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Why Infer Types?

= Dynamically typed languages:

Extremely popular
= Lack of type annotations:

o Type errors
- Hard-to-understand APls
o Poor IDE support

= Gradual types to the rescue
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Why Infer Types?

= Dynamically typed languages:
Extremely popular

= Lack of type annotations:

o Type errors
- Hard-to-understand APls
o Poor IDE support

= Gradual types to the rescue

But: Annotating types is painful




Running Example

Type signature of this function?

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* ([@param breadth The breadth of the rectangle.

* @returns The area of the rectangle in meters.

*/
getArea: function(length, breadth) {
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Running Example

Type signhature of this function?

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* ([@param breadth The breadth of the rectangle.

* @returns The area of the rectangle in meters.
*/
getArea: function(length, breadth) {

NG ¢/

Identifiers and comments:
Implicit type hints



NL2Type

Idea: Predict types from natural
language information

Identifiers &_’ NL2Type
comments

Natural language in code

= Usually ignored by program analyses

_’Type |
annotations

m But: Extremely valuable



Usage Scenario 1

Predict missing type annotations

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* (@param breadth The breadth of the rectangle.

* (@returns The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {
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Usage Scenario 1

Predict missing type annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* @param {number} breadth The breadth of the rectangle.
* (@returns {number} The area of the rectangle in meters.
* May also be used for squares.
*/
getArea: function(length, breadth) {



Usage Scenario 2

Find inconsistent annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* @param {string} breadth The breadth of the rectangle.

* (@returns {number} The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {
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Usage Scenario 2

Find inconsistent annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* (@param readth The breadth of the rectangle.
* (@returns {number} The area of the rectangle in meters.
* May also be used for squares.
*/
getArea: function(length, breadth) {



Usage Scenario 3

Improve auto-completion and code
havigation

area = getArea(23, 42);
name = firstName() ;

writer.appendNumber( ??? )
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Usage Scenario 3

Improve auto-completion and code
havigation

area = getArea(23, 42);
name = firstName() ;

writer.appendNumber ( )
Rank suggestions based
on inferred types



Overview of NL2Type

Corpusof _, TR G

annotated
functions :

NL preprocessing

Data representation

Neural network training
New Likely type
function pg L2 Type model _’signature
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Data Extraction

= Lightweight AST-based static analysis

= From each function, extract:

o Names of function and parameters

o Comments associated with function,
parameters, and return type

o Types of parameters and return type



Data Extraction: Example

/** Calculates the area of a rectangle.
* @param {number} length The length of the rectangle.

* (@param {number} breadth The breadth of the rectangl

* @returns {number} The area of the rectangle in mete

*/
getArea: function(length, breadth) {
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Data Extraction: Example

/** Calculates the area of a rectangle.
* @param {number} length The length of the rectangle.

* (@param {number} breadth The breadth of the rectangl

* @returns {number} The area of the rectangle in mete

*/
getArea] functionjlength, breadth] {

}
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Data Extraction: Example

Calculates the area of a rectangle.

* @param {number} length]jThe length of the rectangle.
* (dparam {number} breadth] The breadth of the rectangl

The area of the rectangle in mete

[ *¥x

getArea: function(length, breadth) {
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Data Extraction: Example

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.

* @param breadth The breadth of the rectangl
* @returns The area of the rectangle in mete

*/
getArea: function(length, breadth) {
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NL Preprocessing

Challenges

= Huge vocabulary

m Different variants
of same word

s Uninformative
words
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NL Preprocessing

Challenges

= Huge vocabulary

m Different variants
of same word

s Uninformative
words

Addressed by

m Tokenizing identifiers:
getArea — get, area

s Lemmatizing words:
Calculates — calculate

s Removing stop words:
the, of, etc.

11
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Data Representation: NL Words

How to feed the NL data into a neural
network?

Learned
uareau — _ —’[0_32, 2.17, nnny 1-89]
embedding

= Map each word into a compact vector (length=100)
s Embeddings encode semantic similarity
= Different embeddings for identifiers and comments
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Data Representation: Types

How to represent types as vectors?

One-hot
encoding

m Encode most frequent types as one-hot vectors
(default: 1000 types)

= Infrequent types encoded as "other”

— Think: "don’t know”
13



Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

14 -
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Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

/ N\

Flag: Wordsin Wordsin Words in Words in
Return * fct. *param. ¥ fct. name T return
type comment nhames comment

Shape: 43x100
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Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

/ N

Flag: Words in Words in
Param_ + param_ =F Paddlng =F param_ == Paddlng
type comment name

Shape: 43x100
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Bi-directional RNN

Softmax Layer

T

Hidden Layer

hidden layer size: 256, batch size: 256, epochs: 12,
dropout: 20%, loss: categorical cross entropy, optimizer: Adam



Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

16 -
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Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

How confident is the model in a
prediction?
= Naive approach: Rank by probability

m Problem: Model is overconfident
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Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

How confident is the model in a
prediction?
= Better approach:

Dropout during prediction [Gal, ICML16]
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Implementation

= Data extraction: Parser of JSDoc tool
= Preprocessing: NLTK library

= Embedding learning:
Word2Vec by gensim

s Neural network:
Keras and TensorFlow
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Evaluation: Data

