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Abstract—Android applications, or apps, provide useful fea-
tures to end-users, but many apps also contain malicious behav-
ior. Modern malware makes understanding such behavior chal-
lenging by behaving maliciously only under particular conditions.
For example, a malware app may check whether it runs on a
real device and not an emulator, in a particular country, and
alongside a specific target app, such as a vulnerable banking
app. To observe the malicious behavior, a security analyst must
find out and emulate all these app-specific constraints. This paper
presents FuzzDroid, a framework for automatically generating
an Android execution environment where an app exposes its
malicious behavior. The key idea is to combine an extensible set of
static and dynamic analyses through a search-based algorithm
that steers the app toward a configurable target location. On
recent malware, the approach reaches the target location in 75%
of the apps. In total, we reach 240 code locations within an
average time of only one minute. To reach these code locations,
FuzzDroid generates 106 different environments, too many for a
human analyst to create manually.

I. INTRODUCTION

Android is the most popular platform for mobile devices1

and there are millions of applications, or apps. Unfortunately,
the platform attracts not only benign but also malicious apps.
Such malware tries to steal the user’s sensitive information or
money, e.g., by sending SMS messages to costly premium-rate
numbers without the user’s consent.

To avoid being detected as malware through automated or
manual analysis, many malware apps exhibit their malicious-
ness only when being executed in a particular environment.
For example, some apps check whether they are running
in an emulator or another analysis environment, and behave
benignly in these cases. Other malware apps target specific
countries and remain harmless unless the SIM card in the
victim’s phone is registered in one of the target countries. Yet
another kind of malware targets devices with a specific app
installed, such as a vulnerable banking app.

These environment dependencies make it hard for dynamic
analyses, such as TaintDroid [13], DroidScope [42], and
AppsPlayground [34] to detect malware because an arbitrary
execution is likely to be benign. While static analyses, such as
AndroidLeaks [16], FlowDroid [4] or DroidSafe [19] do not
have this limitation, they usually suffer from false positives
and must be complemented by dynamic approaches or manual
investigation. A human security analyst then faces the same

1http://www.idc.com/tracker/showproductinfo.jsp?prod id=37

challenges as a dynamic analysis, e.g., when debugging an
obfuscated app with non-trivial environment dependencies.
Due the large number of environment properties in Android
(SIM country code, mobile network code, location, presence
of apps and files on the phone, etc.), it is practically infeasible
to simply try all possible environments.

Recent work [40] proposes to generate input for malware
apps by modifying the values provided by the device to
the app. Unfortunately, the approach relies on a limited set
of techniques for finding such inputs and does not support
apps containing anti-static analysis techniques. As a result,
the approach fails to generate an appropriate environment
for many current malware apps. Furthermore, the approach
involves significant human effort, making it unsuitable for
automatically analyzing a large number of apps.

This paper presents FuzzDroid2, a framework for automat-
ically generating an Android execution environment where an
app exposes its malicious behavior. The main idea is to fuzz
the values that the app obtains when interacting with its envi-
ronment through an extensible set of static and dynamic anal-
yses that provide possible values. FuzzDroid chooses among
these values using an evolutionary algorithm-based search that
leads the app to a specified target location. If successful, the
approach reports an environment sufficient to reach the target
location. For example, a security analyst may specify as target
all locations that trigger potentially malicious behavior, such as
sending SMS messages or aborting incoming SMS messages.
The environment reported by FuzzDroid enables the analyst
to understand the maliciousness of the app. Furthermore, it
enables a dynamic analysis to further investigate the app’s
behavior, e.g., for automated classification of apps.

We evaluate FuzzDroid with 209 state-of-the-art malware
apps. The approach effectively reaches a target location in
75% of these apps, while requiring only one minute per target
location, on average. To reach these targets, FuzzDroid gener-
ates 106 different environments, which contain four different
values, on average. These results show that simply guessing
arbitrary combinations of environment values is very unlikely
to reach a specific target.

In summary, this paper contributes the following:
• A multi-analysis framework to generate Android environ-

ments that expose otherwise hidden malicious behavior.

2Source code available at https://github.com/srasthofer/FuzzDroid

http://www.idc.com/tracker/showproductinfo.jsp?prod_id=37
https://github.com/srasthofer/FuzzDroid


1 String hashValue = ”389d90db090f0f0303030030d98676ie03”
2 / / called when an SMS message arr ives
3 public void onReceive(Context c , Intent in tent ) {
4 String smsMessage = intent . getMessageBody() ;
5 / / checks content of SMS message
6 i f (smsMessage . startsWith (”ak40 1”) {
7 String certif icateHash = this . getCer t i f ica te ( ) . toString ( ) ;
8 / / in tegr i ty check whether the APK got modified
9 i f ( cert if icateHash . equals (hashValue) ) {

10 / / get MCC and MNC codes
11 String mobileOperator = getNetworkOperator ( ) ;
12 File encryptedFile = readFileFromStorage ( ) ;
13 File decryptedFile = decryptFile ( encryptedFile ) ;
14 boolean containsMobileOp = false ;
15 Reader bf = new Reader( decryptedFile ) ;
16 String l ine ;
17 / / checks whether f i l e contains mobile operator
18 while ( ( l ine = br . readLine ( ) ) != null ) {
19 i f ( l ine . equals ( mobileOperator ) ) {
20 containsMobileOp = true ;
21 break ;
22 }
23 }
24 / / targeted attack against specif ic network
25 i f (containsMobileOp) {
26 / / dynamic class loading , expects a dex f i le ,
27 / / even though f i l e suffix i s . db
28 DexClassLoader dcl = new DexClassLoader(”anserverb .db”) ;
29 Class clazz = dcl . loadClass (”BaseABroadcastReceiver”) ;
30 Method method = clazz . getMethod(”onStart” , Intent . class ) ;
31 boolean returnValue = (boolean ) method . invoke ( intent ) ;
32 i f ( returnValue == false ) {
33 / / target location : aborts delivery message
34 this . abortBroadcast ( ) ;
35 }}}}}

Fig. 1. Motivating example: Incoming SMS messages are aborted only under
certain circumstances.

