Statically Checking API Protocol Conformance
with Mined Multi-Object Specifications

— Companion Report —

Michael Pradel!, Ciera Jaspan?, Jonathan Aldrich?, and Thomas R. Gross*

! Department of Computer Science, ETH Zurich
2 Institute for Software Research, Carnegie Mellon University

Technical Report #752
ETH Zurich, Department of Computer Science
March 2012

Statically Checking API Protocol Conformance
with Mined Multi-Object Specifications

— Companion Report —

Michael Pradel
Department of Computer Science
ETH Zurich, Switzerland

Ciera Jaspan

Abstract—This technical report provides additional details
for the paper entitled Statically Checking API Protocol Confor-
mance with Mined Multi-Object Specifications [1]. We formally
describe how to translate API usage protocols represented
as finite state machines into a relationship-based specification
language.

1. INTRODUCTION

Programmers using an API often must follow protocols
that specify when it is legal to call particular methods.
Several techniques have been proposed to find violations
of such protocols based on mined specifications. However,
existing techniques either focus on single-object protocols or
on particular kinds of bugs, such as missing method calls.
There is no practical technique to find multi-object protocol
bugs without a priori known specifications.

In [1], we combine a dynamic analysis that infers multi-
object protocols and a static checker of API usage constraints
into a fully automatic protocol conformance checker. The
combined system statically detects illegal uses of an API
without human-written specifications. Our approach finds 41
bugs and code smells in mature, real-world Java programs
with a true positive rate of 51%. Furthermore, we show
that the analysis reveals bugs not found by state of the art
approaches.

This companion report provides a more detailed descrip-
tion of translating multi-object protocols into relationship-
based specifications. Furthermore, we list all issues reported
by the analysis to allow others to compare to our results.

II. BACKGROUND

Our approach uses a dynamic specification miner and
a static checker to respectively produce and check spec-
ifications of multi-object protocols. Both analyses divide
a protocol into two parts. The first part determines the
applicability of a protocol, and the second part describes
the constraints imposed by the protocol.

A. Specification Mining and API Usage Protocols

We use a dynamic specification miner that extracts API
usage protocols from training programs [2], [3]. Any existing

Jonathan Aldrich
Institute for Software Research
Carnegie Mellon University

Thomas R. Gross
Department of Computer Science
ETH Zurich, Switzerland

API client can serve as a training program. A protocol
consists of a deterministic finite state machine and a set
of typed protocol parameters. States represent the common
state of multiple objects or, for single-object protocols, the
state of a single object. Transitions are labeled with method
signatures that are annotated with protocol parameters nam-
ing the receiver, the method parameters and the return value.

Definition 1 (API usage protocol). An API usage protocol
P = (M, P) consists of a deterministic finite state machine
M and a finite set of typed protocol parameters P. M is a
tuple (S,%, 6, so, Sy) of states S, the alphabet T, transitions
0, the initial state sy € S, and final states Sy C S. A
transition is a triple from S x ¥ x S, which defines the
source state, the label, and the destination state of the
transition. The alphabet 3. consists of method signatures that
are annotated with protocol parameters naming the receiver,
and optionally, the method parameters and the return value.

The mined protocols distinguish two kinds of states:
setup states and liable states. The setup states establish
which objects interact in the protocol by binding objects to
protocol parameters. The liable states describe constraints
on method calls that a programmer ought to respect. The
miner constructs protocols in such a way that the set of
parameters bound at a state is unambiguous. States at which
all parameters are bound are liable states; all other states are
setup states.

Figure 2 shows an API usage protocol describing the inter-
play of a collection ¢ and an iterator ¢. The protocol specifies
how to use the iterator (call hasNext () before next ()) and
that updating the collection invalidates the iterator. Calling
the method iterator () on ¢, which returns ¢, establishes
the interaction between these two objects. Therefore, the
later states (3, 4, and 5) are all liable states. The table in
Figure 2 gives the set of bound protocol parameters for each
state.

Since we presented the protocol miner in [2], [3], it has
evolved in several respects: First, we now create a single
protocol per set of interacting types, so that, for example,
a single protocol describes all constraints of the interplay

between a collection and an iterator. Second, we use a
heuristic to generalize protocols that contain overloaded
methods. If calling an overloaded method is allowed at a
particular state, then the protocol also allows calling other
methods with the same name and the same number of
parameters at this state. Third, we add a heuristic that allows
calling pure methods at every state. We consider a method to
be pure if the method does not change the state of any object
and if the method does not throw any exception. Finally, we
configure the protocol miner to ignore all calls to Object
and String, because these calls occur very frequently in
Java programs and dilute the protocols of other types.

B. Relationship-based Static Checking

This work uses Fusion [4], a relationship-based, static
analysis, to check API clients against specifications over
multiple objects. Fusion encodes usage constraints based
on relationships between objects. A relationship is a user-
defined, uninterpreted predicate across objects. For example,
a binary relationship 7contains(List, Element) can express
that an object of type List contains another object of type
Element, such as Tcontains(list, element). If a relation-
ship predicate is true, we say that the objects are in the
relationship. Likewise, to say that the objects are not in a
relationship means that the relationship predicate evaluates
to false.

In Fusion, API methods are specified with requirements
and effects.! A requirement is a logical proposition over
relationship predicates that describes a precondition on a
method. For example, 1ist.remove (element) may re-
quire that 7.ontains(list, element) holds. An effect is a
postcondition that describes how the truth of relationship
predicates changes after calling a method. For instance,
list.remove (element) may have the effect to remove
(list,element) from Teontains. Both requirements and ef-
fects are guarded by a trigger, a logical proposition that
describes when the requirement or effect applies.

