When to Say What:

Learning to Find Condition-Message
Inconsistencies

Islem Bouzenia, Michael Pradel
Software Lab — University of Stuttgart

[Software AT

Motivating Example

What’s wrong with this code?

if len(bits) !'= 4 or len(bits) !'= 6:
raise template.TemplateSyntaxError (
"$r takes exactly four or six arguments
(second argument must be "as’)" % str(bits[0]))

- 1

Motivating Example

What’s wrong with this code?

if len(bits) !'= 4 or len(bits) !'= 6:
raise template.TemplateSyntaxError (
"$r takes exactly four or six arguments
(second argument must be "as’)" % str(bits[0]))

Condition and message are inconsistent!
(The condition is always true.)

Problem

Finding condition-message
Inconsistencies

- 1

Problem

Any statement that emits a message
(e.g., raising exception, printing, logging)

Finding conditionfnessage]

Inconsistencies

Problem

Any statement that emits a message
(e.g., raising exception, printing, logging)

Finding|conditionfmessage
Inconsistencies "gg,ean expression

that guards the
message-emitting
statement

Problem

Any statement that emits a message
(e.g., raising exception, printing, logging)

Finding[condtor}nessage

Inconsistencies Boolean expression

that guards the
message-emitting
statement

Condition and message cannot
be true at the same time

CMI-Finder: Overview

Code corpus ‘ ‘Code

‘— Data extraction

Generate

Message-

Inconsistent condition pairs

examples

& Embedding
{ { Warnings about

inconsistencies
Neural Mode]l Ea———

Training Prediction

CMI-Finder: Overview

Code corpus ‘ ‘Code

Data extraction

Generate
inconsistent
examples

Message-
condition pairs

Preprocessing
& Embedding

Warnings about
Neural model Inconsistencies

Training Prediction

Generating Inconsistent Examples

Goals: Realism, diversity, scalability

Six techniques

= Mutation of operators

= Mutation of messages

= Random re-combination

s Pattern-based mutation

s Embedding-based token replacement

m LLM-based generation of messages

Generating Inconsistent Examples

if not isinstance(config, (tuple, list)):
raise TypeError (’'Unable to decode config{}’
.format (confiq))

Embedding-based token replacement

m LLM-based generation of messages

Generating Inconsistent Examples

if not isinstance(config, (tuple, list)):
"Unable to decode config{}’
.formatl (confiq))

raise

Token with a
similar embedding

if not isins@gance(config, (tuple, list)):

raise’Unable to decode config: {}’

.format (confiq))

Embedding-based token replacement

m LLM-based generation of messages

Generating Inconsistent Examples

if x==0:

raise ValueError (' x must not be zero’)

s Embedding-based token replacement

LLM-based generation of messages

Generating Inconsistent Examples

if x==0:

raise ValueError

"x must not be zero’

Generated by LLM for
a different condition

ifx==0:

raise ValueError

"x cannot be lower than 0’

s Embedding-based token replacement

LLM-based generation of messages

Neural Models

Option 1: Binary classification

condition—;

LSTM Dense : :
+ = - p(inconsistent)
encoder g layer

message 4

- 1

Neural Models

Option 2: Triplet loss

condition —»

encoder \
matching LSTM
—
message encoder
other LSTM
—
message encoder

Triplet
loss

Training-only

Distance d

Prediction-only

Warn if
d > threshold s -

Neural Models

Option 3: Text-to-text transformer

condition—;

Sy Code-T5 Eummm g

“consistent” or

_f “inconsistent”
message

Evaluation

= Training data:
600k condition-message pairs

1 50% from 40k Python projects
1 50% generated inconsistent examples

= Test data
o 10k held-out pairs (synthetic)
o Past, real-world bugs: 33 buggy + 33 fixed pairs

1 Seven previously unseen Python projects

Effectiveness: Synthetic Data

v
-
T
o
v
>
=
o
o
v
-
I—

— BILSTM, AUC=0.78
—+— (Code-T5, AUC=0.91
| Triplet AUC=0.77
0.0
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Effectiveness: Past, Real Bugs