• A set of static and dynamic analyses that provide values
for circumventing various checks in malware apps.

• A search-based fuzzing algorithm that selects environ-
ment values to steer an app toward a target location.

• Empirical evidence that the approach is efficient and
effective for current malware apps, and that it clearly
outperforms the closest existing approach.

II. OVERVIEW AND EXAMPLE

This section illustrates several key challenges for reaching a
particular target location in a state-of-the-art malware app and
outlines how we address these challenges. Figure 1 shows a
motivating example, which we reverse-engineered from several
real-world Android malware apps from the Anserver, FakeIn-
staller and BadAccents malware families. The app intercepts
SMS messages sent to the device and, under particular condi-
tions, aborts the delivery of the message to the user’s inbox.
Malware apps use such behavior, e.g, to intercept validation
messages sent to bank customers. The malware then silently
uses the validation code to perform malicious transactions.

To understand an app’s behavior, a human analyst or an
automated analysis is interested in the conditions under which
the app aborts the delivery of messages. In the example,
suppose that we mark the call to the abortBroadcast

method (line 34) as the target location and want to trigger
an execution where the app calls this method. Reaching this
target location is difficult because the app requires a particular
environment to expose its malicious behavior:

Application + Target Locations + Fuzzed APIs

Fuzzing Framework

Constant Value Provider

Symbolic Value Provider

File Value Provider

...Environment to reach 
target location

Fig. 2. Overview of the FuzzDroid approach.

• The behavior must be triggered by an incoming SMS
message that starts with a particular string (line 6).

• The app checks whether the user’s network operator is
part of a pre-defined list of targets (lines 11 to 25).

The problem is compounded by the fact that the app tries to
evade analysis:
• The app checks whether the APK file of the app has

been modified by comparing its signature against a
known value (line 9). Such checks aim at preventing
instrumentation-based dynamic analyses from modifying
the app.

• The app loads an additional class from a file, reflectively
calls a method of the loaded class, and checks whether the
method returns a particular value (lines 28 to 32). Such
behavior challenges static analyses, which cannot easily
reason about reflective methods calls, and in particular,
about methods of classes that are dynamically loaded
from an external file.

All these conditions are typically hidden in highly obfus-
cated code. A naive dynamic analysis that simply executes
the app, possibly by sending a random SMS, does not reach
the target location. Randomly fuzzing the environment is
very unlikely to be successful, because multiple non-trivial
conditions must be met. A purely static analysis cannot easily
reason about reflectively called methods, and in particular,
about methods of classes that are dynamically loaded from an
external file. Even a recently-proposed approach that combines
static and dynamic analysis [40] cannot reach the target, partly
because it cannot deal with obfuscation through reflection.

Figure 2 gives a high-level overview of the FuzzDroid
approach. Given an app, a set of target locations, and a set
of APIs to fuzz, the approach repeatedly executes the app
while fuzzing the values returned by the specified APIs, until
it finds an environment where the app reaches a target location.
To this end, the approach intercepts calls of the app to APIs
and modifies their return values to steer the app toward the
target.

An observation crucial for our work is that a single fuzzing
approach is insufficient to reach target locations in real-
world malware apps. Instead, FuzzDroid consists of a generic
framework and an extensible set of value providers. Each
value provider is a static or dynamic program analysis that
provides values to the fuzzed APIs. To decide which of the
suggested values to use for a particular API call, we present
an evolutionary algorithm-based search strategy. The strategy
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iteratively refines the selection of values based on feedback
from previous executions.

To illustrate FuzzDroid with the motivating example, sup-
pose we trigger the onReceive method with an empty SMS
message. At line 4, the approach intercepts the first call to the
environment, getMessageBody, and queries multiple analy-
ses for possible return values. Suppose that one analysis, which
extracts string constants from the app’s bytecode, suggests the
value “anserverb.db”. Another analysis, which reasons about
string operations by extracting and solving constraints, sug-
gests a value “ak40 1abc”. Suppose that FuzzDroid randomly
decides to return the value “anserverb.db”, so the onReceive

method returns without reaching the target.
Next, the approach re-executes the method and again

reaches the fuzzing decision at line 4. Suppose that now,
FuzzDroid fuzzes the getMessageBody call by returning
“ak40 1abc”, so the app takes the if branch and gets closer to
the target location. During all executions, the approach keeps
track of the distance of the executed path to the target location
and exploits this knowledge to prioritize values. For the
example, the approach may infer from the first two executions
that “ak40 1abc” leads the execution closer to the target, and
is thus more likely to reach the target than “anserverb.db”.

To eventually reach the target, FuzzDroid proceeds to fuzz
environment calls while improving the selection of fuzzed val-
ues, until it finds suitable return values for further environment
calls at lines 7, 11, 28, and 31. Key to reaching the target
is to combine values extracted with several, complementary
analyses, instead of relying on a single analysis. Sections III
and IV present our approach in more detail.

III. A TARGETED FUZZING FRAMEWORK

The FuzzDroid approach consists of a generic fuzzing
framework and an extensible set of value providers for fuzzing
particular APIs. This section presents the fuzzing framework.
At first, we present the overall algorithm of the framework
(Section III-A). Then, we describe how the framework inter-
acts with the app during the execution (Section III-B). Next,
Section III-C presents how the framework steers the execution
toward a target location by picking appropriate values for the
fuzzed APIs. Finally, we present how FuzzDroid deals with
dynamically loaded code (Section III-D).

