Efficient Detection

of

Thread Safety Violations

Via
Coverage-guided
Generation of Concurrent Unit Tests

Ankit Choudhary Shan Lu Michael Pradel

... THE UNIVERSITY OF

S8 TECHNISCHE _
<y CHICAGO

o 6
%~ DARMSTADT SoftwarelLab

Thread Safety

“A class is thread-safe if it behaves correctly when accessed
from multiple threads, regardless of the scheduling or
interleaving of the execution of those threads by the runtime
environment, and with no additional synchronization or

coordination on the part of the calling code.”

- Java Concurrency in Practice

Thread Safety Bug - Example

1 public class IntegerlList {

2 protected int array[] = ...;

3 protected int index = 0;

4 public synchronized void add(int num) {

5 if(array '= null) {

6 if (index == array.length) ({
7 resize () ;

8 }

9 }

10 }
11 public void close() {
12 array = null;
13 }

Thread Safety Bug - Example

1 public class IntegerlList {

2 protected int array[] = ...;

3 protected int index = 0;

4 public synchronized void|add(int num) {

5 if(array '= null) {

6 if (index == array.length) ({
7 resize () ;

8 }

9 }

10 }
11 public void|close()! {
12 array = null;
13 }

Thread 1 Thread 2

Thread Safety Bug - Example

1 public class IntegerlList {

2 protected int array[] =
3 protected int index = 0;
4 public synchronized void
5 if(array '= null) {
6
7
8
9

num) {

if (index == array.length) ({
resize () ;
}
}

10 }
11 public void|close()| {
12 array = null;
13 }

Thread 1 Thread 2

Thread Safety Bug - Example

1 public class IntegerlList {

2 protected int array[] =
3 protected int index = 0;
4 public synchronized void num) {

5 if(array '= null) {

6 if (index == array.length) ({
7 resize() ;

8
9

}
}

10 }
11 public void close() ({
12 array = null;
13 }

Thread 1 Thread 2

Thread Safety Bug - Example

public class IntegerList ({

protected int array[] = ...;
protected int index = 0;
public synchronized void add(int num) {
if(array '= null) {
if (index == array.length) ({
resi

}
}

oo _ NullPointerException
public void close() {

array = null;

}

Thread 1 Thread 2

Finding Concurrency Bugs

Generation of
Multithreaded Tests

Exploration of
Low-level Interleavings

Finding Concurrency Bugs

Generation of

Multithreaded Tests

Finding Concurrency Bugs

Generation of
Multithreaded Tests

Random Analysis-based

Finding Concurrency Bugs

Generation of
Multithreaded Tests

Random Analysis-based

+ Simple and inexpensive.

- Repeatedly generates same test.

- Does not consider locks /

synchronization (use static
analysis).

Finding Concurrency Bugs

Generation of
Multithreaded Tests

Random

+ Simple and inexpensive.

- Repeatedly generates same test.

- Does not consider locks /

synchronization (use static
analysis).

Analysis-based

Tests directed towards finding bug.
Costly (time).

Focuses on a particular type of bug

(race conditions, atomicity
violations, or deadlocks).

This Talk

Generation of
Multithreaded Tests

Our Approach
+ Simple and inexpensive. + Tests directed towards finding-bug
not yet generated ones.
=—Repeatedly-generates-same-test.—

- Does not consider locks/ all types
_synchronization-{use static + Focuses onra-paiticutair-type of bug
-ahalysis). Dynamically assigns (race-conditions,-atomicity

lower priority to methods with vieclations,ordeadlocks) that can

locks / synchronization. lead to exception or deadlock.

This Talk

Generation of
Multithreaded Tests

Our Approach

+ Simple and inexpensive. + Tests directed towards finding-bug
not yet generated ones.

Best of Both Worlds! e of bug

-ahalysis). Dynamically assigns (race-conditions,atomicity
lower priority to methods with vielations,-or-deadlocks) that can

locks / synchronization. lead to exception or deadlock.

A Concurrent Test

A Concurrent Test

IntegerList il IntegerList() ;

A Concurrent Test

IntegerList il = new IntegerList();

O

/ Thread 1 Thread 2 \

A Concurrent Test

IntegerList il = new IntegerList();

O

/ Thread 1 Thread 2 \

il.add (5) ; il .close();
il.close(); il.add(3);

A Concurrent Test

IntegerList il = new IntegerList();

D@

/ Thread 1 Thread 2 \

il.add (5) ; il .close();
il.close(); il.add(3);

A Concurrent Test

IntegerList il = new IntegerList();

D@

/ Thread 1 Thread 2 \
il.add(5) ; ') il.close();
il.close(); H il.add(3);

How do we select methods to test in suffixes ?

