NL2Type:
Inferring Types from Natural
Language Information

Rabee Sohail Malik, Jibesh Patra,
Michael Pradel
TU Darmstadt / Facebook

Why Infer Types?

= Dynamically typed languages:

Extremely popular
= Lack of type annotations:

o Type errors
- Hard-to-understand APls
o Poor IDE support

= Gradual types to the rescue

- 1

Why Infer Types?

= Dynamically typed languages:
Extremely popular

= Lack of type annotations:

o Type errors
- Hard-to-understand APls
o Poor IDE support

= Gradual types to the rescue

But: Annotating types is painful

Running Example

Type signature of this function?

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* ([@param breadth The breadth of the rectangle.

* @returns The area of the rectangle in meters.

*/
getArea: function(length, breadth) {

- 1

Running Example

Type signhature of this function?

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* ([@param breadth The breadth of the rectangle.

* @returns The area of the rectangle in meters.
*/
getArea: function(length, breadth) {

NG ¢/

Identifiers and comments:
Implicit type hints

NL2Type

Idea: Predict types from natural
language information

Identifiers &_’ NL2Type
comments

Natural language in code

= Usually ignored by program analyses

_’Type |
annotations

m But: Extremely valuable

Usage Scenario 1

Predict missing type annotations

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.
* (@param breadth The breadth of the rectangle.

* (@returns The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {

- 1

Usage Scenario 1

Predict missing type annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* @param {number} breadth The breadth of the rectangle.
* (@returns {number} The area of the rectangle in meters.
* May also be used for squares.
*/
getArea: function(length, breadth) {

Usage Scenario 2

Find inconsistent annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* @param {string} breadth The breadth of the rectangle.

* (@returns {number} The area of the rectangle in meters.

* May also be used for squares.

*/
getArea: function(length, breadth) {

- 1

Usage Scenario 2

Find inconsistent annotations

/** Calculates the area of a rectangle.
* (@param {number} length The length of the rectangle.
* (@param readth The breadth of the rectangle.
* (@returns {number} The area of the rectangle in meters.
* May also be used for squares.
*/
getArea: function(length, breadth) {

Usage Scenario 3

Improve auto-completion and code
havigation

area = getArea(23, 42);
name = firstName() ;

writer.appendNumber(???)

- 1

Usage Scenario 3

Improve auto-completion and code
havigation

area = getArea(23, 42);
name = firstName() ;

writer.appendNumber ()
Rank suggestions based
on inferred types

Overview of NL2Type

Corpusof _, TR G

annotated
functions :

NL preprocessing

Data representation

Neural network training
New Likely type
function pg L2 Type model _’signature

8

Data Extraction

= Lightweight AST-based static analysis

= From each function, extract:

o Names of function and parameters

o Comments associated with function,
parameters, and return type

o Types of parameters and return type

Data Extraction: Example

/** Calculates the area of a rectangle.
* @param {number} length The length of the rectangle.

* (@param {number} breadth The breadth of the rectangl

* @returns {number} The area of the rectangle in mete

*/
getArea: function(length, breadth) {

10 -

1

Data Extraction: Example

/** Calculates the area of a rectangle.
* @param {number} length The length of the rectangle.

* (@param {number} breadth The breadth of the rectangl

* @returns {number} The area of the rectangle in mete

*/
getArea] functionjlength, breadth] {

}

10 -

Data Extraction: Example

Calculates the area of a rectangle.

* @param {number} length]jThe length of the rectangle.
* (dparam {number} breadth] The breadth of the rectangl

The area of the rectangle in mete

[*¥x

getArea: function(length, breadth) {

10 -

Data Extraction: Example

/** Calculates the area of a rectangle.
* (@param length The length of the rectangle.

