ConfProf: White-Box Performance Profiling of Configuration
Options

Xue Han Tingting Yu Michael Pradel
University of Southern Indiana University of Kentucky University of Stuttgart
Indiana, USA KY, USA Stuttgart, Germany
xhan@usi.edu tyu@cs.uky.edu michael@binaervarianz.de

ABSTRACT

Modern software systems are highly customizable through config-
uration options. The sheer size of the configuration space makes
it challenging to understand the performance influence of individ-
ual configuration options and their interactions under a specific
usage scenario. Software with poor performance may lead to low
system throughput and long response time. This paper presents
ConfProf, a white-box performance profiling technique with a focus
on configuration options. ConfProf helps developers understand
how configuration options and their interactions influence the per-
formance of a software system. The approach combines dynamic
program analysis, machine learning, and feedback-directed config-
uration sampling to profile the program execution and analyze the
performance influence of configuration options. Compared to exist-
ing approaches, ConfProf uses a white-box approach combined with
machine learning to rank performance-influencing configuration
options from execution traces. We evaluate the approach with 13
scenarios of four real-world, highly-configurable software systems.
The results show that ConfProf ranks performance-influencing con-
figuration options with high accuracy and outperform a state of
the art technique.

CCS CONCEPTS

« Software and its engineering — Software notations and tools.

KEYWORDS
Performance Profiling; Software Performance

ACM Reference Format:

Xue Han, Tingting Yu, and Michael Pradel. 2021. ConfProf: White-Box
Performance Profiling of Configuration Options. In Proceedings of the 2021
ACM/SPEC International Conference on Performance Engineering (ICPE °21),
April 19-23, 2021, Virtual Event, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3427921.3450255

1 INTRODUCTION

Modern software systems are highly-configurable. Users can cus-
tomize a large number of configuration options to change program
functionalities. The complexity of the configuration space and the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’21, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8194-9/21/04...$15.00
https://doi.org/10.1145/3427921.3450255

sophisticated interactions among configuration options can easily
cause performance issues. A typical configurable software system
may have thousands of configuration options, and this generates
numerous possible configurations. Unfortunately, developers of-
ten do not know how configuration options and their interactions
influence the performance of a system [12].

Prior work has examined the prevalence of configuration issues
that have led to performance problems. Han et al. [12] found that
more than half of the performance problems (59%) are due to config-
uration issues. Figure 1 shows a real-world, configuration-related
performance bug in Apache. When a user sets a large value for the
configuration option StartServers (e.g., 60), restarting Apache
takes a longer time to complete than usual. The root cause of this
bug is an expensive method call dummy_connection() (line 6) in-
side a for loop (line 2). This dummy_connection() method invokes
system calls such as poll() and select() to wake Apache child server
processes. An if statement (line3) is added to the for loop to fix this
bug. The if statement checks the status of child server processes
(line 4) before invoking the dummy_connection() method (line 6)
to wake child server processes.

1 ap_mpm_pod_killpg(ap_pod_t #*pod, int num){

2 for (i=0;i<num && rv==APR_SUCCESS;i++) {

3 + if (ap_scoreboard_image->servers[i][0].pid == 0 ||

4 + ap_scoreboard_image-> servers[i][0].status!=SERVER_READY)
5 + continue;

6 rv=dummy_connection(pod);}}

Figure 1: Apache Bug #54852
This paper presents ConfProf, a white-box performance profiling

approach that analyzes and ranks configuration options for highly-
configurable software systems. ConfProf chooses a white-box per-
formance profiling approach over the black-box approach so that
developers can pinpoint inefficient, configuration-dependent code
locations. ConfProf consists of two major phases. In phase [, the ap-
proach identifies individual code locations for which performance
depends on configuration options. To this end, ConfProf gathers
execution profiles with different configuration option values and
infers a complexity model that uses the option values to predict the
execution cost of a performance-sensitive code location [19] such
as loops and system calls. The intuition is that such code locations
are more likely to cause performance problems [3, 14]. In phase
II, ConfProf summarizes the performance impact of each config-
uration option across all performance-sensitive code locations to
report a ranked list of performance-influencing options. The rank
can help developers to identify which configuration options have
the highest performance impact on the subject program.

https://doi.org/10.1145/3427921.3450255
https://doi.org/10.1145/3427921.3450255

We envision to apply ConfProf in at least three cases. First, a
developer who may not be aware of performance-influencing con-
figuration options in a program can use ConfProf to rank the con-
figuration options in terms of their performance impact. ConfProf
differs from prior work [4, 14, 31, 36] on performance profiling by
considering the configuration space beyond the default configura-
tion of a software system. Similar to existing profiling techniques,
ConfProf is based on dynamic analysis and therefore limited to
observing the executions triggered by a given set of inputs. The
problem of finding suitable inputs for performance analysis [6, 8, 35]
is orthogonal to the issue addressed here.

Second, developers can use ConfProf to pinpoint code locations
for which the performance depends on a configuration option value.
ConfProf guides developers toward understanding configuration-
related performance issues by identifying performance-influencing
code locations. An alternative way to identify configuration options
that are relevant to specific code locations is to use static analy-
sis [16]. However, such techniques work best for single-language,
self-contained systems with source code [1]. In contrast, ConfProf
is a dynamic approach in which the identification of performance-
influencing configuration options is from program execution pro-
files. Thus, ConfProf can scale with large and heterogeneous soft-
ware systems without source code.

Third, ConfProf can help developers and researchers who build
performance prediction models for a software system using just
configuration options [29]. They can combine existing performance
modeling techniques with ConfProf by sampling only performance-
influencing configuration options identified by ConfProf.

