» SemSeed: A Learning-Based Approach for Creating
Realistic Bugs

Jibesh Patra, Michael Pradel
August 25, 2021

SOLA

many
A SoftwareLab AN

Why Seed Bugs?

Common wisdom suggests that bugs are harmful but why seed them?
Needs large amount of realistic bugs:
O Evaluate bug detectors

O Evaluate mutation testing

O Train learning-based bug detectors

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset

O Heuristics based syntactic transformations
- Unrealistic

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset
O Heuristics based syntactic transformations
- Unrealistic
Correct v/

if(hasFailed && process.arch === 'x64"')

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset
O Heuristics based syntactic transformations
- Unrealistic
Correct v/

if(hasFailed && process.arch === 'x64"')

Unrealistic Buggy ¥

if(hasFailed && process.arch !== 'first')

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset
O Heuristics based syntactic transformations
- Unrealistic
Correct v/

if(hasFailed && process.arch === 'x64"')

Unrealistic Buggy ¥

if(hasFailed && process.arch !== 'first')

Realistic Buggy ¥k

if(hasFailed && process.arch !== 'x86"')

What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset

O Heuristics based syntactic transformations H ow
- Unrealistic

Correct v/ tO get

if(hasFailed && process.arch === 'x64"')

Unrealistic Buggy ¥ SUcC h
if(hasFailed && process.arch !== 'first')
bugs?

Realistic Buggy ¥

if(hasFailed && process.arch !== 'x86"')

O An approach for automatically seeding realistic bugs in a semantics-aware
way.

O By imitating bugs occuring in the wild (top-100 GitHub projects).

69 Overview

Example Seeded Bug

3. Target Program

1. Bug Fix to Imitate

2. Bug Seeding Pattern 4. Bug Seeded Program

Example Seeded Bug

if (process.platform !== 'win32"')
3. Target Program

if (process.platform === 'darwin')

1. Bug Fix to Imitate

2. Bug Seeding Pattern 4. Bug Seeded Program

Example Seeded Bug

if (process.platform !== 'win32"')

if (process.platform === 'darwin') 3. Target Program

1. Bug Fix to Imitate

Abstraction

id1.id2 === 1lit1l

id1.id2 !== lit2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32"') sl Tad B precass mrel —om TOm")
if (process.platform === 'darwin') 3. Target Program
1. Bug Fix to Imitate
c
pe
]
©
1%
o)
<
id1.id2 === 1lit1
id1.id2 !== 1it2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32") P if(hasFailed 66 process.arch === 'x64')
if (process.platform === 'darwin') 3. Target Program
1. Bug Fix to Imitate
c
pe
]
©
I
o)
<
id1.id2 === 1lit1
id1.id2 !== 1it2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32') if(hasFailed &6 processsarchi===1"x64")
if (process.platform === 'darwin') S 3. Target Program
©
1. Bug Fix to Imitate
c
.2
]
©
I
o)
<
id1.id2
id1.id2 !== 1it2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32') if(hasFailed &§& processvarchi===n"xe64")
. ___ - 3. Target Program
if (process.platform === 'darwin') <3)
1. Bug Fix to Imitate
oy
o
8]
o
>
e}
<
id1.id2
id1.id2 1== 1it2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32"') if(hasFailed 66 [P)
if (process.platform === 'darwin')) 3. Target Program
¢
1. Bug Fix to Imitate
oy
o
8]
o
>
e}
<
id1.1id2
id1.id2 !'== 1it2

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Example Seeded Bug

hasFailed = item.errCode === -1;

if (process.platform !== 'win32") if(hasFailed &6 processvarchi===n'x64")
if (process.platform === 'darwin') 3. Target Program
1. Bug Fix to Imitate ¥
Semantic Matching
S
]
©
%
o)
< Apply Pattern
id1.id2 === 1lit1
hasFailed = item.errCode === -1;
id1.id2 1== 1lit2 if(hasFailed && process.arch !== 'x86"')

2. Bug Seeding Pattern 4. Bug Seeded Program 4

Semantic Matching

Goal: If a bug fix to imitate is semantic match of a target.

process . platform === "darwin’ To Imitate @

process . arch === 'X64" Target@

Semantic Matching

Goal: If a bug fix to imitate is semantic match of a target.