The goal of FuzzDroid is to find an environment in which
the app reaches a target location. An Android app interacts
with its environment through API calls, such as getDeviceId
and getMessageBody. We control the environment of an app
by fixing the values returned by such API calls:

Definition 1 (Environment) An environment E : L×N→ V
is a map that assigns a value v ∈ V to a pair (l, n), where
l ∈ L is a code location and n ∈ N is a counter of how often
l has been reached in the current execution.

For example, suppose that lSMS is a call site of
getMessageBody. The environment {(lSMS , 1) 7→
”abc”, (lSMS , 2) 7→ ”def”} specifies that the call to

Algorithm 1 Find an environment E that reaches location
ltarget in app.
Input: App app, set Ltarget of target locations, and set Afuzz

of APIs to fuzz
Output: Environment E

1: Q← [app] . app queue
2: while Q 6= empty do
3: appcurrent ← Q.pop()
4: staticPreAnalysis(appcurrent)
5: instrument(appcurrent,Ltarget,Afuzz)
6: nbRuns← 0
7: T ← ∅ . trace pool
8: while nbRuns < maxRuns do
9: nbRuns← nbRuns+ 1

10: E ← initializeEnvironment(T )
11: trace← executeAndFuzz(appcurrent, E , Q)
12: T ← T ∪ {trace}
13: if targetReached(trace,Ltarget) then
14: report(E , trace)
15: exit
16: end if
17: end while
18: end while

getMessageBody returns “abc” and “def” when the location
is reached for the first and second time, respectively. We
call an environment that enables the app to reach a target
location a successful environment. Note that we only consider
a target location as reached if it can be executed without an
exception.

A. Main Algorithm

To find a successful environment, FuzzDroid repeatedly exe-
cutes the app while refining the environment, as summarized in
Algorithm 1. The outer loop of the algorithm will be explained
in Section III-D; the reader should ignore it for now and focus
on the steps starting from line 3.

At first, the algorithm statically builds an inter-procedural
control flow graph of the app, which will be used by the
subsequent steps. In addition, each value provider plugged into
the framework can perform further static analyses at this point.
Next, the framework instruments the app to keep track of the
execution path and to intercept calls to the fuzzed APIs.

The main loop of the algorithm starts at line 8. The
framework repeatedly executes the app until either a tar-
get location or a configurable maximum number of ex-
ecutions has been reached. Before each execution, func-
tion initializeEnvironment creates an environment. Sec-
tion III-C describes this step in detail. During the execution,
the instrumented app queries the framework for values to be
returned at call sites of fuzzed APIs. Section III-B presents
the executeAndFuzz function, which implements this step,
in detail. The framework summarizes each execution into an
execution trace and maintains a pool of all previous execu-
tions. After each execution, the algorithm checks whether the
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target location has been reached (line 13). If the framework
has reached the target, the algorithm returns the successful
environment. Otherwise, the algorithm refines the environment
based on the feedback obtained from previous executions and
executes the app again.

B. Executing and Fuzzing Apps

The core of FuzzDroid’s fuzzing happens in function
executeAndFuzz, called at line 11 of Algorithm 1.

1) Fuzzing the Environment: Each execution starts with
an initial environment E that maps a subset of all possible
API calls that may happen during the execution to return
values. During the execution, the app queries the framework
whenever the execution reaches a fuzzed API. If the app
requires a pair (l, n) ∈ E , i.e., a value provided by the initial
environment, then the framework returns this value. Otherwise,
the framework queries the value providers, selects one of the
provided values, and adds this value to the environment E .

To help the framework select a value, value providers
associate with each value a weight that specifies the confidence
the value provider has in the respective value. The weights also
allow for prioritizing particular value providers over others,
e.g., if one value provider is generally more precise than
others. The framework selects a value by ordering all provided
values and by picking randomly among the values with the
highest weight. To prevent the framework from permanently
rejecting values with low weight, the framework also considers
all remaining values with a low probability (10% per default)
and selects randomly among them, regardless of their weight.

During the execution of the app in the fuzzed environment,
the framework summarizes the execution into a trace:

Definition 2 (Trace) A trace t = (L, E) summarizes the
execution of an app into the list L = [l1, ..ln] of executed code
locations li ∈ L and the environment E that has triggered this
execution.

At the end of an execution, the framework adds the trace to a
trace pool. These traces have two purposes. First, the frame-
work creates future initial environments based on the traces
of previous executions, as described in detail in Section III-C.
Second, value providers can adjust the set of provided values
based on the current trace and on the trace pool. For example, a
value provider may reduce the weight based on values already
used in previous executions or provide values based on the
path taken in the current execution.

2) Triggering Events and Services: The approach described
so far assumes that the target location is reachable by simply
starting the app under a suitable environment. However, some
target locations may only be reached when the app reacts
to a particular event, such as an incoming SMS message or
a click on a button. To enable the approach to reach such
target locations, FuzzDroid programmatically triggers event
handlers. For this purpose, the framework computes a static
call graph of the app and traverses it backwards, starting at
the target location. When reaching the beginning of a callback

method, FuzzDroid checks the event for which the respective
callback is registered and triggers the event programmatically.
We directly call the respective event handler method and thus
do not need a model of the entire app and its UI. Even if
several UI interactions would be necessary to trigger the event
during normal execution, FuzzDroid directly jumps into the
handler.