= 162k JavaScript files
0 JS150 corpus [Raychev, POPL16]

- Popular libraries from cdnjs.com

= 618k data points
1 31% return types, 69% parameter types

7 80% have a comment
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Evaluation: Metrics

= Precision and recall in top-k
predictions

_ predcorr

. . . predcorr
PTECtSLon = predg recall = data points

s Usefulness of inconsistencies

o Manually inspect predictions that differ from
actual annotation

19



Effectiveness of Prediction

Approach Top-1

Prec Rec F1

NL2Type 84.1 78.9 81.4

20 -

1



Effectiveness of Prediction

Approach Top-1

Top-3

Top-5

Prec Rec F1

Prec Rec F1

Prec Rec F1

NL2Type 84.1 78.9 81.4

93.0 87.3 90.1

95.5 89.6 92.5
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Effectiveness of Prediction

Approach Top-1 Top-3

Top-5

Prec Rec F1‘Prec Rec F1

Prec Rec F1

NL2Type |84.1 78.9 81.4]|93.0 87.3 90.1

Scenario:
Fully automated
annotation

95.5 89.6 92.5
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Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1‘Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5

Scenario:
Semi-automated annotation
or improved IDE support

20 -



Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2
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Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2

Use function hames and parameter
names only
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Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2

Predict k most frequent types
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Example: Correct Prediction

/** Get the appropriate anchor and focus node/offset
x pairs for IE.
* (@param {?7??} node
* @return {?7?7?}
*/
function getIEOffsets (node) ({
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Example: Correct Prediction

/** Get the appropriate anchor and focus node/offset
x pairs for IE.
* @param {DOMElement} node
* @return {object}
*/
function getIEOffsets (node) ({

21
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Effectiveness by Type
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Comparison with Prior Work

= JSNice: Structural relations between
program elements [Raychev, POPL'15]
0 Precision: 62.5% — 84.1%
o Recall: 45% — 78.9%

= DeepTyper: Seq-to-seq based on
parallel corpus [Hellendoorn, FSE'18]
0 Precision: 68.6% — 77.5% *
- Recall: 44.0% — 44.6% *

* on a TypeScript-based corpus
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Usefulness of Inconsistencies

Manual classification of top-50 warnings:

Category Total Percentage
Inconsistencies 25 90%
Non-standard type annotations 14 28%

Misclassifications 11 22%

24 -
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Usefulness of Inconsistencies

Manual classification of top-50 warnings:

Category Total Percentage
Inconsistencies 25 50%
Non-standard type annotations 14 28%
Misclassifications 11 22%

78% true positives

24 -



Examples

Inconsistency: Incorrect annotation

/*%* Utility function to ensure that object properties
* are copied by value, and not by reference
* @param {Object} target Target object to copy
* properties into
* [@param {Object} source Source object for the
* proporties to copy
* [@param {string} propertyObj Object containing
* properties names we want to loop over
*/
function deepCopyProperties(target, source, propertyOb]

25 -
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Examples

Inconsistency: Incorrect annotation

/*%* Utility function to ensure that object properties
* are copied by value, and not by reference
* @param {Object} target Target object to copy
* properties into
* [@param {Object} source Source object for the
* proporties to copy
* (@param propertyObj Object containing
* properties names we want to loop over
*/
function deepCopyProperties(target, source, propertyOb]

25 -



Examples

Non-standard type annotation

/** Tests to see if a point (%, y) is within a range
* of current Point
* @param {Numeric} x — the x coordinate of tested poi
* (@param {Numeric} y — the x coordinate of tested poi
* @param {Numeric} radius — the radius of the vicinit
*% /
near: function(x, y, radius) ({

}
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Examples

Non-standard type annotation

/** Tests to see if a point (x, y) is within a range
* of current Point

* ([@param |{Numeric}|x — the x coordinate of tested poi
* (@dparam j{Numeric}]y — the x coordinate of tested poi

* ([@param j{Numeric}jradius — the radius of the vicinit

*% /
near: function(x, y, radius) ({

}
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Examples

Incorrect prediction

/** Calculate the average of two 3d points
* @param {Point3d} a
* @param {Point3d} b
* @return {Point3d} The average, (atb)/2

*/
Point3d.avg = function(a, b) {

}

27 -
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Examples

Incorrect prediction

/** Calculate the average of two 3d points
* @param {Point3d} a
* @paraIn {P ® 1n ® 0
* @return The average, (atb)/2

*/
Point3d.avg = function(a, b) {

}

27 -



Efficiency

= Data extraction: 44ms per function
= Preprocessing: 23ms per function
= Training: 93 minutes (one-time effort)

= Prediction: 5ms per function

Intel Xeon E5-2650 processor with 48 cores, 64GB of memory,
NVIDIA Tesla P100 GPU with 16GB of memory
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Why Does It Work?

Developers use meaningful names
Source code is repetitive
Annotated code available as training data

Probabilistic models + NL = O
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Conclusions

= NL2Type: Predict types from NL info
1 F1-score of 81.4% (top-1) to 92.5% (top-5)

5 39/50 detected inconsistencies motivate a
code improvement

= Open challenges
o Integrate into development workflow

1 Long tail of types
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