Definition 2 (Effect constraint). An effect constraint on
a method is a tuple (m,g,e), where m is the method to
constrain, g is the trigger, and e is the set of changes to
make to the state of the relationships.

Definition 3 (Requirement constraint). A requirement con-
straint on a method is a tuple (m,g,q), where m is the
method to constrain, g is the trigger, and q is the requirement
for the method.

A complete specification of a protocol in Fusion is a set
of relationships, a set of effect constraints, and a set of
requirement constraints on the relevant methods.

Definition 4 (Fusion specification of a protocol). A Fusion
specification of a protocol can be described as F =

'We omit parts of Fusion not relevant for this work.

Collection c = ...

1
2 TIterator i = c.iterator();

3 if (i.hasNext())

4 System.out.println(i.next());

s /* current state unknown x/

6 c.update(); // legal —— invalidates iterator

7 if (i.hasNext()) // bug: iterator not valid anymore

8 System.out.println(i.next());

Figure 1: The state in line 5 cannot be determined because
different paths lead to it.

(R,E,Q), where R is a set of relationships, E is a set of
effect constraints, and @ is a set of requirement constraints.

Based on specifications of API methods, Fusion performs
an intraprocedural analysis of API clients to check whether
they respect the usage constraints. For each call to a method
with a specification, the analysis checks whether all triggered
requirements are fulfilled and applies all triggered effects.
We use a complete variant of Fusion, which guarantees that
any bug found will actually occur dynamically.

III. TRANSLATING MINED PROTOCOLS INTO
RELATIONSHIP-BASED SPECIFICATIONS

In the following, we describe how to combine protocol
mining and relationship-based static checking by translat-
ing mined protocols into checkable specifications. We first
discuss the main challenges for combining two formalisms
like these in Section III-A. Then, Section III-B provides a
high-level overview of the translation, followed by a more
detailed description in Section III-C. Finally, Section III-D
discusses how our approach addresses the challenges.

A. Challenges

We must deal with two main challenges, the first being
common to all static analyses and the second being specific
to multi-object checking:

1) Limited static knowledge: Static analysis inherently
lacks precise knowledge about which program path is taken
and as a result may miss bugs or report false positives. For
example, Figure 1 shows a piece of source code where static
analysis cannot determine the protocol state in line 5. After
the call to hasNext, the protocol is known to be at state 4.
The branch creates two paths, one path on which next () is
called, leading back to state 3, and another path on which
we stay at state 4. Because static analysis cannot determine
which path is taken, the state in line 5 is unknown. Our
combined analysis should nevertheless find the call in line 6
to be legal and detect the protocol violation in line 7.

2) Object interactions: Checking multi-object protocols
is challenging, because calling a method on one object can
influence the state of other objects. For example, the call
to update () in line 6 does not refer to the iterator i, but
directly affects its state. This dependence is implicit in mined

’7701 with P = {Collection c, Iterator i} ‘

C = new i=

Collection() c.iterator()
(Do et

c.update()

c.update() @ .

i.next()

c.update()

i.hasNext() c.update()

i.hasNext()

s|1 2 3 4 s
bound(s) | {} {c} {eci} {ci} {c i}

Figure 2: Protocol describing how to use a collection and an
iterator. A label p = m() means that the object returned by
m() is bound to protocol parameter p. The call c.update ()
summarizes calls that may change the collection’s content,
for example, c.add () or c.remove (). Liable states have
a gray background.

Bound protocol
parameters:

multi-object protocols, where a state is the common state of
all involved objects.

B. Overview of the Translation

Given a set of protocols, how can we generate
relationship-based specifications in a way that addresses
the above challenges? We use relationships to reason about
three aspects of objects with respect to a protocol:

1) We keep track of whether calling a method is
allowed with a method relationship. This is a unary
relationship for a method of the protocol. If an
object is in a method relationship, it means that one
can legally call the corresponding method on this
object. The protocol in Figure 2 has four method
relationships:

Tnext(Iterator)
T'hasNezt (Iterator)
Tupdate (Collection)
Titerator (Collection)

There is no method relationship for constructor calls
because a newly created object cannot be in any
relationship before the constructor call.

2) We keep track of the current state of an object or a
set of objects with state relationships. The semantics
of a state relationship is that if an object or a set of
objects is in this relationship, we know these objects
to be at the corresponding state. The state relationship
is over all objects that are bound at that state. The
states of the protocol in Figure 2 translate into four

Protocol effects of calling Effects on relationships

i = c.iterator()

Move to state 3. Set r3(c,i) to true;
set r2(c), ra(c, i), and
r5(c,) to false.

Enable methods Set 7pgsNere(i) and

i.hasNext () and Typdate(c) to true;

c.update (); disable set Tnewt (1) and
methods 1.next () and Titerator(c) to false.

c.lterator ().
Establish the interaction be-
tween C and 1i.

Set rp.,(c, 1) to true.

Table I: Example of effects

iterator ().

applied when calling

state relationships:

ro(Collection)

rg(Collection, Iterator)
rq(Collection, Iterator)
r5(Collection, Iterator)

There is no state relationship for the initial state
because no variables are bound at this state.

3) We keep track of which objects interact as described
by a multi-object protocol, that is, which objects
are “in the protocol”. For this purpose, we create
a protocol relationship over all protocol parameters.
The semantics of the protocol relationship is that
if a set of objects is in this relationship, we know
these objects to interact with each other in the pro-
tocol. For example, we create a binary relationship
rpo, (Collection, Iterator) for the two-object proto-
col Pcr.

The Fusion analysis uses relationships as data structures
to describe the overall state of a protocol and to determine
whether a method call is legal. Each method call in a
program will be checked against the method’s requirement
constraints to ensure that the call is legal. Furthermore,
each method call can change the state of the relationships
according to the method’s effect constraints. The overall
approach is to use the method relationships to determine
whether a method call is allowed. The protocol relationship
and the state relationships are used to determine whether the
protocol is at a liable state and which effects to make.