To evaluate the effectiveness of ConfProf, we apply the approach
to four popular real-world C/C++ programs. Our results show that
ConfProf effectively identifies performance-influencing configura-
tion options. In summary, this paper makes the following contribu-
tions:

e An automated white-box and dynamic performance analysis
approach that ranks the performance influence of configura-
tion options for highly-configurable software systems.

o A technique that associates specific code locations with con-
figuration options that have a high-performance influence
on the subject program.

o A practical approach with open-source implementation toolsets
that works in real-world C/C++ programs.

2 BACKGROUND

This section provides definitions and background on configurable
software systems and performance bugs.

2.1 Definitions

A configurable software system S consists of a set of configuration
options OPT including both numeric options and binary options.
The function v(0O;) represents the current value of a configuration
option O;. A usage scenario of S corresponds to a major function in a
software system. ConfProf aims to profile the performance influence
of configuration options on a given usage scenario. For example,
typical usage scenarios of Parallel BZIP2 (PBZIP2) are compressing
data and decompressing data. Each usage scenario associates with
a set of configuration options OPT’, where OPT’ C OPT. The
configuration options used in one scenario may not apply to another

scenario. For instance, PBZIP2 uses the configuration option -z
to compress data, whereas the configuration option -d is used for
decompressing data. Since performance bugs often require specific
workloads to manifest, we identify the workload for each usage
scenario accordingly. For example, serving HTTP requests is one
usage scenario in the Apache server. The number of concurrent
HTTP requests is one type of workload in this usage scenario.

2.2 Configuration-Related Performance Bugs

Prior work has studied the challenges for handling performance
bugs in highly-configurable software systems [12]. The study re-
ports that more than half of 193 studied performance bugs (59%) are
triggered by configuration options. There are many cases in which
a misconfiguration causes poor software performance. The root
cause can fall into two categories. The first category is software
bugs due to coding errors [18, 19]. The software bug in Figure 1 is
an example of this category. The second category of configuration-
related performance bugs is system environment-specific related to
hardware, system topology, and the choice of system core libraries.
For example, in Apache Bug #45834, a misconfiguration of the fire-
wall cuts authentication communications, which freezes the system.
A prior study [12] shows that the system environment-specific
configurations performance bugs account for only a small portion
(8% to 17%) of all problems. Therefore, in this paper, we focus on
performance coding errors, i.e., the first category.

3 APPROACH

This section presents ConfProf, a performance profiling ap-
proach that helps developers understand how configuration options
influence the performance of a system. Figure 2 gives an overview
of the approach. The input to ConfProf is a configurable program
and a usage scenario that exercises the program.

ConfProf consists of two phases. In phase I, ConfProf analyzes
how the performance of individual code locations, i.e., loops and
system calls (e.g., write(), poll(), and select()) depend on configu-
ration options. For illustration purposes, we discuss the approach
with loops only. To this end, ConfProf collects execution profiles
for different configurations and infers code location-level complexity
models (location-level models for short). A location-level model de-
scribes the execution time spent at the code location under different
values of a single or interacting configuration options. For example,
the model my o, = k * v(O;) describes that the execution time in a
code location (e.g., a loop) is linearly dependent on the value of a
configuration option O;, where the coefficient k is a constant. In
phase II, ConfProf summarizes the location-level models for each
configuration option obtained from phase I and computes its per-
formance impact. The output of phase II includes both a ranked
list of individual options and a ranked list of interacting options. A
high ranking option has a stronger influence on software system
performance. To illustrate the idea, consider the example below.

01 ‘ Perf(L;) ‘ Perf(L2) ‘ Perf(Ly, L2)

1 10 100000 100010
2 20 100000 100020
3 30 100000 100030
4 40 100000 100040

1
1Subject program

Location-level
profiling

Inference of
complexity
models

Guidance for

1
|
'
1
1
! .
1 configuration
1

1

1 while() { // L1, standalone loop

2}

3 for(i=0;i<=01;i++) { // L2, single option

4 %

5 for(i=0;i<=pow(Oy,2);i++) { // L3, single option

6 %

7 if(0O3 == 1){

8 for (i=0;i<=0y4;i++) { // L4, option interaction

9 }

10 while() { // L5, standalone loop

11 3}

12 for (i=0;i<pow(Os5,2);i++) { // L6, option interaction
13 3}

JURES

Column one indicates the values of option O7. Column two and
column three indicate the location-level performance measures for
code locations Ly and Ly, and the last column indicates the overall
performance measurements using a black-box approach. Suppose
that the current sample data for Oy is 1, 2, 3, and 4, ConfProf infers
that the complexity model of L; is a linear (L.) model my, o, =
10 * O7 and the complexity model of Ly is a constant (C.) model
mr,.0, = 100000. ConfProf concludes that O; has a performance
impact on the system because it has a positive linear relationship
with L1. As the value of Oq increases, it will influence the overall
system performance. In contrast to the current sample data, O;
has a nearly constant relationship with the overall performance
measurements and a black box approach would consider it to have
no performance impact on the system.

We use the example in the lower part of Figure 2 to illustrate
ConfProf in the rest of this paper. This example contains five config-
uration options, i.e., O1 — Os. Option Os is a binary configuration
option, and others are numeric configuration options. The default
value of each option is 0.

3.1 Inferring Complexity Models

In phase I, ConfProf analyzes how the performance of individual
code locations depends on the configuration options. We focus on
loops and system calls as code locations in this work because they
often influence the performance of a system in significant ways,
and they are at the core of various performance problems [14, 28].