CovCon - Overview

Class Under Test

Concurrent Method Pairs

Method-pair

Prioritizer

Coverage
Detector

v
Test Generator Tost

Exception /

Deadlock

Success

False Positive

Test Validator

True Positive

Thread Safety
Bug

Concurrent Method Pairs

* Set of all pairs of public methods in a class and its
super-class.

public class IntegerList ({ MM‘
add add

public synchronized void add(int num) { }

add close
public void close() { } close close

getIndex getIndex
public synchronized int getIndex(int num) { }

add getIndex

} close getIndex

Test Generator

 Generates test using the selected method pair.

Method 1 | Method2 |
IntegerList il = new IntegerList(); add add
BDIE T

Thread 1 Thread 2 close close

getIndex getIndex

il.add(3); il.close(); add getIndex

il.close(); il.add(5); close getIndex

Coverage Detector

Analyze trace files generated in Test Executor.

Method 1 | Method 2| Covered Count _

add

add
close
getIndex
add

close

Trace File 1

add
close
close
getIndex
getIndex
getIndex

o O O o o o

Trace File 2

10

Coverage Detector

Start:add

Analyze trace files generated in Test Executor.

Method 1 | Method 2| Covered Count _

add

add
close
getIndex
add

close

Trace File 1

Time:1

add
close
close
getIndex
getIndex
getIndex

o O O o o o

Trace File 2

10

Coverage Detector

 Analyze trace files generated in Test Executor.

Method 1 | Method 2| Covered Count _

add

add
close
getIndex
add

close

Trace File 1

Start:add Time:1

add
close
close
getIndex
getIndex
getIndex

o O O O O o

Trace File 2

Start:close

Time:?2

10

Coverage Detector

 Analyze trace files generated in Test Executor.

Method 1 | Method 2| Covered Count _

add add 0
add Jelose |1
close close 0
getIndex getIndex 0
add getIndex 0
close getIndex 0
Trace File 1 Trace File 2
Start:add Time:1 Start:close

End:add Time:3

Time:?2

10

Coverage Detector

Analyze trace files generated in Test Executor.

Method 1 | Method 2| Covered Count _

add

add

close

getIndex

add

close

Trace File 1

Start:add Time:
End:add Time:
Start:close Time:
End:close Time:

o P>~ W

add
close
close
getIndex
getIndex
getIndex

o O O »r N O

Trace File 2

Start:close
End:close
Start:add
End:add

Time:
Time:
Time:
Time:

~ o U1 N

10

Prioritizer

Prioritizer

* Tried Count (T): Number of times a method-pair appears
in concurrent suffixes

Prioritizer

* Tried Count (T): Number of times a method-pair appears
in concurrent suffixes

 Covered Count (C): Number of times a method-pair is
executed concurrently

Prioritizer

* Tried Count (T): Number of times a method-pair appears
in concurrent suffixes

 Covered Count (C): Number of times a method-pair is
executed concurrently

 Coverage Score (S): Lower score means higher priority

Prioritizer

* Tried Count (T): Number of times a method-pair appears
in concurrent suffixes

 Covered Count (C): Number of times a method-pair is
executed concurrently

 Coverage Score (S): Lower score means higher priority

S = max(abs(7- C), 1) * max(T, 1)

11

A Few Executions Later ...

Lower Coverage Score = Higher Priority

12

Method 1 m Tried Count (7) | Covered Count (C) | Coverage Score (S)
add add 6 0 36

add
close
getIndex
add

close

close
close
getIndex
getIndex
getIndex

13

14

11

12

26
32
36
36
28

S = max(abs(7- C), 1) * max(T, 1)

12

A Few Executions Later ...

Method 1 m Tried Count (7) | Covered Count (C) | Coverage Score (S)

close

close close

close getIndex

S = max(abs(7- C), 1) * max(T, 1)

12

A Few Executions Later ...

Maybe protected by locks / synchronization

Method 1 m Tried Count (7) | Covered Count (C) | Coverage Score (S)

close

close close

close getIndex

S = max(abs(7- C), 1) * max(T, 1)

12

A Few Executions Later ...

Method 1 m Tried Count (T) | Covered Count (C) Coverage Score (S)
E____

close close

getIndex getIndex 6 0 36
add getIndex 6 0 36
close getIndex 14 12 28

S = max(abs(7- C), 1) * max(T, 1)

12

A Few Executions Later ...

