
Poster: Automatically Fixing Real-World
JavaScript Performance Bugs

Marija Selakovic and Michael Pradel
Department of Computer Science

TU Darmstadt, Germany
m.selakovic89@gmail.com, michael@binaervarianz.de

Abstract—Programs often suffer from poor performance that
can be fixed by relatively simple changes. Currently, developers
either manually identify and fix such performance problems, or
they rely on compilers to optimize their code. Unfortunately, man-
ually fixing performance bugs is non-trivial, and compilers are
limited to a predefined set of optimizations. This paper presents
an approach for automatically finding and fixing performance
bugs in JavaScript programs. To focus our work on relevant
problems, we study 37 real-world performance bug fixes from
eleven popular JavaScript projects and identify several recurring
fix patterns. Based on the results of the study, we present a
static analysis that identifies occurrences of common fix patterns
and a fix generation technique that proposes to transform a
given program into a more efficient program. Applying the fix
generation technique to three libraries with known performance
bugs yields fixes that are equal or equivalent to those proposed
by the developers, and that lead to speedups between 10% and
25%.

I. INTRODUCTION

Many programs suffer from performance bugs, i.e., source
code locations where a relatively simple change can signif-
icantly speedup the program [1]. Addressing such problems
requires to identify performance bottlenecks, carefully study
potential root causes, and to experiment with code transforma-
tions until one is found that leads to a significant performance
improvement. Because this process is time-consuming and
cumbersome, developers often rely on compiler optimiza-
tions, which however, are limited to a predefined set of
transformations that can certainly be applied in a semantics-
preserving way. This situation suggests that techniques for
automatic detection and repair of performance bugs will be
of considerable benefit.

This paper focuses on performance bugs in JavaScript,
which has become one of the most popular programming
languages. We address the problem in two steps: First, we
perform an empirical study of real-world performance bug
fixes to identify recurring fix patterns. Second, we present a
static analysis and code transformation technique that proposes
performance-improving code changes. The analysis searches
for occurrences of performance bug patterns identified in the
study and tries to apply the fix pattern. To focus on worthwhile
fixes, the approach measures the performance improvement for
given inputs and proposes a fix only if it leads to a statistically
significant performance improvement. Our approach identifies
performance problems missed by compilers because the ap-
proach does not guarantee to preserve the semantics, but leaves

the final decision whether to apply a fix to the developer.

II. STUDY OF REAL-WORLD PERFORMANCE BUG FIXES

To focus our efforts on kinds of performance problems that
occur in the wild, we search for performance issues reported
in the bug repositories of popular JavaScript projects available
on Github. We select projects and bug reports based on the
following criteria:
Project type: We focus on projects that target the node.js
platform, as its underlying JavaScript engine, V8, is highly
tuned for performance.
Number of performance-related bugs: We focus on reposito-
ries with a high number of pull requests (≥100) to increase
the probability to find performance bugs.
Keyword-based search: We focus on bug reports that contain
any of the following keywords: ’performance’, ’slow’, ’fast’
and ’responsive’.
Resolved bugs: We consider only bugs with a fix that has been
merged into the main project, assuming that the developers
recognize the performance improvement of these changes.

In total, we identify and reproduce 37 performance bugs
from eleven projects (underscore, Q, request, loadsh, mocha,
mhalk, less, moment, cheerio, backbone, and ejs). For each of
them, we reproduce the problem by creating a test based on
the bug report and the documentation of the project, and we
validate that the change indeed improves performance.

Through careful inspection of these bugs and their fixes,
we identify 23 recurring fix patterns. Each fix pattern consists
of a description of code before and after fixing the problem.
16 of these fix patterns are specific to JavaScript or its API,
whereas the others are programming language-independent.
We further assign the fix patterns into one or more of the
following categories:

• Faster built-in function (13 bugs)
• More efficient data structure (5 bugs)
• Better reflection usage (5 bugs)
• Avoid functional programming style (2 bugs)
• Use new language feature (4 bugs)
• Avoid deprecated language feature (2 bugs)
• Manual application of traditional compiler optimization,

e.g, function inlining (4 bugs)
Figure 1 shows three representative examples of JavaScript-

specific performance bugs along with their fixes.

