
DynaPyt:
A Dynamic Analysis Framework for Python

Aryaz Eghbali, Michael Pradel
Software Lab, University of Stuttgart

https://software-lab.org/ESEC/FSE 2022

https://software-lab.org/

Motivation

2

ML Code

Security:
● Dynamic taint analysis

Performance:
● Memory leak
● Slow operations

Testing:
● Branch coverage

cuda runtime error(2): out of memory

Options

3

Ad-hoc

● Implement an instrumenter with
LibCST

● Nalin has 200+ lines of code for
assignment tracking

Patra, Jibesh, and Michael Pradel. "Nalin: learning from runtime behavior to find name-value inconsistencies in jupyter notebooks." Proceedings of the 44th International Conference on Software Engineering. 2022.

Options

4

sys.settrace

● 70+ lines of code to read the
stack properly

● Need low level bytecode and
stack operations

Options

5

DynaPyt (this work)

● Just 2 hooks implemented
● At the exact abstraction level of

the analysis

Choose wisely!

6

Engineering Effort Abstraction Level Extra Runtime Overhead

Ad-hoc High Matching the analysis Low

sys.settrace Medium Different from the analysis High

DynaPyt Low Matching the analysis Low

DynaPyt

● Instrumentation
● Runtime engine
● Analysis code

7

Features

● 97 available hooks
○ Hierarchy: various levels of abstraction
○ Any combination

● Pay-per-use
○ Only the used hooks get instrumented

→ overhead only for used hooks
● Modify execution

○ Runtime values → in e.g. concolic testing

8

Instrument Time

Repository
Instrument time
(mm:ss) # of files Lines of code

1 ansible/ansible 6:59 2,188 176,173
2 django/django 14:07 3,603 318,602
3 keras-team/keras 5:41 678 155,407
4 pandas-dev/pandas 12:32 2,727 358,195
5 psf/requests 0:16 54 6,370

6 Textualize/rich 0:57 178 24,362
7 scikit-learn/scikit-learn 6:52 1,419 180,185
8 scrapy/scrapy 1:49 505 37,181
9 nvbn/thefuck 1:21 620 12,070

9

TraceAll analysis:
most expensive
instrumentation

Runtime Overhead

10

DynaPyt Analyses Python sys.settrace (opcode)

ansible django keras pandas requests rich scikit-learn scrapy thefuck

Usage

11

Install:
 pip install dynapyt

Instrument code:
 python -m dynapyt.run_instrumentation --directory
<dir> --analysis MLMemoryAnalysis

Run analysis:
 python -m dynapyt.run_analysis --entry <main.py>
--analysis MLMemoryAnalysis

Analysis Simplicity

Name Description Analysis hooks LoC

BranchCoverage Measures how often each branch gets covered 1 6

CallGraph Computes a dynamic call graph 1 19

KeyInList Warns about performance anti-pattern of linearly search through a list 2 10

MLMemory Warns about memory leak issues in deep learning code 4 29

SimpleTaint Taint analysis useful to, e.g., detect SQL injections 7 53

AllEvents Implements the runtime_event analysis hook to trace all events 1 4

12

Future Work

For DynaPyt:

● Write to attributes, as a multi-write, to a tuple
● async/await

With DynaPyt:

● Early detection of ML issues
● Creating datasets of Python executions

13

Q&A

DynaPyt: Dynamic Analysis
Framework for Python

★ Ease of analysis
implementation

★ Low overhead
runtime

Install:
 pip install dynapyt

Code & documentation:
 https://github.com/sola-st/DynaPyt

14

Execution Faithfulness

● Preserve original execution
○ All above 97.8% passing tests
○ Part of the difference is due to execution stack accesses

15