1) Making effects: Calling a method can have effects
on the current state, on the currently enabled and disabled
methods, and on the binding of objects to protocols. We
create specifications that reflect these effects by adapting
the corresponding relationships. For example, calling i =
c.iterator () as described by the protocol in Figure 2
influences the state maintained by the analysis as shown in
Table 1.

Knowing that a particular method is called may not be
sufficient to determine which effects to apply and which re-

Symbol Meaning

Protocol (M, P)

Finite state machine (S, X, 4, so, Sy)

Set of protocol parameters, protocol parameter
Set of states, states

Alphabet, method signature (m € X)
Transitions (6 : S X X X .S)

Fusion specification of a protocol (R, E, Q)
Set of relationships, relationship

Set of effect constraints (m, g, €)

Set of requirement constraints (m, g, q)
Trigger (relationship predicate)

Effects (setting relationships to true and false)
Requirement (relationship predicate)

3P
-

< mm@@;u“ﬁo‘qu’lfdiﬁ
=

Table II: Reference of symbols used in this paper.

quirements to check. The reason is that a single method can
label multiple transitions. For example, calling c.update ()
at state 2 (leading again to state 2) has different effects
than calling the same method at state 3 (leading to state 5).
We handle this problem by guarding effects with triggers
on state relationships. In the example for c.update (), the
translation creates two constraints in Fusion, one triggered
by 72(c) and the other triggered by 75(c, 7).

2) Checking requirements for method calls: To check
whether calling a method is legal, we require that the
receiver is in the corresponding method relationship. For
example, to call i.next (), we require that 7,e,¢(7) is true.

The requirements imposed by a protocol are only valid
if the current state is a liable state. Therefore, we guard
requirements with the protocol relationship, ensuring that
the involved objects interact in the protocol and that the
protocol is in a liable state. For example, the requirement
on calling i.next () is guarded by rp,,(c,). This can be
thought of as a logical precondition of the form:

Ve . (TPCI (C, Z) = Tnea:t(i))

C. Formalization

This section provides a more detailed, formal description
of how to translate a finite state machine representation of a
multi-object protocol into a logical predicate representation
suitable for Fusion. Table II lists all symbols we use in this
section along with their meaning.

The translation uses two functions:

Definition 5 (Enabled : S — 2%). The Enabled(s) func-
tion returns all the methods that are legal to call at state s.
That is, Enabled(s) ={m |meX A 3t . (s,m,t) € §}.

Definition 6 (Disabled : S — 2¥). The Disabled(s) func-
tion returns all the methods that are illegal to call at state s.
That is, Disabled(s) = {m |m €% A Pt . (s,m,t) € J}.

We use the following abbreviated notation for relation-
ships by making the objects implicit:

o A protocol relationship rp means rp(p1,..,pp|)
where p1,..,pp| are the protocol parameters P of
protocol P.

o A state relationship 7, means 7s(p1, .., Pjbound(s)|)-
where p1, .., Ppound(s)| are the protocol parameters
bound(s).

o A method relationship r,, means r,,(p), where p is the
receiver of m.

« We denote the effect to set a relationship to true as +r
and the effect to set a relationship to false as —1.

Having defined the above helper functions and our no-
tation, we can now give a formal, declarative description
of how to translate a protocol P = (M, P) into a Fusion
specification F = (R, E, Q). The translation consists of
three steps. First, the translation creates relationships R
that represent states, methods, and the protocol itself, as
described in Section III-B. Second, the translation creates
a set of effect constraints ' for each method occurring in
the protocol. These constraints control how calling a method
influences the state of relationships. Third, the translation
creates a set of requirement constraints (), which specify
preconditions for calling methods. The following describes
creating effect constraints and requirement constraints, and
illustrates the translation on the protocol in Figure 2.

1) Effect constraints with known state.: The translation
creates effect constraints that represent the effects that occur
when taking transitions. For each transition (s, m,t) € §,
there will be an effect constraint (m, g,e) € E where

true if s = sg
g=1< rsArp if s is a liable state
Ts if s is a setup state

e=+ry U(U —rg) U (U

s’eS\{t} m’ € Enabled(t)

U (U

m’€Disabled(t)

+T‘m’)
—rm) U ep

+rp if m combines the protocol
parameters
otherwise

where ep =
none

In the example, there are four transitions labeled with
c.update (), which produce the four effect constraints
labeled with ¢ in Figure 3a.

Notice that e contains three kinds of effects. First, we
set the state relationship r; of the destination state ¢ to true
and set state relationships of all other states to false. Second,
we enable all methods that can be legally called at the target
state ¢ and disable all other methods. Finally, if m combines
protocol parameters, we set the protocol relationship to true
for these objects to establish that these objects interact as
described by the protocol.

The effect constraints are triggered by ¢ in one of three
ways. If s is the initial state, the trigger must be true since
there is no prior knowledge for this protocol. If s is a setup

state, the trigger is the state relationship r,. Finally, if s is a
liable state, the trigger is rs A rp to ensure that the effect
only occurs when the current state of the protocol is liable.

2) Effect constraint with unknown state.: The Fusion
analysis is a dataflow analysis and can lose precision after
merging paths with different state information. Therefore,
the translation must also handle the case where a method
call within a protocol occurs while we have no information
about the current state. To deal with this case, the translation
makes an effect constraint for each method. This constraint
considers all possible states at which we can be based on
the available knowledge.