3.1.1 Performance Measurements. Given a usage scenario and a
set of configuration options, ConfProf measures the performance
of each loop and system call in a program using the wall-clock
execution time. Recent work on performance modeling [29] and
performance bug detection [38] techniques also used wall-clock
execution time as performance measurements. While other perfor-
mance measurements, such as the number of executed conditional
instructions (e.g., direct/indirect calls and direct/indirect branches)

Performance

=== Phase II

[
1 ! :
' X Performance !
profiles ! : . & Ranked '
: ' Bupas option list !
/ estimation ' !
1
1 1
Location-level : | o e e e e e e m = . !
complexity 1 I'
models : 1
1

1
' Rank | Option C. L H
1
Single options:
Single options:
Mo =C 1|0, 20 1
1.01
-k 2|04 210
miy,0; =k * O1 3|04 30 0
miL5,0p = C s 4|05 300
mrz.0, = ks * (02)
Interacting options:
Interacting options: 1|05 with Os=1] 5 0 1
ML,.0y4 | O3=1 f’g*o‘t 2|0y with O3=1 5 1 0
ML3.04 | O3=1 =) 3|0, with O3=1| 5 0 0
mrg0s | 03=1 = ks * (Os) 4|0y with O3=1| 5 0 0

Figure 2: Overview of the ConfProf framework

or the number of instruction counts, can also be used [24, 27], they
may not be representative of the actual performance.

3.1.2 Location-Level Complexity Models. Based on performance
measurements obtained for different configurations, ConfProf infers
a location-level model for performance-sensitive code locations,
i.e., loops and system calls.

Definition 3.1 (Complexity Model). A complexity model m is a
function that predicts the execution time of a code location ! using
one or more configuration options. We consider three kinds of
complexity models:

o A constant model mp = C expresses the performance cost of
the measured code location L is C, that is, it is independent
of any options.

o A single-option model my = f(O;) expresses that the perfor-
mance cost of the measured code location L is a function of
an option O;.

o A model of interacting options mp | o,=1 = f(O;) expresses
that the performance cost of the measured code location L
is a function of the option O; given that the binary option
Oy, is enabled.

To infer the function f of such a model, ConfProf analyzes a
sequence of performance measurements. Specifically, the inference
takes a sequence of performance measurements p1, .., pr, where
each measurement is gathered with a different configuration value
v1, .., U} for a configuration option O;. We explain below how Conf-
Prof obtains this sequence of performance measurements. Given
the sequence, the approach uses machine learning models to fit
the performance measurements. To that end, configuration options
are learning features, and performance measurements are learning
labels. ConfProf fits the data points (vg, pr) to linear regression
models and non-linear complexity models. Specifically, ConfProf
uses linear regression (LR) to learn the linear complexity models
and both the support vector machines (SVM) and multilayer per-
ceptron (MP) to learn the non-linear complexity model [23]. The

mean absolute error (MAE) is widely used to assess model perfor-
mance [7, 37]. ConfProf computes MAE and associates the code
location with the model that has the lowest MAE.

3.1.3 Feedback-Driven Profiling and Model Inference. To infer com-
plexity models, ConfProf uses performance measurements obtained
from different configuration option values. One possible approach
is to first measure performance for a sufficiently large set of con-
figurations and then infer models. However, the downside of this
approach is that performance measurements are taken without
knowing what and how many data points are sufficient for infer-
ring an accurate model. Given the high cost of measuring perfor-
mance that involves executing the program with the given usage
scenario, this approach may suffer from scalability. Instead of the
first-measure-then-infer approach, ConfProf uses a feedback-driven
profiling and model inference approach. Specifically, ConfProf in-
crementally obtains new performance measurements to expand the
existing profile data and iteratively improves the inferred model.
The main benefit is that the feedback-driven approach requires
fewer performance measurements than the alternative approach,
which significantly reduces the model inference overall cost.

Algorithm 1 summarizes the main steps of the iterative model
inference approach for ConfProf. The algorithm takes a set L of
code locations (i.e., loops and system calls) and a set OPT of con-
figuration options as input and outputs an inferred model for each
code location. The complexity model inference algorithm starts
by obtaining an initial sequence P of performance measures for
configuration option values v1, vy, ...v of each option O; (line 2).
ConfProf executes different values of O; while keeping the other
options as default to assess the performance influence of O; indi-
vidually. Therefore, after the execution, we obtain k profiles and
have a sequence of performance measurements P = py, ..., py for
each code location.

Algorithm 1 Iterative inference of location-level complexity
models.

Require: Set L of code locations, set OPT of options
Ensure: Map U of code locations to models

1: err =errpre =

2: for each O; € OPT do

3: for each L € LOC do

4 while time < LIMIT do

5: P « GetMeasures(L, O;)

6: M « LearnModel(P)

7: err = ComputeError (M, P)

8: if err < thresh, || (err-errpre) < threshipc then
9: U— UU{L—> M}

10: break

11: end if

12: P’ « GenerateNewProfile(Oj,..,,)
13: errpre = €rr

14: P—PUP

15: end while

16: end for

17: end for

The main part of the algorithm is the iteration cycle of inferring
and refining complexity models (lines 3 - 16). ConfProf first obtains
the performance measurements for the code location L across all
execution profiles (line 5). It then infers complexity models (line
6) based on the configuration option values and performance mea-
surements using the machine learning models. In the next step,
ConfProf computes err, the errors for the inferred model (line 7).