* @param breadth The breadth of the rectangl
* @returns The area of the rectangle in mete

*/
getArea: function(length, breadth) {

10 -

NL Preprocessing

Challenges

= Huge vocabulary

m Different variants
of same word

s Uninformative
words

11 -

NL Preprocessing

Challenges

= Huge vocabulary

m Different variants
of same word

s Uninformative
words

Addressed by

m Tokenizing identifiers:
getArea — get, area

s Lemmatizing words:
Calculates — calculate

s Removing stop words:
the, of, etc.

11

-2

Data Representation: NL Words

How to feed the NL data into a neural
network?

Learned
uareau — _ —’[0_32, 2.17, nnny 1-89]
embedding

= Map each word into a compact vector (length=100)
s Embeddings encode semantic similarity
= Different embeddings for identifiers and comments

12

Data Representation: Types

How to represent types as vectors?

One-hot
encoding

m Encode most frequent types as one-hot vectors
(default: 1000 types)

= Infrequent types encoded as "other”

— Think: "don’t know”
13

Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

14 -

1

Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

/ N\

Flag: Wordsin Wordsin Words in Words in
Return * fct. *param. ¥ fct. name T return
type comment nhames comment

Shape: 43x100

14 -

Training the Neural Network

Type as one-hot vector

’

Recurrent neural network

Sequence of embeddings of NL info

/ N

Flag: Words in Words in
Param_ + param_ =F Paddlng =F param_ == Paddlng
type comment name

Shape: 43x100

14 -

Bi-directional RNN

Softmax Layer

T

Hidden Layer

hidden layer size: 256, batch size: 256, epochs: 12,
dropout: 20%, loss: categorical cross entropy, optimizer: Adam

Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

16 -

1

Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

How confident is the model in a
prediction?
= Naive approach: Rank by probability

m Problem: Model is overconfident

16 -

Prediction

Softmax: Probabilities of different types

’

Recurrent neural network

Sequence of embeddings of NL info

How confident is the model in a
prediction?
= Better approach:

Dropout during prediction [Gal, ICML16]

16 -

Implementation

= Data extraction: Parser of JSDoc tool
= Preprocessing: NLTK library

= Embedding learning:
Word2Vec by gensim

s Neural network:
Keras and TensorFlow

17

Evaluation: Data

= 162k JavaScript files
0 JS150 corpus [Raychev, POPL16]

- Popular libraries from cdnjs.com

= 618k data points
1 31% return types, 69% parameter types

7 80% have a comment

18

Evaluation: Metrics

= Precision and recall in top-k
predictions

_ predcorr

. . . predcorr
PTECtSLon = predg recall = data points

s Usefulness of inconsistencies

o Manually inspect predictions that differ from
actual annotation

19

Effectiveness of Prediction

Approach Top-1

Prec Rec F1

NL2Type 84.1 78.9 81.4

20 -

1

Effectiveness of Prediction

Approach Top-1

Top-3

Top-5

Prec Rec F1

Prec Rec F1

Prec Rec F1

NL2Type 84.1 78.9 81.4

93.0 87.3 90.1

95.5 89.6 92.5

20 -

Effectiveness of Prediction

Approach Top-1 Top-3

Top-5

Prec Rec F1‘Prec Rec F1

Prec Rec F1

NL2Type |84.1 78.9 81.4]|93.0 87.3 90.1

Scenario:
Fully automated
annotation

95.5 89.6 92.5

20 -

Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1‘Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5

Scenario:
Semi-automated annotation
or improved IDE support

20 -

Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2

20 -

Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2

Use function hames and parameter
names only

20 -

Effectiveness of Prediction

Approach Top-1 Top-3 Top-5

Prec Rec F1|Prec Rec F1|Prec Rec F1

NL2Type 84.1 78.9 81.4| 93.0 87.3 90.1| 95.5 89.6 92.5
No comm. 72.3 68.3 70.3| 86.6 81.8 84.1| 91.4 86.3 88.8

Baseline 18.517.3 17.9|49.0 46.0 47.4| 66.3 62.3 64.2

Predict k most frequent types

20 -

Example: Correct Prediction

/** Get the appropriate anchor and focus node/offset
x pairs for IE.
* (@param {?7??} node
* @return {?7?7?}
*/
function getIEOffsets (node) ({

