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Motivation
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ML Code

Security:
● Dynamic taint analysis

Performance:
● Memory leak
● Slow operations

Testing:
● Branch coverage

cuda runtime error(2): out of memory



Options
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Ad-hoc

● Implement an instrumenter with 
LibCST

● Nalin has 200+ lines of code for 
assignment tracking

Patra, Jibesh, and Michael Pradel. "Nalin: learning from runtime behavior to find name-value inconsistencies in jupyter notebooks." Proceedings of the 44th International Conference on Software Engineering. 2022.



Options
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sys.settrace

● 70+ lines of code to read the 
stack properly

● Need low level bytecode and 
stack operations



Options
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DynaPyt (this work)

● Just 2 hooks implemented
● At the exact abstraction level of 

the analysis



Choose wisely!
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Engineering Effort Abstraction Level Extra Runtime Overhead

Ad-hoc High Matching the analysis Low

sys.settrace Medium Different from the analysis High

DynaPyt Low Matching the analysis Low



DynaPyt

● Instrumentation
● Runtime engine
● Analysis code
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Features

● 97 available hooks
○ Hierarchy: various levels of abstraction
○ Any combination

● Pay-per-use
○ Only the used hooks get instrumented 

→ overhead only for used hooks
● Modify execution

○ Runtime values → in e.g. concolic testing
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Instrument Time

Repository
Instrument time 
(mm:ss) # of files Lines of code

1 ansible/ansible 6:59 2,188 176,173
2 django/django 14:07 3,603 318,602
3 keras-team/keras 5:41 678 155,407
4 pandas-dev/pandas 12:32 2,727 358,195
5 psf/requests 0:16 54 6,370

6 Textualize/rich 0:57 178 24,362
7 scikit-learn/scikit-learn 6:52 1,419 180,185
8 scrapy/scrapy 1:49 505 37,181
9 nvbn/thefuck 1:21 620 12,070
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TraceAll analysis: 
most expensive 
instrumentation



Runtime Overhead 
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DynaPyt Analyses Python sys.settrace (opcode)

ansible          django        keras  pandas         requests          rich scikit-learn       scrapy        thefuck



Usage
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Install:
   pip install dynapyt

Instrument code:
   python -m dynapyt.run_instrumentation --directory 
<dir> --analysis MLMemoryAnalysis

Run analysis:
   python -m dynapyt.run_analysis --entry <main.py> 
--analysis MLMemoryAnalysis



Analysis Simplicity

Name Description Analysis hooks LoC

BranchCoverage Measures how often each branch gets covered 1 6

CallGraph Computes a dynamic call graph 1 19

KeyInList Warns about performance anti-pattern of linearly search through a list 2 10

MLMemory Warns about memory leak issues in deep learning code 4 29

SimpleTaint Taint analysis useful to, e.g., detect SQL injections 7 53

AllEvents Implements the runtime_event analysis hook to trace all events 1 4
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Future Work

For DynaPyt:

● Write to attributes, as a multi-write, to a tuple
● async/await

With DynaPyt:

● Early detection of ML issues
● Creating datasets of Python executions
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Q&A

DynaPyt: Dynamic Analysis
Framework for Python

★ Ease of analysis 
implementation

★ Low overhead
runtime

Install:
 pip install dynapyt

Code & documentation:
 https://github.com/sola-st/DynaPyt
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Execution Faithfulness

● Preserve original execution
○ All above 97.8% passing tests
○ Part of the difference is due to execution stack accesses
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