Based on the prediction error, the algorithm terminates and returns
the model when passing either one of two conditions: 1) The aver-
age error is less than a threshold of the mean absolute prediction
error; 2) The improvement of the average error is less than a thresh-
old of model improvement threshinc (line 8). If neither of the above
conditions holds, ConfProf continues to refine the model by gener-
ating new profiles using a new set of values for O; (line 12) until it
reaches a predefined time limit (e.g., 24 hours). In the presence of
nested loops, the algorithm selects and profiles the outer and inner
loops independently, which improves the transparency of model
inference. This strategy provides details in the individual loop and
avoids misrepresentations in cases when the whole program runs
inside a single loop.

Selecting Values. While the number of sampled option values
should be large enough to infer an accurate model, an excessively
large number would require a much longer time to infer the model.
Therefore, the initial set of values for a configuration option O;
is generated incrementally by following a fixed percentage N%,
and additional values are generated by adjusting the value of N.
Specifically, for each numeric configuration option with a value
range of [min, max], if max > 10, ConfProf begins with min, and
iteratively selects the next value by an increment of max * N% until
max is reached. Each value is rounded up to an integer. If the pre-
diction error does not reach the threshold, ConfProf automatically
increases the sampling density by reducing N% to %% to generate
more option values. The intuition is that as more data points are
used, it often leads to a lower error in the inferred models. If the
option has a smaller value range (e.g., max < 10), ConfProf selects
all integer values within the range. When the algorithm completes,
ConfProf updates the average error errpye (line 13). Both new and
old performance profiles are used for learning in the next iteration
(line 14).

Interactions of Options. Prior work shows that binary options
can enable/disable certain functionalities [25]. Switching a binary
option Oy, to a different value may cause a numeric option O, to
cover new performance-sensitive code locations. To identify such
numeric options, ConfProf employs a pair-wise strategy, in which
each value of the numeric option O, is combined with all boolean
values of each binary option Oj, while keeping other options with
their default values. If the number of performance-sensitive code
location is different than when Oy, is at its default value, ConfProf
determines that O and O, have a potential interaction. In this
case, ConfProf learns complexity models for code locations that are
controlled by Op. If the order of a complexity model is linear or
higher, Op and O, have a confirmed interaction.

ConfProf considers only pairwise interactions between numeric
and binary options. A higher-strength interaction (among more
than two configuration options) may cause performance prob-
lems. However, exhaustively exploring the combinations of all
configuration options is not practical due to limited system re-
sources. As a previous study [12] shows, the majority (72% to 73%)
of configuration-related performance bugs is related to only one
option, 13% to 15% of the bugs are related to two options where
12% to 15% of the examined parameter configuration bugs involve
more than two options. Therefore, we focus on single options and

pairwise interactions. Yet, ConfProf has advantages over most exist-
ing performance modeling techniques [9, 29, 30] that support only
binary options and cannot identify performance-related numeric
options, which are commonly used in the real-world configurable
systems [25].

A Running Example. In the example program of Figure 2, Conf-
Prof first infers complexity models for configuration option O;.
Suppose the value range of O7 is [0, 1000] and the fixed percentage
N%is 10% [17] (i.e., O; increases by 100 in each iteration). As such,
the initial sequence of option values for O; is 0, 100, 200, . . ., 1000.
The program is then exercised on 11 configurations: {0,0,0,0,0},
{100,0,0,0,0}, ..., {1000,0,0,0,0}. As a result, ConfProf obtains 11 per-
formance profiles: Py, Py, ..., P11 for each performance-sensitive
code location such as Loop1 (L1), Loop2 (L2), and Loop3 (L3). If
the prediction error does not reach the threshold, N% is set to %%
(i-e., 5%). Additional configurations {50,0,0,0,0}, ..., {950,0,0,0,0} are
generated and exercised to produce more performance profiles.
When either the prediction error reaches the threshold or a timeout
occurs, ConfProf stops generating performance profiles and infers
the complexity models (in terms of O;) for three code locations:
mp, 0,» Mr,,0,> and my, o,. As Figure 2 shows, the three code lo-
cations correspond to two constant models and one linear model
(mr,,0, = k2 * O1). Following the same process, ConfProf continues
to infer complexity models for other numeric options (i.e., Oz, Oy,
Os).

Next, ConfProf infers the complexity models for interacting op-
tions. ConfProf first changes the default value of O3 from 0 to 1 and
pairs O3 with other options (i.e., (01,03), (02,03), (04,03), (05,03)).
For example, when pairing O3 with Oy, the program is exercised
on 11 new configurations: {0,0,1,0,0}, {100,0,1,0,0}, ..., {1000,0,1,0,0}.
ConfProf begins to infer complexity models on all configuration
options: my, o, | Oy=1s +++» ML5,04 | Os=15 +++» ML;,05 | O5=1- CoOnf-
Prof discovers three new performance-sensitive code locations (i.e.,
Loop4, Loop5, Loopé6) on four interacting option pairs. Among
these models, ML, 0, | O5=118 linear, Mrs.0, | O5=1 18 constant, and
Mp, 05 | O5=1 18 higher-order (H.).

3.2 Estimating the Performance Impact

Upon completion of the location-level model inference, each config-
uration option O; corresponds to a set of complexity models across
all distinct code locations, {mr, o0,.mr,0,>--,ML,,0,}, Where n is
the index of code locations.