Let S¢(m) be the set of target states of m, where S¢(m) =
{t|3s.(s,m,t) € dAsis a liable state}. For each m € ¥,
there will be an effect constraint (m, g,e) € E where

g=rp

€= €state U (U

m’€AlwaysEnabled

U (U —Tm)
m’€AlwaysDisabled

+Tm’)

where
if S; = {t}

Tt
e = i
state { none otherwise

AlwaysEnabled = ﬂ Enabled(t)
t'eSt

AlwaysDisabled = ﬂ Disabled(t")
t'eSy

In the example, c.update () produces the effect con-
straint labeled with % in Figure 3a.

To ensure that the involved objects are indeed interacting
in the protocol whenever the effect applies, the translation
guards the effect with a trigger on the protocol relationship.
However, since the current state is unknown, the translation
applies all effects of calling m that are independent of
which transition labeled with m is taken. In the trivial
case, where m labels a single transition in P, the effects
are the same as the state-dependent effects described in
Section II-C1.

Triggers of effect constraints have two purposes. First,
triggers guard effects to apply them only if the effects are
applicable. For example, we check state relationships to
distinguish between the same method call from different
states. Second, triggers make objects visible in the scope of
a constraint. For example, if a transition leads from a state
where two objects are bound to another state where two
objects are bound, we want to update the state relationship
for both objects. However, the call may expose only one
object (the receiver), leaving the other object invisible.
This is the case for calls to c.update (), where we must
update the relationships on both the collection and any
associated iterators. By guarding the effect with a trigger

over rp,, (¢,1), the iterator becomes bound and the analysis
can apply effects on all necessary relationships.

All effect constraints for the example are summarized
in Figure 3a. Each line of the table shows one effect
constraint with its method, its trigger, and its effects. While
some generated constraints are logically included in others
and can be omitted without influencing the results of the
static analysis, this is not true in general, so the translation
generates all effects as described here.

Requirement constraints.: The requirement constraints
that control when a method can be called are very simple:
For each m € %, the translation creates a single requirement
constraint (m, g,q) in @, where ¢ = rp and ¢ = r,,. That
is, we specify that for calling m, the receiver of m must be
in m’s method relationship. Figure 3b lists the requirement
constraints we generate for the example.

D. Meeting the Challenges

Our revised approach meets the challenges mentioned in
Section III-A. We deal with limited static knowledge by
maintaining both the current state and the currently enabled
and disabled methods. This approach allows the analysis to
recover knowledge that has been lost when merging paths.
Even when the current state is unknown, the analysis may
still know about currently enabled methods and continue the
analysis based on this information. The translation addresses
the problem of interacting objects by representing states
at which n objects are bound by n-ary state relationships.
Furthermore, we represent the interaction of objects through
the protocol relationship. By using the protocol relationship
as a trigger, the analysis can apply effects on all involved
objects, even if a method references only a subset of them.

Translating the protocol in Figure 2 gives constraints that
detect the bug in Figure 1. Before checking line 6, the
analysis knows the relationships rypdqte(c) and rpp0t(c, %).
That is, calling c.update () is legal and c is known to
interact with 4. The effects of the call lead to the following
relationships after line 6: r5(c), 75(i), and —7pasNewt(7)-
Thus, the precondition for calling i.hasNext () in line 7
does not hold and Fusion reports a warning.

IV. REPORTED WARNINGS

Tables III, IV, and V list all bugs, code smells, and false
positives that the analysis reports.

Method m | Trigger g | Effects e Method m |Trigger g|Reqmt. ¢

‘ ‘ States ‘ Methods ‘Protocol update () TPo; Tup
. iterator T T
new Collection () ‘ true ‘+7"2, —r3, —T4, —r5‘—|—rup7 +7ity —Thas —rne‘ — 0 Per o
hasNext () TPor Tha
update () <& T2 +T2a —Tr3, —T4,—T5 +Tup7 +7‘it7 —Thas —Tne - next () 7‘7301 Tne
update () < T3 A T’Pcl —Tr2, —T3, —T4, +T5 +Tup7 —Tits —Tha, —Tne -
update () o |r4a N Tpgp|—T2, T3, —T4, +T5 |+ ups —Tits —Tha) —Tne| —
update () O |5 N Tpep|—T2,—T3, —T4,+Ts5 +Tup7 —Tits —Tha, —Tne -
update 0) * TPCI —T2,—T3, —T4, +7‘5 +rup7 —Tity "Thar —Tne -
iterator ()] -T2, +T3a —T4,—T5 +’rup7 —Tit, +rha7 —Tne +TPCI
hasNext () r3 N Tpeg|—T2, —7r3,+74,—75 +Tupy —Tits tThas +TTne -
hasNext () Ty N Tpor|—T2, =73, 74, =75 |+ ups —Tit, TTha, TTne| —
hasNext () TPCI -T2, —Ts3, +T47 —Ts +rup7 —Tit, +Tha7 +Tne -
next () T4 A Tpcj -T2, +T3a —T4,—T5 +’rup7 —Tit, +rha7 —Tne -
next () TPor -T2, +T3a —T4,—Ts5 +Tup7 —Tit, +rha7 —Tne -
(a) Effect constraints. (b) Requirement constraints.

Figure 3: Constraints generated for the protocol in Figure 2. Method relationships are abbreviated (r,. means 7., €tc.).