Select add and close

Method 1 m Tried Count (T) | Covered Count (C) Coverage Score (S)
E-___

close close

getIndex getIndex 6 0 36
add getIndex 6 0 36
close getIndex 14 12 28

S = max(abs(7- C), 1) * max(T, 1)

13

Executor and Validator

Class Under Test

Concurrent Method Pairs

Prioritizer

Method-pair

v
Test Generator Tost

Coverage
Detector

Success False Positive

Exception /
Deadlock

Test Validator

True Positive

Thread Safety
Bug

Fully Automatic and Precise Detection of Thread Safety Violations. Michael Pradel and Thomas R. Gross (PLDI 2012).

Evaluation - Setup

18 thread-safe classes (StringBuffer, Vector, XStream, etc).
e Each benchmark is executed 10 times.
e Timeout: 1 hour for each execution of a benchmark.

 Approaches evaluated:
= CovCon'®E17: Coverage-based Approach (this talk).
= ConTeGePP!"12: Random-based Approach.
= NainomOOPSLA™14; FSE'15; PLDI'15: Sequential Tests based Approach.
= AutoConTest!CSE'16: Coverage-based Approach.

No. of benchmarks

Bug Finding Capability

18
16
14
12
10

O N B O O

CovCon
(This Talk)

17
15
3
I 4

ConTeGe

Nainom

AutoConTest

15

Speedup: Time to Find Bug

Speedup over existing approaches

4X

3X

2X

ConTeGe mnmm Nainom = AutoContest mmmmm

1 23 456 7 8 9101112131415161718
Classes under test

16

Speedup: Time to Find Bug

Speedup over existing approaches

4x

3X

2X

ConTeGe mnmm

Nainom = AutoContest

AN FUNTTANN Lk

1 23 456 7 8 9101112131415161718
Classes under test

16

Speedup: Time to Find Bug

Speedup over existing approaches

4x

3X

2X

ConTeGe mnmm

Nainom = AutoContest

N DENTTHNN Lk

I JLTEANLIN,

1 23 456 7 8 9101112131415161718
Classes under test

16

Conclusion

* Simple. Effective. Efficient.
* |nexpensive coverage analysis.
e Tests generated towards infrequently covered method pairs.

 Dynamically assigns lower priority to method pairs which are
synchronized/lock protected.

CovCon - Overview

Class Under Test

Concurrent Method Pairs

Prioritizer

Method-pair

v
Test Generator Tost

Exception /

Coverage
Detector

Luccess False Positive

Deadlock

18

Test Validator

True Positive

Thread Safety
Bug

Benchmarks
i Lo coienme oo wetessin o

O 00 N o u b W N P

e = T W S = G ST Y
0 N o uu W N R, O

BufferedInputStream
Logger
SynchronizedMap
ConcurrentHashMap
StringBuffer
TimeSeries

XYSeries

NumberAxis
PeriodAxis

XYPlot

Day
PerUserPoolDataSource
SharedPoolDataSource
XStream

Vector

Vector

IntRange

AsMap

JDK 1.1

DK 1.4.1

JDK 1.4.2

JDK 1.6.0

JDK 1.6.0
JFreeChart 0.9.8
JFreeChart 0.9.8
JFreeChart 0.9.12
JFreeChart 1.0.1
JFreeChart 1.0.9
JFreeChart 1.0.13
CommonsDBCP 1.4
CommonsDBCP 1.4
XStream 1.4.1

JDK 1.1.7

JDK 1.4.2

Apache Commons 2.4

Google Commons 1.0

Atomicity Violation
Atomicity Violation
Deadlock
Atomicity Violation
Atomicity Violation
Race Condition
Race Condition
Atomicity Violation
Race Condition
Race Condition
Race Condition
Race Condition
Race Condition
Race Condition
Atomicity Violation
Atomicity Violation
Atomicity Violation

Atomicity Violation

44
15
22
52
41
25
110
125
217
26
65
51
66
24
45
26
15

19

990
120
253
1378
861
325
6105
7875
23653
351
2145
1326
2211
300
1035
351
120

Coverage Measurement Cost

Test Validator ms

Coverage Detector + Prioritizer pmm
Test Executor ms

Test Generator s

80 []
60
40
20
0

1234567 8 9101112131415161718
Classes under test

Percentage of overall time

20

21

Coverage-driven

XYPlot PerUserPoolDataSource

<70 | : 20 [:
70 | . <80 .
260 - ST ;
o050 7] 8750 - -
E40 — . 940 - _
230 - o
o 30 - F 7
320 | - 820 L F _
10 | . 10 |+« _
0 P ‘ 0t
1 10 100 1000 10000 1 10 100 1000 10000

Time (seconds) Time (seconds)