Next, ConfProf ranks the single configuration options and op-
tion interactions based on their performance influence. ConfProf
employs an idea similar to performance summarization [3] to rank
options. The intuition is that a single option or an option interaction
associated with more higher-order complexity models is more likely
to have a significant performance impact and thus have a higher
performance ranking. In particular, we assign different weights to
location-level models according to their complexity orders (i.e., con-
stant order, linear order, and higher-order). The final performance
impact of an option O is a weighted sum of cost across all code

locations: Po = Z (w;C(L;)). Lj refers to a code location. C(L;) is

the performance cost of L;, a value of the recorded performance

measurements. w; is the weight of the complexity model at location
L.

A Running Example. When choosing weights for models, we
conduct a sensitivity study in which we tried out different combina-
tions of weights (in Section 7). The weights used in the illustration
are the most straightforward to understand and yield a better result.
In Figure 2, we assign weights 1 (2°), 2 (2'), and 4 (22) to the con-
stant, (positive) linear, and (positive) higher-order models. We use
configuration options O; and Oz as an example. O; corresponds
to one linear model (Loop2) and two constant models (Loop1 and
Loop3), and O, corresponds to one quadratic model (Loop3) and
two constant models (Loop1 and Loop2). Suppose the performance
impact of O; (with the binary configuration option O3 disabled)
across Loop1 to Loop3 is C(L1) =5, C(Lz) = 10, C(L3) = 5 and that
of Oz is C(Ly) = 2, C(Lz) = 4, C(L3) = 10. The performance impact
for the two options is computed as: Po, = 175 + 2710 + 1*5 = 30; Pp,
=1%2 + 1"4 + 4"10 = 46. Therefore, Oz has a higher performance
impact than O;. The table in Figure 2 summarizes the number of
complexity models under different orders and the ranking of both
single configuration options and their interactions.

4 IMPLEMENTATION

We conduct all experiments in a High-Performance Computer (HPC)
cluster. Each node is exclusively reserved by the experiment and
runs only ConfProf and subject programs to minimize any perturba-
tion. ConfProf first classifies the configuration options into numeric
options and binary options. This step is semi-automated. We de-
velop a parsing tool to extract all configuration options and their
descriptions from the documentation, and then manually identify
the value range of these options. This is a one-time effort. ConfProf
uses the Intel PIN dynamic binary instrumentation framework to
identify loops and systems calls to collect performance measure-
ments. ConfProf uses Weka [10] to learn location-level models.

5 EXPERIMENTAL SETUP

ConfProf aims to address three research questions: RQ1: How effec-
tive is ConfProf at ranking performance-influencing configuration
options and identifying the corresponding code segments? RQ2:
How well does ConfProf work compare to a baseline approach?
RQ3: How effective is ConfProf at refining the location-level com-
plexity models with the feedback-driven iterative approach?

5.1 Subject Programs

We use four highly-configurable, and popular open-source pro-
grams to evaluate ConfProf: Apache Server, PBZIP2, PostgreSQL
(PSQL), and Lighttpd. These programs cover different application
domains. For example, we use web servers, database engines, and
data compression utilities. Each program has various numeric and
binary options. We extract these options from the respective project
documentation. For each project, we summarize several common
usage scenarios that exercise different functionalities. Therefore,
ConfProf ranks configuration options according to the usage sce-
nario.

5.2 RQ1: Ranking Options
To evaluate the effectiveness of ranking, we use the mean average
precision MAP = @ . Z AP(Q;). MAP is a single-figure measure-

QieQ
ment of ranked retrieval results independent of the size of the top

list [26]. It is designed for general ranked retrieval problems, where
a query can have multiple relevant documents. To compute MAP,
it first calculates the average precision (AP) for individual query
Q; and then calculates the mean of APs on the set of queries Q. To
illustrate the MAP calculation, suppose that two configuration op-
tions O; and O3 are both considered to be the ground truth options.
If Technique-I ranks the two options at the 1st and 2nd positions
among all 500 options and Technique-II ranks the two options at
the 1st and 3rd positions, then the MAP of Technique-I is (1/1 +
2/2)/2 = 1, and the MAP of Technique-II is (1/1 + 2/3)/2 = 0.8.

To determine the ground truth options, we manually inspect
the documentation and bug reports of the subject programs to
identify configuration options that have a performance influence
and use these options as the ground truth options. For example,
the Apache documentation states that when setting the option
DeflateCompressionLevel, “the higher the value, the better the
compression, but the more CPU time is required to achieve this”

Therefore, we consider DeflateCompressionLevel as a performance-

influencing option. Hence, DeflateCompressionLevel is a ground
truth option for the Apache deflate encoding usage scenario. Fur-
thermore, we manually examine bug reports and code patches
to verify whether any of the code locations associated with the
performance-influencing options have bugs. We consider a code lo-
cation that has bugs if (i) it is reported and confirmed by developers,
and (ii) developers fix the bug in subsequent releases.

5.3 RQ2: Comparison with A Baseline

Ideally, to answer RQ2, we should compare ConfProf with existing
approaches that detect and/or rank performance-influencing config-
uration options. However, we cannot find an existing approach with
this specific goal. As discussed in Section 1, performance modeling
techniques use configuration options to build models to predict a
system’s performance. The options used to construct the model
indicate their impact on performance. SPLConqueror [29] is a black-
box approach that uses machine learning and heuristic sampling
to learn a performance model for the subject program from a set
of configuration option values. Therefore, we can use the orders
associated with each term generated from the SPLConqueror per-
formance model to rank performance-influencing configuration
options.