‘sIsATeue o) £q punoj s3ng :II 2IqeL

(210y [eS9T ST ‘7 ST 9ZIS Y} JI USAQ) SWES JY) I8 IO)ONNSUOD

S.yojeJN 0) possed SOLMUHUONOJ, Y} JI [9ZIS JABY URD JOSYTewryoje]y ‘()1Xeu 0} [[ed [eSo[l /H9€—GE9¢ S6 eAel)sopuIoS v ye/pdo/purd/e810J001n0s/)au/)s9) /5501301 pud
Suruunt uayMm [rej p[noys SIy) 0s Iy}

IOAQU Inq ‘UL om] sey A[[eordA) 19 IBWIYOJRIA ‘99S UBD [SB IeJ S {()IXou O} [[Bd [e39[I GTIE—E19€ 6 eAe[s9 w0y yoIeIA)/pdo/pid/28103201n05/10U/)59)/SSIT pud

(107RI9) WOISND JO91I00UT) AOQE UI[U0 3nq Jo aredrdnp ()1xou 03 [[ed 8391 G/ S—SHLS €91 eAel-A1euonoIousonIs9L/[[ods/yoreas/auaonyeyoede/3io quaon|
(JUOWI[d I0W OU $,9IdY} JI [[NU suInjal jnq) dopeael

$.J0Je10)] Ul payroads s1oje1elr Jo [000301d oy} MO[[OF 1, USQ0p JOJeId)T WwoIsnd £()IXau 0] [[ed [eS9[T 6.9S—0L9S 91 eAe[Areuonorousonisa] /[[ods/yoreas ousony/oyoede/Sio quoon|

TSP[Y UO 9q P[NOYs I0JRIAI 0} [[ed PU0Ias 3yl 97[7S—801TS 1TEI BAR[TOpROYXOpUISaL /xopul/auaon]/oydede/3io uoon|
(umouyy st

uondooxa ue Joyjaym Joayd 03 ‘ased 159} e ur) srowwersold oy £q Snq v oq 01 pepuur styeyr 3nq e L1H07-9040C €6% eAR[11S9])sT]/SISareAR /RARI/SISA) uoyAl
(umoxy) st uondooxa ue JOYIYM YYD

0] ‘ased 1s9) e ur) srowweidold ay) £q nq ® 9q 03 popuaur SI jey) 3nq e {()Ixou 01 (D [e39[l LOOSI-TL6LI Stb eAR[)S91)ST/5Is9)8AR /RARI/S)S9) uoyAl
9ZIS WNWIUIW Jnoqe

Suryiou sAes sopeae(‘pajoadxa Uey) SJUSWI[S SSI[ARY UBD ISITP[O, Joyowered ¢()1xau 0) [[8d [B39[[T €609€—1L09€ TE8 eAael10euRIAINOARTIXQ] /Qutul/iSunnoAe]/doj/eyoede/3io doy
9ZIS WNWIUTW Jnoqe

Suryiou sAes sopeael ‘pajoadxe Uey) SJUSWI[D SSI[dARY ULD ISITP[O, Joyowered ¢()1xau 0) [[BD [BSQ[1 LTLHE—SO0LYE €08 eael193eue|AIN0AR)X /QuTur/SunnoAe/doj/eyoede/3i0 doj
9ZIS WNWIUIW Jnoqe

Suryiou sAes copeael ‘pajoadxa uey) SJUSW SSI[dARY ULD ISITP[O, Jojowered ¢()1xou 0) [[BD [BS9[I 949H€—+T9PE 708 eae[-103eueyIn0Ae)X /ourjur/iSunnoAe/doj/eyoede/3io doj
9ZIS WNWIUIW jnoge Suryjou

sAes oopeAe[‘pajoadxe uBY) SIUSWIS[O SSI[AABY UBD SJUSWR[Q, Jojowered ‘())xau 0) [[ed [eS9Il L9TE—9STE SL eAel's[nIsrpuawe[g/13unnoker/doyseyoede/3io doy

passed st 3srIpo, pajoadxaun Jr sayserd ()Ixou o) [[ed [e39[I LG8ST-SE]ST T6S eAe[103euejAINOARTSURORISYO0]/1SwnoLe/doy/eyoede/310 doj
JIqe) ' Junearn

uoym Aydwd st suwnjod-a[qe], sy Adwe winjar ued ()suwnjo)ied-aiqel, ‘()1xau 0} [[ed 1S9l $HE6—0EE6 122 eae[-10A10s9y19pIog Sursdejo)/a[qe/mop/oy/doy/ayoede,/3io doj
(poyyewr STy} ur Snq IoYlo O} Ie[rwiIs) o[qe} € Suneard

uoym Aydwe st suwnjod-a[qe], sy Aidwe wnjar ued ()suwnjo)ied-aqe], ‘()1xau 0} [[ed 139l 6006—S668 91C eAel1oA[0sOYI0pIogIutsderjo)/a[qey/mop/oj/doj/ayoede/3io doy

aantsod 9q 0) paydayd/pay1dads Jou ST Yorym ‘Mol Jo azis uo spuadap (()1xou 0 [[ed 18391 /8881188 v1T eAe[-10A]0sY19pIog utsde[jo)/a1qel/mop/0)/doj/ayoede/3io doy

()ozrs ueyy I9[[EWS ST Jey) 19s & uInar Aew ()sonfea {()1xau o) [[ed [eS9MT $HI1ET-6CIET 611 eAe["Anugag/roreinsyuoo/reuroyur/arepdn/esdioo/Sio asdiod

()oz1s ueyy Jo[ews SI jey) 19s & uInjal Aew ()sonfea ¢()1xau o) [[ed [e39[[I 09FE€—9tHE 9. eAel-10jenTRAT/[RAd/[RUIAIUL/APl/asdI09/310 osdijoo

sonfeA punodwo)) sse[o Surzienrur 1)ye Aidwo ore sonfea ¢()1xou 03 [[eo [eS9[I 980€—790€ 08 eAR[10JeI0U0N))SQT IO[qUUassesI(J/Io[quassesip/uag/uaSiull eloiae

sanepo[durg ssed Surzireniur Ioye Aydw Is1] ¢()1XoU 01 [[ed [e39[[1 68YT—L9HT +9 BAR['I0JRIOUON)SQ I9[qUIASSesI(J/I[quiassesIp/uag/uadull eloiae
uonduwnsse
9y Sur[[y[ny Jou uoIssAdXH[[BD © A1 AW YoIym ‘(AuUgD)) ‘uoissaidxHq[[eD)NsIA Aq pa[ed ‘32