3) Properties of Successful Environments: Since FuzzDroid
checks dynamically whether an environment reaches the target
location, a reported environment is guaranteed to reach the
target. In contrast, FuzzDroid guarantees neither to find a
minimal environment nor to generate a realistic environment,
i.e., a reported environment may over-constrain individual
environment values, possibly with values that may not occur
in reality. Suppose an app requires the name of the network
operator to contain the string “tele”. In this case, FuzzDroid
may report an environment that sets the network operator
to “teleFoo”, which is not an actual network operator. Our
evaluation shows that the absence of these guarantees is a
non-issue in practice, because most successful environments
specify a manageable number of values.

C. Steering Toward the Target

Since the set of possible environments that FuzzDroid
can generate is too large to explore exhaustively, it is
crucial to steer the approach toward an environment that
reaches the target location. This section explains how Fuzz-
Droid steers toward such an environment based on the trace
pool. These steps of the approach correspond to function
initializeEnvironment in Algorithm 1.

1) Measuring the Fitness of Environments: To identify
environments that are likely to lead the app to the target
location, we compute a fitness score for each environment
based on the trace that the environment yields:

Definition 3 (Fitness of an environment) Given a trace
(L, E) and a target location ltarget, the fitness of E is the
minimum distance between ltarget and any location l in L.

FuzzDroid computes the distance between code locations
as the minimum number of edges between the locations in
the inter-procedural control flow graph. The rationale for
considering the minimum distance is that traces that get close
to the target at some point during the execution are more likely
to reach the target than traces that always remain far from the
target. Other measures can be easily added to our approach.

2) Evolutionary Algorithm: Based on the fitness of envi-
ronments, an evolutionary algorithm creates new initial en-
vironments. The intuition behind the approach is that traces
which came close to the target are likely to have values in
their environment that enable the app to reach the target. The
algorithm repeatedly combines such promising environments
into new environments, until FuzzDroid reaches the target.

Algorithm 2 summarizes the main steps. Given a trace
pool T , the algorithm computes an environment E for the
next execution. At first, the algorithm checks whether the
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Algorithm 2 Create an initial environment E .
Input: Trace pool T
Output: Environment E

1: if |T | < minTraces or randomNb() < 0.25 then
2: return empty environment
3: end if
4: Esorted ← sortEnvsByFitness(T )
5: while Esorted 6= empty do
6: E1, E2 ← selectParentEnvs(Esorted)
7: E ← crossover(E1, E2)
8: if isNewEnv(E , T ) then
9: mutate(E)

10: return E
11: else
12: remove(Esorted, E1)
13: end if
14: end while
15: return empty environment

size of the trace pool exceeds a minimum value (five in our
evaluation), and otherwise, returns an empty environment. The
empty environment forces FuzzDroid to query value providers
at runtime for values, which yields additional traces to learn
from. If there are sufficiently many traces, the algorithm sorts
the environments of these traces by their fitness score. Next,
the main loop of the algorithm (lines 5 to 14) performs the
following classical steps of an evolutionary algorithm: select
two parent environments, create a new environment through a
crossover operation, and check whether this yields an environ-
ment that has not yet been used in any previous execution. If
so, the algorithm mutates the new environment and returns it.
Otherwise, the search continues until the algorithm runs out
of possible parent environments. In this case, the algorithm
returns an empty environment.

a) Selecting Parents: The selectParentEnvs function
(line 6) selects the two environments with the highest fitness.
If combining these environments yields an environment that
has already been tried before, then the algorithm removes
the current best environment from the sorted list Esorted of
environments to consider. As a result, the next iteration of the
algorithm’s main loop selects the second-best and third-best
environment as potential parents, and so on, until there are no
more possible parent environments. Note that the sorted list
Esorted from line 4 is a copy of the original trace pool T .
Therefore, the removal of the environment does not influence
the overall trace pool T .

b) Crossover: To combine two environments, FuzzDroid
first computes the union of all keys in the environments. If a
key is provided by only one environment, then this environ-
ment contributes the values. Otherwise, FuzzDroid randomly
picks which environment contributes the value.

c) Mutation: To avoid getting stuck in a local minimum,
i.e., an environment that brings the execution close to the
target but based on which the execution cannot reach the
target, the algorithm mutates the environment that results from

crossover. FuzzDroid mutates each value of an environment
with a small probability (0.1 in our evaluation). To mutate a
value for a particular API method, the approach picks from an
environment different from the two current parents a random
value provided for this API method.

D. Dealing with Dynamic Code Loading

Some malware apps hide malicious behavior by storing
the malicious code in an encrypted file and by decrypting
and loading this code at runtime. In this case, the malicious
code is unavailable to the static part of our framework. In
particular, the target location may not be visible to static
analysis, making it impossible to, e.g., compute the distance
between the target and already executed locations. FuzzDroid
deals with such packing by observing dynamically loaded code
and by rewriting the app into an app that contains this code.
To this end, FuzzDroid first takes all locations of dynamic
code loading as targets and attempts to steer the execution
to these parts of the code. When reaching a location that
dynamically loads code, the framework merges this code with
the original APK file, enabling future runs to analyze the full,
not obfuscated code. In Algorithm 1, the list Q represents
the queue of apps created by merging apps with dynamically
loaded code.

To call methods from dynamically-loaded code, apps use
the Java reflection API. As a further obfuscation step, the
method and class names often are computed or decrypted at
runtime, making them unavailable to static analysis even if all
code is available. To address this challenge, FuzzDroid applies
Harvester [32] to each app. Harvester uses a combination of
static and dynamic analysis to precisely extract the targets of
reflective method calls and replaces them with direct calls.

IV. VALUE PROVIDERS

This section presents value providers, which create values
to be returned at call sites of fuzzed APIs. A main contribution
of FuzzDroid is to automatically combine multiple value
providers.