To illustrate SPLConqueror, we consider a web server program
with options for defining the maximum number of client requests
r and a binary option p for enabling HTTP persistent connection.
A configuration-aware performance model for this system is: M =
3% 0(r)2 — 2+ v(p) + 10. In this example, the two options used to
build the model influence software performance in different degrees.
The first term 3 * o(r)? indicates that the maximum number of
client requests influences the overall running time in a quadratic
order. The second term 2 % v(p) denotes that the HTTP persistent
connection option if enabled, speeds up the execution time by two

units, a linear order. Since the option r associates with the higher-
order term (3*v(r)?), r ranks higher than p in terms of performance
influence.

5.4 ROQ3: Effectiveness of Learning

n
1 = x
To answer RQ3, we use the Mean Absolute Error MAE = M

for location-level models. MAE computes the average of thg abso-
lute difference between model prediction (y;) and the actual out-
come (x;) across all data instances. It is a widely used metric to
evaluate the accuracy of machine learning models [5, 33].

5.5 Study Operation

We set the threshold of the mean absolute error to 0.1 and the
threshold of model accuracy improvement to 25%. These thresholds
are empirically chosen because they yield an accurate model in a
reasonable time (within 24 hours). To obtain the execution profiles
(Section 3.1.3), the percentage used for generating the initial set of
values of each numeric option is set to 10%. We assign weights 2°,
21, 22 to the constant, (positive) linear, and (positive) higher-order
models, respectively.

To control the fluctuation due to the randomness in each tech-
nique, we run each experiment three times to report the mean result.

6 RESULTS

6.1 RQ1: Ranking Options

ConfProf ranks configuration options in terms of their performance
impact in a given scenario. We assess the effectiveness of ConfProf
to rank configuration options based on the aforementioned ground
truth. Column “Top-5” of Table 1 shows the top-5 configuration
options ranked by each approach. The options marked in bold font
indicate that they are known performance-influencing options. The
reference links to the ground truth source. Options marked with
“x” correspond to known performance bugs as discussed below.

AP-S1. In Apache Bug #34508 and Apache Bug #54852, users
reported that a higher value of configuration option StartServers
would cause a slow down during a graceful server restart. Conf-
Prof ranked configuration option StartServers at the top among
all 224 configuration options. The option StartServers was as-
sociated with 50 constant models, eight linear models, and five
higher-order models. The loop implementation that had caused the
bug (Figure 1) was among one of the linear location-level models.
Also, the function “dummy_connection()” called inside the loop
utilized system calls poll() and select() internally. The system call
select() took on average 500 milliseconds to complete while most
system calls use less than one millisecond. Therefore, the configu-
ration option StartServers has the highest performance impact
during the server restart.

AW-S2. In Apache Bug #42031, when the number of HTTP re-
quests reached the MaxClient limit, Apache child processes would
start to freeze. This bug was related to the configuration options
KeepAliveTimeout and MaxClients, which were ranked by Conf-
Prof at positions four and five, respectively. The bug had been

Table 1: Performance-Influencing Configuration Options Ranking

Scenario ConfProf SPLConqueror
Top-5 MAP Top-5 MAP
AE-S1 G.S.Timeout, KeepAliveTimeout [2],LimitI.R.,LimitReqBody, LimitRequestFields 0.5 MaxClients, RLimitNPROC, MinSpareServers, ReceiveBufferSize 0
AE-S2 MaxKeepAliveRequests, Timeout, SendBufferSize, KeepAliveTimeout [2]%, MaxClients™ 0.3 MaxClients, MinSpareServers, FileETag 1
PZ-S1 FileSize [20], MaxMem(m), BlockSize(b), NumOfProcessor(p), LoadAvg(l) 0.9 FileSize, BlockSize(b), NumOfProcessor(p) 0.8
PZ-S2 BWT, BlockSize(b), ChildStackSize(S), MaxMem(m) [20], NumOfProcessor(p) 0.3 MaxMem(m), FileSize, BlockSize(b), NumOfProcessor(p) 0.8
PZ-S3 NumOfProcessor(p) [20], BlockSize(b), BWT, MaxMem(m), LoadAvg (1) 0.8 ChildStackSize(S), NumOfProcessor(p), BlockSize(b), MaxMem(m) 0.5
PS-S1 auto_work_mem, temp_file_limit, commit_delay [21], 05 ssl, maxpreparedtrans, sslpreferscs, 0
max_connections, maintenance_work_mem autovacuum, logdisconnections
PS-52 commit_delay, max_files_per_process, 0.25 max_parallel_workers_per_gather, 0
auto_work_mem, max_connections [22], temp_file_limit : ssl
LH-S1 connection.kbps, server.kbps, server.mc, 0.2 debuglogresponseheader, connkbps, 0
server.listen-backlog, server.max-fds [15]) servermaxreq, serverlistenbacklog
server.mrs, server.max-keep-alive-requests [15], server.max-read-idle,
LH-S2 N 0.5 N 0
server.listen-backlog, server.mc, server.max-fds server.listen-backlog

The bold fonts are known to be performance-influencing. Due to space limitation, we only list nine scenarios. The full list can be found on our website.

fixed by adding locks to a while loop that associated the option
KeepAliveTimeout with a linear complexity model.

Overall, the results show that the top-5 options ranked by Conf-
Prof in each usage scenario include at least one known performance-

influencing option. Thus, ConfProfis effective in ranking performance-

influencing configuration options.

6.2 RQ2: Comparison with a Baseline

In Table 1, column “Top-5” under “SPLConqueror” shows the top-5
performance-influencing options in the performance model built by
SPLCongqueror. Both column “MAP” under ConfProf and SPLCon-
queror show the MAP scores. Compared to SPLConqueror, the MAP
score in ConfProf is higher in 11 out of 13 scenarios ranging from
0.2 to 0.9 and averaging 0.5. The results show that ConfProf can
achieve better configuration option ranking than SPLConqueror.