£9SIMIOUIO YSEIO [[IM {(ISUS[QWBS 9y} dARY 0) pawnsse aIe sSre pue swiered (()1xou 0] [[@d [e39[[1 (06S.—-18SL €81 eaelToyrduigopo)/uad/uagdiull eloiAe
aSeyoed oy ur sse[d 19yl0 Aue Aq paues[d 2q Aew pue djeAld jou SI sjuWTer) I9AMOY

toouonbog JO 10JONISUOD SY) UT JUSWIA[S AUO [JIM PAZI[enIUL ST sjudwiSely Is1] ()Ixou 0} [[ed [eSo[[T 0L7C-8STT S eAe[-oouanbag eI/ oo BIOIAR
9Jes a3esn JOJeIdN Ay Subyew [Iym Ajreuonouny oy) soAresaid gy pue

L sour] Suraowal ‘yosuuo)uld Surzirentur 1)je Aydwd st sy suonosuuo)urd ¢()1xou 03 [[ed [e39[[T LS091-6+091 L eae[100uuo)uIf/uIope[d /s /eI01AR RIOIAR

UONEOYIPOW JUSLINOUOD $G971—L2921 +EE eAe[)0ouUO UL/ wIo R d /WIS /RI0IAR BIOIAR

UONEOYIPOW JUALINOUOD $71Z1-L60T] 61€ eAR[00uuO)UIJ /w0 d /IS /RIOIAR BIOIAR

uonnoaxd AI0Ad UO [seId pnoys ¢()1xau o) [[ed [eS9[1 TH601-+E60T TEE eAR[TOWI [BSOIAL [V/NOW/WIS/EIOIAR BIOIAR

uonnIaxXa AI9Ad UO [SBIO P[NoYs ¢()1Xau 01 [[ed [e39[[1 GO60T1-L680T IEE eAR[ToWIL] BSOIAL LV/NOW/WIS/RIOIAR BIOIAR

JUQWIWOD) SISYOBILYD) aury o werSoig

‘s1sATeue 9y} AQq punoj S[ews apo) Al 9[qelL

(poyrow awres ay) ur suaddey yorym)

A, 01 $102[qo jo sired Surppe uo spuadop uUOTEISN oJes ‘UrejuTEW O} INOYJIP 9qAeW Ing 991100 [06H—C68Y 621 eAe[*opoNZeonyseH/s[nn/urx/oyoede/S1o uerex
(30930 Aue

SuIARY INOYIIM PIAOWAI 3q UBD YOO[Q-AI} UI 3SO[D ISIY) AIBSSI0U JOU ST YoIym ‘asofd aredrdnp ¢ 147—€0yT L eael1opeosseDyedsser)/mn/pud/e8105901n0s /19U pud
asBD 159)

B UL §,J1 9SNBO3q 3nq S PAYISSE[O J0U 9S[d QIYMIWOS 13 ST YIIYM ‘UONII[0d JO 9zIs uo spuadop 0€06—C206 81T eAR[159],0d0oSsse[)/o[qrI[oquIAS/puid/9310J901N0S/10U/159)/SSAITAT pud
3s[o auoAue £q pasn jou A[qeqoid s1 Jey) ased 1)

' $,J1 9SNe29q Snq B S POYISSE[D JOU $OS[d IQYMAWOS 39S SI YOIy ‘UOTI[[0D JO 9zIs Uo spuadop //6£—696€ 101 eael1s091,0doogsse[)/o[qeIoquiAs/purd/310J00In0S/10U/1S9)/SSAIFT pud

9[NI QUO ISBI[JB SUIBIUOD JAOQR PAUYAP sIuLns TINX [[B Se Suol se SO ST [1€967-0096C €L9 eAe[159],£10108,10 59 Y /pwid/0310590IN0S/)aU/1$9)/SSAI31 pud
quoAue £q pasnal 9q jou pP[noys Yorym ‘1so)

B UL $,J1 9sNe29q 3Nnq SB PAJunod Jou 9S[o IAYMIWOS 39S ST YOIYM ‘UOIII[0d JO IZIs U0 spuadop 9487—GE8T 06 earl[1s9rI01RSIARNIUSWNOO(J/UdXRl/pud/0510001n0S/10U/1891 /551591 pud
3s[e auoAue £q pasn jou A[qeqoid SI jey) ased 1s9)

® $,J1 9sNe29q Snq B S POYISSE[D JOU $OS[d QIAYMAIWOS 39S SI YOIYM ‘UOTI[[0 JO 9zIs uo spuadop 886€—//6€ QTT eaelsay10jeSiaeNuUaWNOO(/udxel/puid/e510500In0S/)0U/)$0)/SSo1301 pwd
ouoAue £q pasnaI aq J0U P[NOYSs YIIYM ‘)sd)

B UL)1 9SNBJaq Snq Se pajunod jou ‘IS IAYMAWOS 1S SI YOIYM ‘UOTOI[[0D JO 9ZIS uo spuadop //8€—998¢ 911 eaelsqriojeSiaeNIuawNOO(J/uaxe(/pud/a8105901n0s/)13u/189)/ss9131 pud

101o01SU0d S YoJeJA 0} passed are s300[qo [enbo om) I T 9zIs oAy UBD JOSNIRWIYINICIN [$HT—61HT S9 eAe[)sopuLIoS yyoIeIA/pdo/puid/eS10500In0S/)0U/1$0)/SSQI3aI pwd
159) ® $,J1 asneoaq ‘nq