process . platform === "darwin’ To Imitate @
>

ke

E

(%]

(]

c

z

o

o
process 5 arch === 'X64" Target ©

Semantic Matching

Goal: If a bug fix to imitate is semantic match of a target.

process . platform === "darwin’ To Imitate @

If average cosine

S o ~ Sl EASRESS
A (@} (@}
than a threshold T
process . arch === 'X64" Target@

Apply Pattern

hasFailed = item.errCode === -1;

if (process.platform !== 'win32') if(hasFailed &6 processsarchi===1"x64")
if (process.platform === 'darwin') 3. Target Program l

1. Bug Fix to imitate ~\\\\\""‘-~\.___________________________—_)
Semantic Matching

Apply Pattern

id1.id2 === 1lit1 N

hasFailed = item.errCode === -1;
id1.id2 t== 1it2) if(hasFailed && process.arch !== 'x86"')
2. Bug Seeding Pattern 4. Bug Seeded Program

Apply Pattern

hasFailed = item.errCode === -1;

if (process.platform !== 'win32') if(hasFailed &6 processsarchi===1"x64")
if (process.platform === 'darwin') 3. Target Program

1. Bug Fix to imitate ~\\\\\""‘-~\.___________________________—_)
Semantic Matching

Apply Pattern

id1.id2 === 1lit1 N

hasFailed = item.errCode === -1;
id1.id2 t== 1it2) if(hasFailed && process.arch !== 'x86"')
2. Bug Seeding Pattern 4. Bug Seeded Program

Apply Pattern

@ To Imitate process . Tl o . P
(Correct)

© Target
(Correct)

@ To Imitate
(Buggy)

© Target
(Buggy)

Apply Pattern

@ To Imitate process . sile e s s darwin
(Correct)

© Target

rocess . . 6L
(Correct) i EEl A9

@ To Imitate
(Buggy)

© Target
(Buggy)

Apply Pattern

id1 . id2 =588 lita

@ To Imitate process . platform === "darwin’
(Correct)

© Target

process . arch === 'X64"
(Correct)

@ To Imitate
(Buggy)

© Target
(Buggy)

Apply Pattern

id1 0 id2 S lita
@@ To Imitate process . oleomm s ' darwin®
(Correct)
© Target process . arch === 'X64"
(Correct)
Ge(;oulgn;;t)ate process . platform ['win32'
© Target
(Buggy)

Apply Pattern

id1 0 id2 S lita
@@ To Imitate process . oleomm s ' darwin®
(Correct)
© Target process . arch === 'X64"
(Correct)
id1 © id2 l== 1it2
€B(TBongn;;t)ate process . platform ['win32'
© Target
(Buggy)

Apply Pattern

id1 . id2 === lit1
@ To Imitate process . platform === "darwin’
(Correct)
© Target process 5 arch === 'X64 "
(Correct)
id1 o id2 l== 1it2
(e(goulgn;;t)ate process . platform == 'win32'

e 2 J2)]

Apply Pattern

id1 . id2 === lit1
@ To Imitate process . platform === "darwin’
(Correct)
© Target process 5 arch === 'X64 "
(Correct)
id1 o id2 l== 1it2
(e(goulgn;;t)ate process . platform == 'win32'

e 2 J2)]

Apply Pattern

id1 . id2 === 1it1
@ To Imitate process . platform e 'darwin’
(Correct)
© Target process . arch === 'X64"
(Correct)
id1 . id2 l== 1it2
fe(TBongn;;t)ate process . p'[atform l== 'win32'
© Target process . arch ? ?
(Buggy)

Apply Pattern

id1 . id2 === lit1
@® To Imitate process . platform . 'darwin’
(Correct)
© Target process . arch === 'X64"
(Correct)
id1 © id2 l== 1it2
fe(TBongn;;t)ate process . p'[atform l== 'win32'
© Target process . arch ? ?
(Buggy)

Apply Pattern

id1 . id2 === lit1
@® To Imitate process . Tl o . T
(Correct)
© Target process . arch S A
(Correct)
id1 © id2 l==
Ce(TBO lgn;t)ate process . p'[atform l==
uggy
© Target process . arch ==
(Buggy)