Table 2: Location-Level Complexity Models

MAE Models

Scenario | gt | End | . | L | H | €O
AE-S1 139 | 91 | 26| 22| 34| 1sh
AE-S2 26 | 17 | 17| 25 | 38 | osh
PZ-S1 138 | 46 | 6 | 4 | 7 | 53n
PZ-S2 218 | 111 | 5 | 3| 7 | 27n
PZ-$3 134 | 21| 4| 2|6 | osn
PS-S1 321 | 25 | 49 | 17 | 58 | 21n
PS-52 74 | 17 |3 | 12 | 50 | 13h
LH-S1 145 | 33 | 11| 6 | 20| 15h
LH-52 108 | 23 |21 | 12| 15| 16h

6.3 RQ3: Effectiveness of Learning

To answer RQ3, we measured prediction errors of the learned
location-level models and to what extent the error was reduced
due to the iterative model refinement. Table 2 shows the result.
The “Start” and “End” columns show the prediction errors before
and after the model refinement. When applying the model refine-
ment, errors of the inferred models were substantially lower (57%,
on average) across location-level models in all usage scenarios. In
summary, the results show that the iterative inference algorithm
(Algorithm 1) improved the prediction accuracy of learning the
location-level models.

7 THREATS TO VALIDITY

The primary threat to external validity for this study involves the
representativeness of the selected subject programs. Other subject
programs may exhibit different behaviors. We reduce this threat
to some extent by studying subjects from different application
domains, and those have varying numbers of configuration options.

A threat to the internal validity of this study is the possible
faults in the implementation and tools that we use to perform the
evaluation. We controlled this threat by testing our tools extensively
and verifying their results against a smaller program for which we
can manually determine the correct result.

One threat involves the human factor for determining whether
a configuration option is performance-influencing. It may intro-
duce false-positive options. To reduce this threat, we first searched
the application documentation and issue trackers for performance-
influencing options and then compared these options to the top-5
options reported by ConfProf. The fact that most performance bugs
require less than five options [11, 12] to manifest, our evaluation
with the top-5 options is reasonable and sufficient. When multi-
ple options are involved in the ground truth, the absolute option
ranks cannot be determined, and it does not matter either. We
use MAP to evaluate the effectiveness of identifying performance-
influencing options. The exact rank among ground truth options
does not change the MAP calculation. A second threat is the rela-
tionship between performance impact and option values in a model.
ConfProf considers constant, linear, and higher-order relations.
The performance impact and the option values can have an inverse
relationship. We did not observe such relationships in our study.
We plan to study the cost-effectiveness of using inverse models in
future work. A third threat is that ConfProf focuses on performance-
sensitive code locations because performance bugs due to loops
and system calls are more pervasive [14]. Other code locations may
also cause performance problems, such as multi-threaded code that
causes lock contention [32, 39] and (indirect) recursion. We plan to
incorporate these code locations into ConfProf in future work.

8 RELATED WORK

Configuration-Aware Research. There has been a good amount
of research work on configuration-aware techniques [25, 40]. Con-
figuration in the context is not the same as software configuration
management (SCM). Configuration-aware research targets on pa-
rameters that control various software runtime behavior in the run-
time. Zhang et al. [40] have proposed a technique ConfDiagnoser,

to diagnose crashing and non-crashing errors related to configura-
tion misconfigurations. Rabkin et al. [25] propose a static analysis
technique to extract configuration options from Java code to bridge
the discrepancy between configuration options and software doc-
umentation. Our work lies in configuration-aware research. But
unlike our research, previous work focuses on the functional aspect
of a software system instead of performance problems.

Performance Modeling. There has been a good body of work
on constructing performance models for various purposes [9, 13, 29,
34]. Guo et al. [9] predict a configuration’s performance based on
random sampling and a statistical learning method CART. Huang
et al. [13] build sparse polynomial regression performance models
using sampled input files and command-line arguments. Siegmund
et al. [29] propose performance models that predict end-to-end
system performance with individual configuration options and
their interactions. Tarvo et al. [34] build performance models for
multithreaded programs. Unlike our work that targets ranking
performance-influencing configuration options, prior work focuses
on program performance prediction. Specifically, such work builds
end-to-end performance models while ConfProf builds location-
level performance models for configuration options. Building per-
formance models is the vehicle to evaluate the performance impact
of configuration options when profiling a scenario. It is not the
goal of ConfProf to build an end-to-end performance model for the
subject program. Also, when building performance models using
sampled configurations, these techniques deem the subject program
as a black-box while ignoring the implementation of the program.
Although these techniques may provide some insights about factors
involved in analyzing configuration-related performance problems,
they are incapable of pinpointing code location-level implementa-
tions that can influence the software system performance.

9 CONCLUSIONS

We present ConfProf, a white-box performance profiling approach
for software configuration options. ConfProf outputs a ranked list to
identify and understand the performance influence of configuration
options. Our evaluation shows that ConfProf can successfully iden-
tify performance-influencing configuration options and outperform
the state of the art approach in 11 out of 13 usage scenarios.

ACKNOWLEDGEMENT

This work was supported by the National Science Foundation CCF-
1652149; the European Research Council (ERC, grant agreement
851895); and the German Research Foundation within the ConcSys
and Perf4]S projects.

REFERENCES

[1] Paul Anderson. The use and limitations of static-analysis tools to improve
software quality. CrossTalk: The Journal of Defense Software Engineering,
21(6):18-21, 2008.