® JOU ‘pPOYIOW SIY} OPISINO AIYMIWOS JoS ST YOIym “ p[, Ul SpIom Jo roqunu uo spuadop AjoJes ¢176—0TS €31 eAel*ATeuonorqousonIsa]/[jods/yoreas/auaony/eyoede/3io Quoon|
159) © S .1 asneoaq ‘Snq

B 10U pOYIouW SIY) 9PISINO AIAYMIWOS 3S SI YIIYM p[, UI spiom jo Joqunu uo spuddop Ajojes ze€16—€CIS TSI eAel*A1euonorqousonIsa]/[[ods/yoreas/auaony/oysede/3io Quoon|

y3noud SI Iopeal I2)NO0 AY) SUISO[O DSO[d O} [[Bd AIBSSduuUn 9QTT—SLTT 09 eAR['I19)[1JWRISURWLIIN]S /oP/SIsATeur/oudon]/oyoede/310 QuadN|
159) B)1 9sNed5dq Snq B JOU ‘SPOYIOUW UImM)dq sdrouapuadap uappry jo

ordurexa 9o1u poyrowr ()ISIINBIOP AY) UI PAXY SI YoIym *Isrpnejep, Jo ySuo[uo spuadap 1891 9GH17—Ly¥1IT 9IS eAR[ISQLISIT/SIsreAR/RARI/S)S9) uoyAl
(()sno1aaxd 03 [[eo 2y} Je Apeaie ysero Aew weidoid ayy)
dyes jo pury [[eo siy) aew ()snotadid o3 s[[ed 9y ‘ToAamoy ((dopeAe(oy U pAjels J0u ST YITYM)

SJUSWISA JO SPUIY UIBLIAD Pue JZIS UIBLAD B sy Sjudwd[e, ey uondwnsse ayy uodn paseq st 9pod $90£—£S0E oL eael's[nIsrpuawe[g/13unnoker/doyseyoede/3i0 doy
(poyowr STy} Jo d9[ed AJuo oY) £q PodIOJUS 9q O} SUIAAS YOIYM Jnq) dIoymAue

PIUAWNIOP 10U ST YOIYM ‘9Z1S°S)1sJJOI3 9[qeliea < azis'suonisod jeyy joey ay) uo spuadap A19Jes 1656—28S6 162 eael-adA1x0)uo)oeidwa] /seyeidwayixa)/aoeyl/esdioo/310 osdijoe