Analogy Queries for Binding Unbound Token

AN

<]

process . platform === 'darwin'

process . platform !== 'win32'

Analogy Queries for Binding Unbound Token

AN

<]

process . platform === 'darwin'
process . platform !== ‘'win32'
©

process . arch === 'x64'

process . arch l==

Analogy Queries for Binding Unbound Token

AN

<]
process . platform === 'darwin'
process . platform !== 'win32'
process
©
process . arch === 'x64'

process . arch l==

Analogy Queries for Binding Unbound Token

AN

<]
process . platform === 'darwin'
process . platform !== ‘'win32'
process
©
process . arch === 'x64'
'win32'

process . arch l==

Analogy Queries for Binding Unbound Token

AN

<]
arch process . platform === ‘'darwin'
process . platform !== 'win32'
process
©
@ ——= 1 :
process . arch === X64
'win32'

process . arch l==

Analogy Queries for Binding Unbound Token

AN

®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
[== 1 '
process . arch === X64
'win32'

process . arch l==

Analogy Queries for Binding Unbound Token

AN

®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
[== 1 '
process . arch === x64

'win32'

. process . arch l==

'X64"

Analogy Queries for Binding Unbound Token

N
®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
process . arch === 'x64'
w1n32'
. process . arch l==
darw1n' T
'x64"
5 8

Analogy Queries for Binding Unbound Token

N
®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
process . arch === 'x64'
w1n32'
. process . arch l==
darw1n T
'x64"
5 8

Analogy Queries for Binding Unbound Token

N
®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
process . arch === 'x64'
w1n32'
. process . arch l==
darw1n T
'x64"
5 8

Analogy Queries for Binding Unbound Token

N
®
arch process . platform === ‘'darwin'
platform
process . platform !== ‘'win32'
process
©
process . arch === 'x64'
w1n32'
° process . arch !== 'x86'
darw1n T
'Xx64 "
3 8

I~ Results

Experimental Setup

O 3600 concrete bug fixes extracted from GitHub

Experimental Setup

O 3600 concrete bug fixes extracted from GitHub
0 2880 (80%) used as training bugs and

Experimental Setup

O 3600 concrete bug fixes extracted from GitHub
0 2880 (80%) used as training bugs and
O Remaining 720 as hold-out bugs

Experimental Setup

O 3600 concrete bug fixes extracted from GitHub

0 2880 (80%) used as training bugs and

O Remaining 720 as hold-out bugs

O training bugs N hold-out bugs - 53 bugs may be reproduced

Experimental Setup

O 3600 concrete bug fixes extracted from GitHub

0 2880 (80%) used as training bugs and

O Remaining 720 as hold-out bugs

O training bugs N hold-out bugs - 53 bugs may be reproduced

O Reproduce: Seeded bug exactly matches the real world bug

Primary Research Questions

RQ1. Can SemSeed reproduce real world bugs?

RQ2. How effective is SemSeed in training a learning-based bug detector?

10

RQ1. Can SemSeed Reproduce Real World Bugs

Number of reproduced bugs
w w H »H (%
o (%] o [5,] o

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1

RQ1. Can SemSeed Reproduce Real World Bugs

(%
o

N
v

B
o

w
v

Tokens from the same function (Tr)

w
o
°

Number of reproduced bugs

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1

RQ1. Can SemSeed Reproduce Real World Bugs

£ 55
o0
e N targetbugs
el
5 50
9]
u]
_g 45
8 file gjﬂ%
a 40 mt‘ﬂef.——“'/
o Tokens asofroT,=-
= R 1
o 35 T So— - ===
5 T =T Tokens from the same function (T.¢)
Q 30 ¥ e
€
Z 2
1 2 3 4 5 6 7 8 9 10

Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1

RQ1. Can SemSeed Reproduce Real World Bugs

w
wu

(%
o

N
v

B
o

w
v

vA.A.::‘:'f:’ """" Tokens from the same function (T#.)

w
o
°

Number of reproduced bugs

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1

RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs[1] is a learning-based bug detector that need large number correct
and buggy examples for training.