21 -

Example: Correct Prediction

/** Get the appropriate anchor and focus node/offset
x pairs for IE.
* @param {DOMElement} node
* @return {object}
*/
function getIEOffsets (node) ({

21

-2

Effectiveness by Type

string
number
boolean
array
object
function
integer
element
observable
mixed

Q
-
o
O
n
—i
L

50000 100000
Number of points

Comparison with Prior Work

= JSNice: Structural relations between
program elements [Raychev, POPL'15]
0 Precision: 62.5% — 84.1%
o Recall: 45% — 78.9%

= DeepTyper: Seq-to-seq based on
parallel corpus [Hellendoorn, FSE'18]
0 Precision: 68.6% — 77.5% *
- Recall: 44.0% — 44.6% *

* on a TypeScript-based corpus

23

Usefulness of Inconsistencies

Manual classification of top-50 warnings:

Category Total Percentage
Inconsistencies 25 90%
Non-standard type annotations 14 28%

Misclassifications 11 22%

24 -

1

Usefulness of Inconsistencies

Manual classification of top-50 warnings:

Category Total Percentage
Inconsistencies 25 50%
Non-standard type annotations 14 28%
Misclassifications 11 22%

78% true positives

24 -

Examples

Inconsistency: Incorrect annotation

/*%* Utility function to ensure that object properties
* are copied by value, and not by reference
* @param {Object} target Target object to copy
* properties into
* [@param {Object} source Source object for the
* proporties to copy
* [@param {string} propertyObj Object containing
* properties names we want to loop over
*/
function deepCopyProperties(target, source, propertyOb]

25 -

1

Examples

Inconsistency: Incorrect annotation

/*%* Utility function to ensure that object properties
* are copied by value, and not by reference
* @param {Object} target Target object to copy
* properties into
* [@param {Object} source Source object for the
* proporties to copy
* (@param propertyObj Object containing
* properties names we want to loop over
*/
function deepCopyProperties(target, source, propertyOb]

25 -

Examples

Non-standard type annotation

/** Tests to see if a point (%, y) is within a range
* of current Point
* @param {Numeric} x — the x coordinate of tested poi
* (@param {Numeric} y — the x coordinate of tested poi
* @param {Numeric} radius — the radius of the vicinit
*% /
near: function(x, y, radius) ({

}

26 -

Examples

Non-standard type annotation

/** Tests to see if a point (x, y) is within a range
* of current Point

* ([@param |{Numeric}|x — the x coordinate of tested poi
* (@dparam j{Numeric}]y — the x coordinate of tested poi

* ([@param j{Numeric}jradius — the radius of the vicinit

*% /
near: function(x, y, radius) ({

}

26 -

Examples

Incorrect prediction

/** Calculate the average of two 3d points
* @param {Point3d} a
* @param {Point3d} b
* @return {Point3d} The average, (atb)/2

*/
Point3d.avg = function(a, b) {

}

27 -

1

Examples

Incorrect prediction

/** Calculate the average of two 3d points
* @param {Point3d} a
* @paraIn {P ® 1n ® 0
* @return The average, (atb)/2

*/
Point3d.avg = function(a, b) {

}

27 -

Efficiency

= Data extraction: 44ms per function
= Preprocessing: 23ms per function
= Training: 93 minutes (one-time effort)

= Prediction: 5ms per function

Intel Xeon E5-2650 processor with 48 cores, 64GB of memory,
NVIDIA Tesla P100 GPU with 16GB of memory

28

Why Does It Work?

Developers use meaningful names
Source code is repetitive
Annotated code available as training data

Probabilistic models + NL = O

29

Conclusions

= NL2Type: Predict types from NL info
1 F1-score of 81.4% (top-1) to 92.5% (top-5)

5 39/50 detected inconsistencies motivate a
code improvement

= Open challenges
o Integrate into development workflow

1 Long tail of types

30