A. Symbolic Value Provider

The way an app uses the values obtained from the en-
vironment often reveals the app’s expectations about these
values. For example, line 6 in Listing 1 reveals that the
incoming message must start with ak40_1. Likewise, a call to
sendTextMessage(nr, body) reveals that nr is expected
to be a number or to start with a “+”, e.g., “+491234”. To
exploit such information, FuzzDroid contains a constraint-
based, symbolic analysis that reasons about uses of environ-
ment values in the app. The basic idea is to encode the results
of a local, static analysis and values extracted at runtime into
constraints, and to query a constraint solver to find values for
fuzzing. The analysis computes for each call site Lfuzz of a
fuzzed API a set of values. The approach consists of three
steps explained in the following.
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1) Static data flow analysis: The approach statically rea-
sons about the uses of fuzzed values through an inter-
procedural data flow analysis. Given a set of source locations
and a set of sink locations, the analysis extracts sequences of
statements that propagate and modify values between a source
and a sink. We call such a sequence of statements a data flow
path. The sources for our analysis are all call sites of fuzzed
APIs. As sinks, we consider all call sites of a configurable set
of methods that reveal expectations by the app on values, such
as String.startsWith and sendTextMessage. The static
analysis yields a map Lfuzz → D from call sites of fuzzed
APIs to sets of data flow paths.

For example, Listing 1 yields a data flow path
that connects getMessageBody via smsMessage with
startsWith("ak40_1").

2) Constraint solving: The analysis translates the data flow
paths into constraints and solves them to obtain values to be
suggested at call sites of fuzzed APIs. At first, the approach
transforms each data flow path into SSA-form. Next, the ap-
proach translates data flow paths into conjuncts of constraints
understood by the Z3 solver [12], similar to prior work [5].
Specifically:
• The initial call of a fuzzed API method in each data flow

path is represented as a symbolic variable vfuzz .
• Any operations applied in the data flow path are trans-

lated into the corresponding Z3 constraints. For example,
we translate string operations into their corresponding
constraints provided by the Z3 string theory [44]. For
API methods not supported by the Z3 solver such as
String.split, we provide additional constraints that
model the behavior of the respective API.

• To encode the information revealed by the call of the
sink method, we translate this call into constraints. For
example, a call to sendTextMessage is encoded as
constraints that specify that the first argument provided
to the method must be a number or “+” followed by a
number.

• For data flow paths with sink methods that represent
boolean checks, such as String.equals, we generate
two conjuncts of constraints, which represent the case
that the check returns true and false, respectively.

This translation yields a map Lfuzz → C from call sites
of fuzzed APIs to sets of symbolic constraints. To compute
values for fuzzing, the approach queries the solver for each set
of constraints to obtain a concrete value for vfuzz . The solving
yields a map Lfuzz → V that assigns to each fuzzed location
a set of possible values. Whenever the framework queries the
analysis for a value to be returned at a location l ∈ Lfuzz ,
the analysis returns one of the possible values. To reduce the
computational cost of constraint solving, the analysis solves
all statically extracted constraints before executing the app for
the first time.

3) Dynamic refinement of constraints: The statically ex-
tracted constraints may contain symbolic variables in addition
to the fuzzed value vfuzz . For example, suppose an app
compares the return value of a fuzzed API to a dynamically

created string using String.equals. Without knowing the
dynamically created string, the constraint solver is unlikely to
return a suitable value for vfuzz , because it knows only that
vfuzz is equal to another symbolic variable vc. We address
this problem by enriching the statically computed constraints
with dynamically extracted values. To this end, the analysis
obtains from the framework runtime values involved in calls
of a configurable set of methods. By default, we include into
this set of methods string operations, such as String.equals
and String.substring, because these operations are par-
ticularly important in various malware apps. If an execution
produces a concrete value c for a symbolic variable vc in one of
the statically computed constraints, then the approach copies
the constraint and, in the copy, replaces the vc with c. By
solving the refined constraints, the analysis is more likely to
obtain a suitable value for vfuzz . For the above example, the
refined constraints specify that vfuzz is equal to c, making it
trivial to find a precise solution.

To reduce the cost of constraint solving, the analysis per-
forms the dynamic refinement of constraints on demand. That
is, whenever the framework queries the analysis for a value
at a location, the analysis checks whether the constraints for
this location contain any symbolic variable for which concrete
runtime values have been observed in previous executions.
Only if such runtime values exist, the analysis gives the refined
constraints to the solver. Since the results computed from
constraints that make use of dynamic values are usually more
precise than those that rely only on static data flow paths, the
approach gives them a higher weight when providing them to
the framework.

Our constraint-based analysis differs from traditional symbolic
and concolic execution [8], [9], [17], [18], [22], [36], [37]
by applying a local symbolic analysis instead of reasoning
about the entire execution path. The benefit of avoiding path
sensitivity is that our local analysis scales well to large
apps. However, the approach cannot guarantee that values
obtained from the solver will cause the app to reach the target.
For example, our analysis does not reason about which of
the two branches of a conditional leads to the target, but
instead, suggests values for both branches. Since FuzzDroid
dynamically validates whether an environment reaches the
target, the symbolic analysis does not have to provide this
guarantee. Instead, FuzzDroid iteratively selects values based
on the fitness of executed environments (Section III-C).

B. Constant Value Provider
Many apps compare runtime values against constants stored

in the code. These constants may not be directly in the
conditional but, e.g., read from variables or fields. To execute
branches guarded by such conditionals, a simple static analysis
gathers from an app’s bytecode all constants of primitive types
and strings. The value provider returns these constants when
being queried for a value of a matching type. If the app does
not contain any statically extractable constants, e.g. due to
obfuscation, the analysis returns values from a pre-defined
pool of random values.
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For the example in Figure 1, the constant value provider
helps pass by the integrity check at line 9. The value provider
extracts the hash value of the certificate at line 1 and suggests
it when the app queries the certificate hash at line 7. As part of
our future work, we plan to also take dynamically-computed
values into account, a feature that is already implemented in
the symbolic value provider (see Section IV-A).