1.0

0.9

0.8

0.7

0.6

0.5

0.4

V
-
©
o
v
>
=
S
o
v
o
I—

0.3

0.2 —— BILSTM, AUC=0.55

—«— Code-T5, AUC=0.82
Triplet AUC=0.53

0.1

0.0
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0

False Positive Rate

Effectiveness: New Bugs

21 previously unknown inconsistencies

Examples:

if not isinstance(p2, PolyElement) :
raise ValueError('pl and p2 must have
the same ring’)

if not (os.path.isdir(tf source path) and
os.path.isfile(syslibs configure path) and
os.path.isfile(workspace(path)) :
raise ValueError (' The path to the TensorFlow source
must be passed as the first argument’)

Both confirmed and fixed bugs, from Simpy and TensorFlow

10 -

1

Effectiveness: New Bugs

21 previously unknown inconsistencies

Examples: Copy & paste

mistake?
if not isinstance(p2, PolyElement) :
raise ValueError('pl and p2 must have

the same ring’)

if not (os.path.isdir(tf source path) and
os.path.isfile(syslibs configure path) and
os.path.isfile(workspace(path)) :
raise ValueError (' The path to the TensorFlow source
must be passed as the first argument’)

Both confirmed and fixed bugs, from Simpy and TensorFlow

10 -

Effectiveness: New Bugs

21 previously unknown inconsistencies

Examples: Copy & paste

mistake?
if not isinstance(p2, PolyElement) : :
raise ValueError('pl and p2 must have
the same ring’)
Message is
if not (os.path.isdir(tf source path) and incomplete
os.path.isfile(syslibs configure path) and
os.path.isfile(workspace(path)) :
raise ValueError (' The path to the TensorFlow source
must be passed as the first argument’)

Both confirmed and fixed bugs, from Simpy and TensorFlow 10 -

More Results: Paper

s Comparison wit
flake8 and GPT
bug fixing demo

m Efficiency: 10s to
1000s checks per
second

= Impact of
hyperparameters

When to Say What: Learning to Find
Condition-Message Inconsistencies

Abstract—Programs often emit natural language messages,
n logging statements or exceptions raised on unexpected
paths. To be meaningful to users and developers, the message,

er, checking for
is challenging
the conditions are of the pro-
gramming language, w iges are informally expressed
his paper presents CMI-Finder, an approach
for detecting condition-message ir s
on a neural model that tak ion and a message
s input and then predicts whether the two are consistent.
To address the problem of obtaining realistic, di and large-
scale training data, we present six techniques to generate large
examples to learn from automaticall
Moreover, we describe and compare three neural models, whicl
are based on binary classification, triplet loss, and fine-tuning,
respectively. Our evaluation applies the approach to 300K
condition-message statements extracted from 42 million lines of
Python code. ieves a precision of 78% at
a recall of 72% on a dataset of past bug fixes. Applving the
approach to the new jons of popular open-source projects
reveals 50 previously unknown bugs, 19 of which have been
confirmed by the developers so far.
1. INTRODUCTION
ograms often emit natural language me

about a ific event or an emor

ng the state of the p

with when the pr
Unfortunately, not all condition-mes

gEing unne i i . > are WO main re 18
for conditi i i . the condition may

or intends to print a

cl due to an in

[condition-m:

let

[§s

always evaluate 10 True, while the message states that

the reason for the exception

the '

Second. the me

even outright w

mg

not understand the reason for a messag
the

even modif

when ¢
nd the imp

perform a pr

ien
that
there

exceptions that develope

a tech for
further analy

of condition-m
that the inc

automa

not among

or an exception, and
ode or the input in a

Conclusions

= New problem at intersection of PL/NL.:
Detecting condition-message
inconsistencies

= Six techniques for generating likely
bugs

= Neural model effective at finding bugs

https://github.com/sola-st/CMI-Finder

12

