generation of object usage
specifications from large method traces,” in ASE, 2009, pp. 371–382.

[22] C. J. Van Rijsbergen, Information Retrieval. Butterworths, 1979.
[23] D. Lo and S.-C. Khoo, “QUARK: Empirical assessment of automaton-

based specification miners,” in WCRE, 2006, pp. 51–60.
[24] K. Bogdanov and N. Walkinshaw, “Computing the structural difference

between state-based models,” in WCRE, 2009, pp. 177–186.
[25] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-state

machines from samples of their behaviour,” IEEE T. Comput., vol. 21,
pp. 592–597, 1972.

[26] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in ESEC/FSE, 2009, pp. 345–354.

[27] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM T. Softw. Eng. Meth., vol. 7, no. 3, pp.
215–249, 1998.

[28] S. P. Reiss and M. Renieris, “Encoding program executions,” in ICSE,
2001, pp. 221–230.

[29] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

[30] S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking
development and analysis,” in OOPSLA, 2006, pp. 169–190.

[31] D. Flanagan, Java in a nutshell. O’Reilly, 2005.
[32] J. Quante and R. Koschke, “Dynamic protocol recovery,” in WCRE,

2007, pp. 219–228.
[33] J. Quante, “Dynamic object process graphs,” Ph.D. dissertation, Univer-

sität Bremen, 2009.
[34] B. Cornelissen, L. Moonen, and A. Zaidman, “An assessment method-

ology for trace reduction techniques,” in ICSM, 2008, pp. 107–116.
[35] H. Bunke, “Error correcting graph matching: On the influence of the

underlying cost function,” IEEE T. Pattern Anal., vol. 21, no. 9, pp.
917–922, 1999.