C. File Value Provider
For some malware apps, the existence of a file, possibly con-

taining data of a particular file type, is essential for triggering
malicious behavior [33]. To prevent apps from failing when
an expected file is missing, the file value provider suggests
values for APIs that access the file system. If the accessed file
does not exist, the provider emulates the file. To this end, the
provider infers the expected file type and provides a dummy
file of the inferred type.

During the static pre-analysis, the analysis approximates the
set of expected file types using a forward data flow analysis
that follows the data flow from the file access to an API call
that reveals the expected file type. For example, a dataflow
that reaches a SQLiteDatabase.openOrCreateDatabase

calls reveals that the file is expected to be a database file. We
provide a manually assembled map between API calls and file
types. Once the type is known, a manually created dummy file
of the correct type is picked and pushed onto the phone before
the app accesses that file. If the analysis fails to statically
identify the expected file format, it tries to create a suitable
file based on the name of the accessed file.

Note that this analysis aims at providing a file with the
expected format, not a file with the expected content. Further
API calls that, e.g., read data from the file, are intercepted
separately. Other analyses such as the symbolic value provider
(Section IV-A) can then provide the values expected to be read
from the file.

D. Value Provider for Integrity Checks
Many malicious apps protect against code modifications by

validating their own integrity through a check of the app’s
certificate, which is used for signing an Android app. When
modifying the app’s bytecode, one must re-sign the app.
However, without access to the original developer’s private
key, it is practically impossible to use the same certificate for
signing the app. A common way to implement an integrity
check is to compute the hash code of the signature certificate
extracted from Android’s package manager and to compare it
to an expected value. Alternatively, an app may also use the
computed hash to decrypt data, e.g., dynamically loaded code.

To circumvent such checks, FuzzDroid contains a value
provider that fuzzes API calls that access an app’s signature.
Instead of the real certificate of the actually running app, the
value provider returns the certificate that was used to sign the
original, uninstrumented app, effectively fooling the check.

E. Primitives-as-Strings Value Provider
Java supports various API calls for data type conver-

sion, e.g., to convert a string into a numeric value via

Integer.valueOf. Such conversions give hints on the ex-
pected format of unknown data. The most common case are
boolean flags that malware apps reads from Android’s shared
preferences as strings “true” or “false”. These strings are then
converted to boolean flags that may determine whether the
target location executes. Most of the time, the behavior is
disabled by default. Only upon, e.g., a request from a remote
command-and-control server, the app enables the flag in the
file, i.e., changes the file contents to “true” in order to enable
the malicious behavior.

The primitives-as-strings value provider uses static data
flow analysis to track data flows from code loca-
tions where values are obtained (e.g., file reads or the
Properties.getProperty method) to data type conversion
methods. If the analysis is able to identify the type of the
primitive, the value provider picks a value from a pre-defined
set of random values of the correct type.

V. IMPLEMENTATION

We use Soot [39] with the Dexpler front-end for An-
droid [7] to statically analyze and dynamically instrument
the apps. For implementing data flow analyses, we build
upon FlowDroid [4]. The FuzzDroid framework runs on a
desktop computer while the app runs on an Android emulator.
Both communicate via a TCP connection, e.g., to request
environment values or to report which path is executed. To
intercept fuzzed API calls, we use a user-space hooking library
(ZHookLib3, based on the Xposed framework4).

Some malware apps contain timing bombs, i.e., actions that
are only executed after a certain time. To avoid having to wait
for this time span, we statically patch those statements during
our instrumentation phase and decrease the waiting time to a
few seconds.

VI. EVALUATION

We evaluate the effectiveness and efficiency of FuzzDroid
by applying it to 209 malicious Android apps. Our evaluation
focuses on the following research questions:
• How effective is the approach at finding an environment

that enables an app to reach a target location?
• How effective are FuzzDroid’s use of multiple analyses

and the way these analyses are combined with each other?
• How efficient is the approach?
• What do the environments generated by the approach

reveal about real-world malware?
• How does FuzzDroid compare to the best existing ap-

proach for generating inputs that steer an Android app
toward a particular location?

A. Experimental Setup

We randomly collected 300 recent malware apps from
Virustotal5 in June 2016. As target locations, we use call
sites of seven API methods related to SMS messages, e.g.,

3https://github.com/cmzy/ZHookLib
4http://repo.xposed.info/
5Online malware database: https://www.virustotal.com/
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Approach

Launch Launch
& trigger

Fuzz-
Droid

Apps with ≥ 1 target reached 31.28% 45.02% 75.12%
Target locations reached 10.48% 15.82% 62.34%
When target reached (min/avg/max):

- Executions 1/1/1 1/1.33/6 1/3.20/14
- Time to target (seconds) 3/8/18 3/19/310 3/62/1469
- Size of environment — — 0/3.69/47
- Contributing analyses — — 0/1.14/4

TABLE I
OVERVIEW OF RESULTS. FOR VALUES SUMMARIZED OVER MULTIPLE

APPLICATIONS, WE PROVIDE THE MINIMUM/AVERAGE/MAXIMUM VALUES.

sendTextMessage. Sending SMS messages and aborting
incoming SMS messages are a common threat for Android
applications [3], [29]. Out of the 300 apps, 209 apps contain
at least one target location. As environment APIs, we use
32 API methods. We run FuzzDroid on a server with 64
Intel Xeon E5-4650 CPUs running at 2.70 GHz and 1 TB
of physical memory. We configured FuzzDroid to run at most
15 executions and to start the genetic recombination after 5
runs.