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)

12

RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs|[1] is a learning-based bug detector that need large number correct
and buggy examples for training.
O Wrong assignment bugs:
-» A developer writes i=o0; instead of i=0;

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)

12

RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs|[1] is a learning-based bug detector that need large number correct
and buggy examples for training.
O Wrong assignment bugs:
-» A developer writes i=o0; instead of i=0;
O Train DeepBugs using two separate datasets:

-> Artificial: Default in DeepBugs
-> SemSeed generated

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)

12

RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs|[1] is a learning-based bug detector that need large number correct
and buggy examples for training.
O Wrong assignment bugs:
-» A developer writes i=o0; instead of i=0;
O Train DeepBugs using two separate datasets:
-> Artificial: Default in DeepBugs
-> SemSeed generated

O Evaluate DeepBugs on the capability of finding real bugs

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)

12

Effectiveness in Training a Learning-Based Bug Finder — DeepBugs

1.0
0.81
,E 0.61 SemSeed
)
o
& 0.41
0.21 Al'tlfl iall
0.0 .
0.0 0.5 1.0 0.0 0.5 1.0
Threshold for classifying a bug Threshold for classifying a bug
(a) Precision wrong assignments. (b) Recall wrong assignments.

13

Other Findings

0 62% of all bug seeding patterns contains at least one unbound token.
O Average bug seeding time 0.01 seconds.

O Seeded bugs goes beyond the traditional mutation operators.

14

1t Main Takeaways

Conclusions

O Many applications need large amount of realistic bugs.

O The current approaches are either not scalable or produce unrealistic bugs.
O SemSeed uses real bug fixes as patterns.

O Able to seed large number of realistic bugs quickly.

O The seeded bugs are useful for training learning-based bug detectors.

O https://github.com/sola-st/SemSeed

15

Thank You

Bug Seeding Patterns

Correct | Buggy Nb.
id1 : lit1 id1 @ lit2 99
lit1l : lit2 lit1 : 1it3 71
id1.id2(lit1); id1.id2(1it2); 40
var idl = 1lit1; var idl = 1it2 ; 33
id1 @ lit1 id2 : lit1 18
idl = 1it1 in id2 idl = !!id2. id3 1
id1.id2(lit1 + id3).id4); id1.id2(lit1 + id3); 2
id1.id2(id3[id4.id5]1); id1.id2(id4.id5) 2
var idl = id2.id3(id4); var idl = id2.1id3; 1
var idl = id2.id1; var id1=id2. id3 ; 5

Five most frequent and five randomly selected bug seeding patterns. Unbound
tokens are highlighted

Usefulness of Semantic Matching

Percentage

100

©
o

20

{ 0 ° —— Seeded out of all bugs seeded with threshold 0.0
/ \ —e— Reproduced out of 47

~ Syntactic Matchmg
(Least Similar)

Area = Effectiveness
ofsemantic matching

o= 0.

'3

00 01 02 03 04 05 06 07 08 09 10
Match Threshold (minimum similarity required for seeding)

Comparison with Mutandis Mutation Operators

- Also present in SemSeed patterns:

- Swap function parameters.

- Change the variable type by converting x = number to x = string
- Not present in SemSeed patterns:

- Swap consecutive nested for/while.

- Removing the integer base argument 10 from parseInt(’09/11/08’, 10).

Example of Rearrangement Bug

® Bug to imitate @®
if (speed && typeof speed === "object"){ if (typeof speed === "object"){
© Seeded Bug ©
if (style && typeof style === 'object'){ if (typeof style === 'object'){

Example of Unbound Token Bug

@ Bug to imitate ®

catalog. complete .getReleaseVersion catalog. official .getReleaseVersion

© Seeded Bug ©

parent. stderr .on('data’, parent. stdout .on('data’,
function(){ }); function(){ });

Effectiveness in Training a Learning-Based Bug Finder — DeepBugs

1.0 1.0
0.8 0.8
Artificial
=06 506
S SemSeed 7} d
b) 8 —
0.4 & 04
0.2 0.2
0.0+ : ‘ 0.0 : ‘
0.0 0.5 1.0 0.0 0.5 1.0
Threshold for classifying a bug Threshold for classifying a bug

(a) Precision wrong assignments. (b) Recall wrong assignments.

	glasses Overview
	chart-line Results
	bullhorn Main Takeaways
	Appendix