Performance
bug

Bottleneck code Optimized code Pattern

Underscore
issue 39

str.split("’").join("\\’"); str.replace(/’/g, "\\’"); Faster built-in
function

Chalk
issue 28

return applyStyle._styles.reduce(function (
str, name) {

var code = ansiStyles[name];
return code.open +

str.replace(code.closeRe, code.open) +
code.close;

}, str) ;

var styles = applyStyle._styles;
for (var i = 0; i < styles.length; i++) {
var code = ansiStyles[styles[i]];
str = code.open +

str.replace(code.closeRe, code.open) +
code.close;

}
return str;

Avoid functional
programming
style

Mocha
issue 701

if (toString.call(err) ===
"[object Error]") { .. }

if (err instanceof Error ||
toString.call(err) ===
"[object Error]") { .. }

Use new language
features

Fig. 1: Examples of JavaScript performance bugs and their fixes.

III. AUTOMATIC REPAIR WITH FIX PATTERNS

To help developers find and fix common performance bugs,
we present an approach that automatically detects code that
matches one of the fix patterns from Section II and that
proposes a change to the developer. Given a program with
some input, the approach consists of two parts: First, attempt
to apply a fix pattern to the program. Second, validate whether
the fix improves performance by measuring the execution time
of the program before and after the change.

To apply fix patterns to a program, the approach traverses
the AST of the program, and once it finds a subtree that
matches the AST structure of the pattern specification, the
approach attempts to change the AST as specified by the fix
pattern. If and only if the approach can successfully transform
the AST, it generates a transformed JavaScript program and
passes it on to the second part of the approach.

After applying a fix pattern to the source code, the approach
runs the old and the transformed version of the program with
the given input, and it measures the execution time. We follow
the methodology of Georges et al. [2], i.e., we repeatedly
execute the program and apply statistical significance tests
to obtain reliable measurements. If the difference in execu-
tion times is statistically significant, and if the improvement
exceeds a user-provided minimum (we use 5%), then the
transformation is reported as an optimization opportunity to
the developer.

IV. PRELIMINARY RESULTS

We implement the automatic repair technique for JavaScript
and apply it to several of the libraries from the study in
Section II. Our prototype implementation builds upon existing
parser and code generation libraries.1 The implementation
successfully identifies and fixes the three JavaScript-specific
performance bugs from Figure 1. The generated fixes are equal
or semantically equivalent to the fixes that the developers
have found. Applying the automatically generated fixes gives
speedups of 25%, 12% and 10 % for first, second, and third
example in Figure 1, respectively.

1http://esprima.org/ and http://github.com/estools/escodegen

V. RELATED WORK

Previous studies of real-world performance bugs show that
these bugs are common and non-trivial to fix [1], [3], [4]. Our
work contributes by studying JavaScript-specific performance
bugs and by exploiting the results of this study for automatic
fix generation. Several recent approaches generate fixes for
correctness problems [5], [6]. These approaches search for
fixes that change the semantics of a program, whereas our
work aims at preserving the semantics while improving per-
formance.

VI. CONCLUSION

This paper presents ongoing work on studying and auto-
matically fixing real-world JavaScript performance bugs. Our
preliminary results show that the approach successfully detects
three types of recurring performance problems and proposes
fixes that improve performance and that are acceptable by the
developers. Our work is guided by bug fix patterns revealed in
an empirical study, and therefore, focuses on relevant kinds of
performance problems. Encouraged by the preliminary results,
we are currently working towards extending the study to gather
more performance bug fix patterns and towards generalizing
the automatic fix generation technique based on a generic
description of fix patterns.

ACKNOWLEDGMENTS

This research is supported by the German Federal Ministry of
Education and Research (BMBF) within EC SPRIDE and by the
German Research Foundation (DFG) within the Emmy Noether
Project “ConcSys” (PR 1537/1-1).

REFERENCES

[1] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in PLDI, 2012, pp. 77–88.

[2] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous Java
performance evaluation,” in OOPSLA, 2007, pp. 57–76.

[3] S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on
performance bugs,” in MSR, 2012, pp. 199–208.

[4] Y. Liu, C. Xu, and S. Cheung, “Characterizing and detecting performance
bugs for smartphone applications,” in ICSE, 2014, pp. 1013–1024.

[5] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in ICSE, 2009, pp. 363–
374.

[6] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches.” in ICSE, 2013, pp. 802–811.