B. Effectiveness in Reaching a Target Location

We evaluate the effectiveness of FuzzDroid at finding an
environment where the application reaches a target location.
Furthermore, we compare the approach to two simpler ap-
proaches: 1) simply launch the app and hope that it will reach
the target location without further intervention, and 2) launch
the app and trigger specific events, such as clicking a button
or sending an SMS message, as described in Section III-B2. In
neither of the two simpler approaches, we generate a particular
environment. Instead, if the app calls environment APIs, the
emulator’s default values are returned.

Table I shows our results. We find that running the app
under the “right” environment is crucial for reaching the
target location. The default environment of the emulator is
insufficient for most current malware. Furthermore, the results
show that FuzzDroid is effective in generating an environment
that successfully reaches the target location. In total, the
approach reaches 240 different target locations (62.34%).

In some cases, FuzzDroid fails to reach the target location.
For example, several malware apps contain malicious behavior
which is, however, not yet enabled, and thus never called.
We conjecture that the app will be updated at some point to
actually activate the malicious behavior that is already present
in the code.

C. Importance of Multi-Analysis Approach

To evaluate how much the individual analyses of FuzzDroid
contribute to the framework’s overall effectiveness, we first
evaluate the framework with all analyses enabled. Then, we
disable each analysis in turn, i.e., run the framework with all
but one analysis and then run it with a single analysis. The
result indicate how much the effectiveness decreases if this
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analysis is left out. The results in Figure 3 show that there
is no single analysis that can be left out without a negative
impact, i.e., all analyses are necessary. This shows that only
a framework supporting multiple interacting analyses such as
FuzzDroid is able to find correct execution environments for
state-of-the-art malware.

D. Efficiency

Table I shows how long FuzzDroid takes to find an environ-
ment under which the application reaches the target location.
On average, it takes 62 seconds to reach a target location. Most
of the time (75%, 46.5 seconds) is spent for executing the app.
In contrast, both instrumenting apps (5%, 3.1 seconds) and
statically analyzing apps (20%, 12.4 seconds) are secondary
for the overall time.

Figure 4 shows the number of executions required by
FuzzDroid to reach the target location. In many cases, the
target location is reached in a single execution, i.e., the
first generated environment is sufficient. For a substantial
number of apps, however, the approach tries two to seven
environments, showing that incremental fuzzing is required to
reach the target location. The maximum number of executions
needed during our evaluation is 14.

8



0 10 20 30 40 50
100

101

Environment size

#
Ta

rg
et

L
oc

at
io

ns

Fig. 5. Size of environment to reach target location.

Kind of environment values Prevalence

File access 47.97%
SIM/network operator code 16.82%
Specific incoming SMS message 10.84%
SIM operator name 5.53%
Timing bomb 4.06%
SIM country 3.16%
Integrity check 1.02%
Admin check 0.68%
Others 9.92%

TABLE II
PREVALENCE OF DIFFERENT KINDS OF ENVIRONMENT VALUES.

E. Environments Generated by FuzzDroid

1) Number and Size of Environments: The environments
required to reach a target location range from trivial en-
vironments, where simply starting the app in the default
emulator is sufficient, to complex environments with dozens
of values. Across all apps where a trivial environment is
insufficient, FuzzDroid creates 106 different successful envi-
ronments, which would be impractical to create manually by
a human analyst.

Figure 5 shows the sizes of the environments generated by
FuzzDroid. For several target locations, no particular envi-
ronment is required, i.e., the environment size is zero. For
most others, two to ten different environment values must be
combined to reach the target location, showing that FuzzDroid
is highly beneficial for a security analyst interested in trigger-
ing malicious behavior. In some cases, the environment even
consists of more than 30 values.

2) Examples of Environments: Beyond being useful for se-
curity analysts, FuzzDroid allows us to better understand how
current malware interacts with the Android environment. The
environments generated for several apps show that targeted
attacks against a particular country, network operator, etc. are
common in current malware. Table II summarizes the kinds of
values we find in the environments that reach a target location.
The following discusses several representative examples.

A very common kind of interaction with the environment
is to access information from files. Besides such file accesses,
various malware apps target particular SIM/network operators
or check the SIM country code. For example, some apps expect
SIM operator names to be “mts” or “megafon”, two prominent

network providers in Russia, or to match the regular expression
“*tele*”, as in “telecom”. We also find several malware apps
that target specific countries, either by attacking users in a
particular country or by checking that users are not located in
a particular country.

Another interesting interaction with the environment are so
called timing-bombs, where the malicious behavior only gets
executed after a specified time has passed. This technique has
been crucial for many malware samples to be accepted into
the official Google Play Store without being detected [11].
Perhaps surprisingly, relatively few of the apps in our sample
check whether the user grants the app device administration
privileges.

Packed Malware: During the evaluation we encountered
a malware app with an unusually low number of classes. Since
all API calls are obfuscated through reflection, the malicious
behavior is not directly visible. Instead, the app uses two
additional files to hide more code. The original APK file gen-
erates a new dex file responsible for unpacking the encrypted
malware. The decryption key is derived from the hash of the
certificate with which the original APK file was signed. This
dependency between certificate and decryption key is supposed
to protect the integrity of the malware against, e.g., bytecode
instrumentation. After discovering through manual inspection
that the malware may show a fake user interface asking about
credit card information, we set the showFakeDialog call
as the target location. FuzzDroid then finds an environment
that circumvents the integrity check and makes the malware
app believe that the app of “Commerzbank” (a major bank)
is opened. Only if both conditions hold, the phishing dialog
is shown. This example illustrates (1) that FuzzDroid is able
to handle applications with dynamically loaded dex files, (2)
what kind of techniques current malware uses for hiding its
malicious behavior.