JUQWIWOD) SIdJoRIRYD) oury oy wreidold

‘sisATeue o) Aq panodar saanisod as[eq :A 9IqeL

Aperpawiil suInjal poyidwl asnedaq ‘1Y UONLIYIPOW JUILINDUOD OU 9)967—98S6T 1TL eAeR[10S5200149[1,3e] /191 dwoo/radsel/eyoede/3i0 JeOWoO)
JeaIq oy} JO asnessq UOHBOYIPOW JUAIINOU0D OU §776S-8616S 001T eAel10sIR g TH/I08Ied/[0/0y0RdR/S10 JEOWO)
9pod
PoIeIduR3 eaIq Ay} JO ASNBIQ 1110 ST ING UOHBIYIPOW JUILINOUOD B NI SWAIS dsed JunsaIul $€094—+009% €SS1 eael1osreddsse/dsl/pud/e3105901n0s/1ou pud
158-6€8 c¢ eAels91.1011dd v/ nn/pwd/0310J90In0S/10U/)1$9) /551321 pud
[000301d 9yordwodur [GZE—€HTE €01 eAR[1S9])9S Ny /pwd/0310J901n0S/)U/1S9)/sS9ITI pud
210J2q PAOAYD ST ZIS Asnedq O SI IXau {[odojold 99rdwodur $7He—€6€€ o1l eAR[159] £10108,139S9 Ny /pud/2310J001n05/19U/)$9)/SS1F1 pud
S[O ST 0S - poyjoul SIy) Ul "9°T ‘Sudyo} om) ay) Suneard Aq 19s (Apoarrpur) st azis £z01-6101 0€ eAR[1s9yoreI/pdo/puid/03103001n0S/10U/159) /55131 pud
YBaIq Y} JO SN 3,USI INQ ‘UOIIBOYIPOW JUALINOUOD B Y] SWAIS ([0o0jo1d djoidwodur 910£S—9867S 691 eael19s1RJA19NQ)/1981RJA19nb/SUON oy oRdER/SI10 Quaon|
S[O SJT 0S - 9zIs 0} s[[ed ‘Jooojord djerdwoour GZSEG—GISES SSET eAR[IopEOYXopUISaL/Xopul/ouaon/eyoede/Sio Quoon|
[000301d 9yordwoour GgrS—SE€TTS €TEL eAR["IOpROY XopUJISa /Xopul/auadny/oydede/3io Quoon|
uorstoaxdwr uoisng 9102-9661 96 eAR[YsB] JoIgAgIoorasday/syselyseLAqTewyouaq euaony/aydede/io Quaon|
uorsroordwr uosny 7/61-2S61 8¢ eAe[yse [Tvdoy/syselssel.Aqrewyouaq/euaony/oyoede/Sio Quoon|
sisATeue [einpadoid-enur o) uoneywl] pue [050joid 9)9[dwooUr JO AIMXIW 9H6][-9€6 | LS eAR[)S9] SISA[euy/ouadny/oyoede/31o Quoon|
1000301d 9)o[dwoour 8661161 997 eae[19)[149[3uIyS/913urys/sisAeur/ouaony/oyoede/3io QuadNn|
[0%0301d 9391dwoour $ZE1-6LT1 € BAR['159] 10859001 Jad AT pasodxd/arerouas/asodxa/uoyiAd/S10/eARl/S159) oAl
JUQWI[D
JXU B s19y) J1 Jooud 03 (()xyead) poyiow Ioyjoue SIOJJO Jey) JOJeId)l WO0ISNO ‘Osed JunsaIAul [H1S7T-0€1ST 208 eAe[-apootun £g/e109/uoyiLd/310 uopAl
SSB[O QuWIBS Ul JUIUIeM PIje[al 39S “I0JRIA WOISND +/0S7—-€90ST 008 eAe[-opoorun Ag/e109/uoyLd/310 uoypAl
[000301d 9yordwodur 98891—//891 Ol eAe[T un(ng—/a100/uoyiAd/S10 uoyAl
[ooojoxd ojerdwoour £101-800T € eAe[Ae1ry109[qQ/[un/gy/s1o 4!
[000301d 9)ordwioour 10061-99681 88 eael1oddo)gorqe] /orqel/1Sunnoker/doyseyoede/3io doy
JXQU S[[ed A[[eUIOIUI YOIym IJey)Ixou
sopraoid JojeIo) WOoIsnd (FuIsSIW 9q 0] SWAAS JXAU 0) [[Bd ‘@sed Junsarur jodojold goidwoour GHGZI-87STI 66T eAe[1o[pueyooed Sy M TINX/03/doy/eyoede/310 doy
poyiow s1y) ur Jururem Jefruais 99s fjooojold ayordwodur [¢61 11611 8T eAel1o[pueeoedSay M TINX/0)/doy/eyoede/310 doy
poyjowr sty ur Sururem Je[ruais 99s [ooojoid ojordwoour)8SOI-£9S01 LST eael1o[pueHooedSaiy s TINX/0J/doj/ayoede/310 doy
1000301d 99rdwoour GeOZ—010¢ 1S BAR["TUAAFRSUBYDIII [OJUTOUAS/SIAQLIOSqNS /2100 /[euId)ul/wed)/asdIfo9/810 asdioe
1000301d 9o[dwoour 17659065 81 eAR['SaNINNIXAL/AXA)/0e)[/asdIog/810 asdioe
1000301d 9oidwioour zz161-$80ST 00% BAR[" 01 JUSW[H/UO0SIeM/[BUIUI/2109/2sd1[09/310 2sdI[o9
[0o0301d 9391dwosur 6zzz—902T 19 BAR[QO[USIJoY/YsaIJal/[euIul/a109/asdI[o9/310 asdI[oo
[000301d ayordwodur 66 1-€L671 €CS eAR[010)Ga8ed/Surxepur/feurajul/erod/esdiog/Sio asdioe
1000301d 9)oidwioour 9zEGT—-L6CS1 STH eAR['S90UAIRJRIJRI0DIUY /2100/uk/asdIo9/810 asdioo
[000301d 9ordwioour 97161-29161 LIS BAR['IOA[OSOYANSISAY/[opou/[euraiul/a109/asdiog/310/[opow-o1s asdioe
[000301d 9yordwodur 1/8G1-8+¥8S1 1T BAR['IOA[OSOYANSISAY/[opowy/[eurdiul/a109/asdioa/S10/[opow-o1s asdijoo
1000301d 9oidwioour O¢EST-60€ST €0F BAR['IOA]OSOYANSISAY/[opowl/[euraiul/109/asd1og/310/[opowr-o1s asdioo
[000301d 9o dwioour €69¢6-699¢S LI eAR['108S9001dBI[(/2109, [euriul/plyasdios/3io/fopowr asdioe
[000301d 9y91dwodur ()68E—088E €01 eAR[IOYOIRIAL LS V/WOp/2109/p(/asdifos/Sio/wop asdijoe
1020301d 9oidwoour §016-950S ¥yl eAel'suondp3nqag/3nqap sromawrey/13so/asdi[oo/310lomawesjeiod 3sdipoo
[000y01d 9)oidwioour 61¢81-01€81 ¥61 eAel'urejz;/1esmoiq3asysddesyneq oyoede/3io yneq
Qures) are ()swered'p pue sSre Jo sazis jey) sYAYd [odojold dordwosur 799/—-0S9L 681 eAel1900yDad A1 /1oy 11aa/[psyuadiurl BIOIAR
()1xeu Sur[Te0 9I10Joq SIOSSAIIE JO AZIS AY) J0J SYooyd ‘Joooroid djerdwoour zg1/-960L LLT eael1oy00yDedA 1 /aogtoa/[psyuaSiurl eloiae
Aeyo s.J1 0S ‘poylouwr Jo
Suruurdaq e 31 10§ SYOoYD ‘9ZIS dwes Ay} 2AeY sSIe pue swered'p jey) sawnsse ([020j0o1d Ajordwodur £/ 8798 LET eael1ourjuf/uad /uadiurl BIOIAR
[000301d a3 Jo 1red jou st ()1xou d10Jaq ()azis {[ooojoid ayordwoour ¢GeeT—-SHEET LIS BAR[WUNIPOJA]/OTPRI/WIS/RIOIAR BIOIAR
JUSWIWOY) SIdJoRIRYD) aurg oy wreidold

REFERENCES

[1] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically
checking API protocol conformance with mined multi-object
specifications,” in /CSE, 2012.

[2] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for
the evaluation of specification miners based on finite state
machines,” in ICSM, 2010, pp. 1-10.

[3] M. Pradel and T. R. Gross, “Automatic generation of object
usage specifications from large method traces,” in ASE, 2009,
pp- 371-382.

[4] C. Jaspan and J. Aldrich, “Checking framework interactions
with relationships,” in ECOOP, 2009, pp. 27-51.