[2] http://httpd.apache.org/docs/current/misc/perf-tuning.html.

[3] Mona Attariyan, MIchael Chow, and Jason Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI, pages
307-320, 2012.

[4] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In OSDI, pages 1-11, 2010.

[5] David Bailey and Allan Snavely. Performance modeling: Understanding the past
and predicting the future. Euro-Par 2005 Parallel Processing, pages 620620, 2005.

[6] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test
generation for worst-case complexity. In ICSE, pages 463-473, 2009.

—
)

—_
&

[12

[13

[14

RN
)

=
]

~
=

™
&

)
20,

'
=

[31

[32

(33]

&
=)

Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean
absolute error (mae)?-arguments against avoiding rmse in the literature.
Geoscientific model development, 7(3):1247-1250, 2014.

Monika Dhok and Murali Krishna Ramanathan. Directed test generation to
detect loop inefficiencies. In FSE, 2016.

Jianmei Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski.
Variability-aware performance prediction: A statistical learning approach. In
ASE, pages 301-311, 2013.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10-18, 2009.

Xue Han, Daniel Carroll, and Tingting Yu. Reproducing performance bug
reports in server applications: The researchers’ experiences. Journal of Systems
and Software, 156:268-282, 2019.

Xue Han and Tingting Yu. An empirical study on performance bugs for highly
configurable software systems. In ESEM, pages 215-224, 2016.

Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur
Naik. Predicting execution time of computer programs using sparse polynomial
regression. In Advances in Neural Information Processing Systems, pages 883-891,
2010.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and detecting real-world performance bugs. In PLDI, pages
77-88, 2012.

https://redmine lighttpd.net/projects/1/wiki/docs-performance.

Max Lillack, Christian Kastner, and Eric Bodden. Tracking load-time
configuration options. IEEE Transactions on Software Engineering,
44(12):1269-1291, 2018.
https://machinelearningmastery.com/much-training-data-required-machine-
learning/.

Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing
performance bugs. In MSR, pages 237-246, 2013.

Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting
performance problems via similar memory-access patterns. In ICSE, pages
562-571, 2013.

http://compression.ca/pbzip2/.
https://wiki.postgresql.org/wiki/Tuning-Your-PostgreSQL-Server.
http://www.revsys.com/writings/postgresql-performance.html.

John C Platt. 12 fast training of support vector machines using sequential
minimal optimization. Advances in kernel methods, pages 185-208, 1999.
Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. EventBreak:
Analyzing the responsiveness of user interfaces through performance-guided
test generation. In OOPSLA, 2014.

Ariel Rabkin and Randy Katz. Static extraction of program configuration
options. In ICSE, pages 131-140, 2011.

Hinrich Schiitze, Christopher D Manning, and Prabhakar Raghavan. Introduction
to information retrieval, volume 39. Cambridge University Press, 2008.

Marija Selakovic, Thomas Glaser, and Michael Pradel. An actionable
performance profiler for optimizing the order of evaluations. In ISSTA, pages
170-180, 2017.

Marija Selakovic and Michael Pradel. Performance issues and optimizations in
JavaScript: An empirical study. In ICSE, pages 61-72, 2016.

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Késtner.
Performance-influence models for highly configurable systems. In ESEC, pages
284-294, 2015.

Norbert Siegmund, Sergiy S Kolesnikov, Christian Késtner, Sven Apel, Don
Batory, Marko Rosenmiiller, and Gunter Saake. Predicting performance via
automated feature-interaction detection. In ICSE, pages 167-177, 2012.

Linhai Song and Shan Lu. Statistical debugging for real-world performance
problems. In OOPSLA, pages 561-578, 2014.

Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyzing
lock contention in multithreaded applications. In PPoPP, pages 269-280, 2010.
Chong Tang. System performance optimization via design and configuration
space exploration. In FSE, pages 1046-1049, 2017.

Alexander Tarvo and Steven P. Reiss. Automated analysis of multithreaded
programs for performance modeling. In ASE, pages 7-18, 2014.

Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Synthesizing
programs that expose performance bottlenecks. In CGO, 2018.

Alexander Wert, Jens Happe, and Lucia Happe. Supporting swift reaction:
Automatically uncovering performance problems by systematic experiments. In
ICSE, pages 552-561, 2013.

Cort J Willmott. Some comments on the evaluation of model performance.
Bulletin of the American Meteorological Society, 63(11):1309-1313, 1982.
Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. Context-sensitive delta
inference for identifying workload-dependent performance bottlenecks. In
ISSTA, pages 90-100, 2013.

Tingting Yu and Michael Pradel. Syncprof: Detecting, localizing, and optimizing
synchronization bottlenecks. In ISSTA, pages 389-400, 2016.

Sai Zhang and Michael D. Ernst. Automated diagnosis of software configuration
errors. In ICSE, pages 312-321, 2013.

	Abstract
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Configuration-Related Performance Bugs

	3 Approach
	3.1 Inferring Complexity Models
	3.2 Estimating the Performance Impact

	4 Implementation
	5 Experimental Setup
	5.1 Subject Programs
	5.2 RQ1: Ranking Options
	5.3 RQ2: Comparison with A Baseline
	5.4 RQ3: Effectiveness of Learning
	5.5 Study Operation

	6 Results
	6.1 RQ1: Ranking Options
	6.2 RQ2: Comparison with a Baseline
	6.3 RQ3: Effectiveness of Learning

	7 Threats to Validity
	8 Related Work
	9 Conclusions
	References