F. Comparison with State of the Art Approach

IntelliDroid [40] is the conceptually closest approach to
FuzzDroid. Still, there are important differences. First, Intel-
liDroid is solely based on constraint solving and does not
support multiple analyses. Second, IntelliDroid has a different
notion of runtime values. While we consider all values that
are dynamically computed inside the app as runtime values,
IntelliDroid obtains only the current device state, such as
the current time or the registered alarm managers. Only this
information becomes part of the constraint system. Therefore,
if an app (such as the one in Listing 1) dynamically decrypts
data, this data is unavailable to IntelliDroid. Third, IntelliDroid
does not intercept API calls made within the app but relies on
externally triggered events, such as sending an SMS message.
This approach fails for the check on the mobile operator in our
example. Fourth, IntelliDroid runs the app under analysis only
once and therefore cannot exploit runtime feedback. Finally,
IntelliDroid requires a lot of manual interaction with the tool
and provides little automation.

Due to the lack of automation, we apply IntelliDroid to a
random sample of 20 of our malware apps. We pick apps that
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contain at least one target location that is not immediately
reached when starting the app or when triggering an event. In
total, IntelliDroid reaches 11% of the target locations in the
sample, whereas FuzzDroid reaches 62%. We conclude that
our approach successfully addresses important limitations of
IntelliDroid that prevent the state-of-the-art tool from reaching
various target locations.

VII. LIMITATIONS

FuzzDroid currently assumes that it is sufficient to trigger
a single path to reach the target location. For example, if
an app requires a first SMS message to set a flag and
then only executes the malicious code when a second SMS
message is received after the flag has been set, FuzzDroid
cannot trigger the malicious behavior. Analyzing dependencies
between multiple events is subject to future work.

Our current research prototype is based on an intra-
component callgraph generated with the help of Flow-
Droid [4]. To detect environment checks that are distributed
across multiple components, FuzzDroid must be extended
with inter-component analysis tools such as EPICC [30] for
callgraph construction or ICCTA [24] for data flows.

VIII. RELATED WORK

a) Malware Analysis: In X-Force, Peng et al. [31] pro-
pose a binary analysis engine which forces the execution
of a program into specific branches. Their approach makes
the program agnostic of the execution environment, revealing
hidden behavior in malware. GoldenEye [41] exploits several
virtual environments executed in parallel. The tool adaptively
switches the analysis environment at runtime through a spe-
cially designed speculative execution engine. Moser et al. [28]
tackles a similar problem for x86 code as we do in our work for
Android. They use a dynamic approach in combination with
system snapshots of the execution to execute code statements
that produce a malicious behavior. To explore different paths,
the program state is reset to earlier snapshots. The values on
which the conditionals depend are updated to force different
branches when the execution is resumed.

Kolbitsch [23] proposes a hybrid approach that combines
a light-weight form of static symbolic execution with an
instrumentation of additional code statements for a multi-path
execution on JavaScript code. Abraham et al. [1] also propose
a hybrid approach for reaching a certain target location. Their
approach has an success rate of 28% and less on current
Android malware and does not report information about the
environment. TriggerScope [15] is a pure static approach that
relies on symbolic execution for extracting environment infor-
mation. Being purely static, their approach does not support
dynamically loaded code and cannot exploit runtime feedback.
FuzzDroid in contrast is a hybrid approach and the generated
environments are validated dynamically.

b) Test Generation and Search-based Testing: Symbolic
and concolic testing generate inputs by reasoning about path
constraints [8]–[10], [17]. In contrast, FuzzDroid applies sym-
bolic reasoning to individual data flow paths, which improves

scalability. EvoDroid [25] also uses evolutionary testing for
Android apps. Mirzaei et al. [27] create an Android system
model in Java Pathfinder [20] to apply symbolic execution to
the whole app for increasing test coverage. Thummalapenta et
al. [38] generating method call sequences through a combined
dynamic-static analysis. Similar to our approach, Malburg
and Fraser [26] combine symbolic execution based on Java
Pathfinder with a genetic algorithm that negates individual
conditions during mutation. All these approaches aim for high
coverage, whereas FuzzDroid aims at reaching a particular
target location.

Jensen et al. [21] concolically execute events handlers to
find sequences of handlers that reach a given target. In contrast
to their work, FuzzDroid reasons about the environment of
an app, not the order of triggered events. Baars et al. [6]
combine symbolic execution with dynamic analysis to improve
the efficiency of search-based testing. Applying their fitness
function to FuzzDroid is interesting research for future work.
Extracting constants from the bytecode is a promising seeding
strategy in search-based software testing, as shown by previous
research [2], [14]. However, for current Android malware
applications, this seeding strategy must be combined with
other value providers, as we have shown.

DroidFuzzer [43] also applies fuzzing to Android but creates
data for activities that accept MIME data, such as media data.
A related approach [35] fuzz tests the messages provided to
an app via intents. Both techniques aims at triggering bugs,
whereas FuzzDroid provides information for a security analyst.

IX. CONCLUSIONS

This paper presents FuzzDroid, a framework for automat-
ically generating an environment under which an Android
malware app exposes its otherwise hidden malicious behavior.
The framework uses an extensible set of value providers to
fuzz the return values of APIs used by the app to interact with
its environment. Given a set of target locations, an evolutionary
algorithm-based search strategy steers the app to a target by
combining suitable environment values. Our evaluation with
209 real-world malware apps shows that FuzzDroid effectively
and efficiently reaches target locations and that it outperforms
the closest existing approach.
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