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Why Seed Bugs?

Common wisdom suggests that bugs are harmful but why seed them?
Needs large amount of realistic bugs:
O Evaluate bug detectors

O Evaluate mutation testing

O Train learning-based bug detectors
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What are the Current Options?

O Manually written bug benchmarks
- Difficult to create a large dataset

O Heuristics based syntactic transformations H ow
- Unrealistic

Correct v/ tO get

if(hasFailed && process.arch === 'x64"')

Unrealistic Buggy ¥ SUcC h
if(hasFailed && process.arch !== 'first')
bugs?

Realistic Buggy ¥
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O An approach for automatically seeding realistic bugs in a semantics-aware
way.

O By imitating bugs occuring in the wild (top-100 GitHub projects).
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Example Seeded Bug
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Semantic Matching

Goal: If a bug fix to imitate is semantic match of a target.

process . platform === "darwin’ To Imitate @
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Experimental Setup

O 3600 concrete bug fixes extracted from GitHub

0 2880 (80%) used as training bugs and

O Remaining 720 as hold-out bugs

O training bugs N hold-out bugs - 53 bugs may be reproduced

O Reproduce: Seeded bug exactly matches the real world bug



Primary Research Questions

RQ1. Can SemSeed reproduce real world bugs?

RQ2. How effective is SemSeed in training a learning-based bug detector?

10



RQ1. Can SemSeed Reproduce Real World Bugs

Number of reproduced bugs
w w H »H (%
o (%] o [5,] o

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1



RQ1. Can SemSeed Reproduce Real World Bugs

(%
o

N
v

B
o

w
v

Tokens from the same function (Tr)

w
o
°

Number of reproduced bugs

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1



RQ1. Can SemSeed Reproduce Real World Bugs

£ 55
o0
e N targetbugs
el
5 50
9]
u]
_g 45
8 file gjﬂ%
a 40 mt‘ﬂef.——“'/
o Tokens asofroT,=-
= R 1
o 35 T So— - ===
5 T =T Tokens from the same function (T.¢)
Q 30 ¥ e
€
Z 2
1 2 3 4 5 6 7 8 9 10

Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1



RQ1. Can SemSeed Reproduce Real World Bugs

w
wu

(%
o

N
v

B
o

w
v

vA.A.::‘:'f:’ """" Tokens from the same function (T#.)

w
o
°

Number of reproduced bugs

N
w

1 2 3 4 5 6 7 8 9 10
Number 'k' of bugs seeded per code location

SemSeed could reproduce in total 47 bugs

1



RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs[1] is a learning-based bug detector that need large number correct
and buggy examples for training.

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)
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RQ2. Effectiveness in Training a Learning-Based Bug Detector —— DeepBugs

O DeepBugs|[1] is a learning-based bug detector that need large number correct
and buggy examples for training.
O Wrong assignment bugs:
-» A developer writes i=o0; instead of i=0;
O Train DeepBugs using two separate datasets:
-> Artificial: Default in DeepBugs
-> SemSeed generated

O Evaluate DeepBugs on the capability of finding real bugs

[1] Michael Pradel and Koushik Sen, DeepBugs: A learning approach to name-based bug detection. OOPSLA (2018)
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Effectiveness in Training a Learning-Based Bug Finder — DeepBugs
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Other Findings

0 62% of all bug seeding patterns contains at least one unbound token.
O Average bug seeding time 0.01 seconds.

O Seeded bugs goes beyond the traditional mutation operators.
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1t Main Takeaways




Conclusions

O Many applications need large amount of realistic bugs.

O The current approaches are either not scalable or produce unrealistic bugs.
O SemSeed uses real bug fixes as patterns.

O Able to seed large number of realistic bugs quickly.

O The seeded bugs are useful for training learning-based bug detectors.

O https://github.com/sola-st/SemSeed
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Bug Seeding Patterns

Correct | Buggy Nb.
id1 : lit1 id1 @ lit2 99
lit1l : lit2 lit1 : 1it3 71
id1.id2(lit1); id1.id2( 1it2 ); 40
var idl = 1lit1; var idl = 1it2 ; 33
id1 @ lit1 id2 : lit1 18
idl = 1it1 in id2 idl = !!id2. id3 1
id1.id2(lit1 + id3).id4); id1.id2(lit1 + id3); 2
id1.id2(id3[id4.id5]1); id1.id2(id4.id5) 2
var idl = id2.id3(id4); var idl = id2.1id3; 1
var idl = id2.id1; var id1=id2. id3 ; 5

Five most frequent and five randomly selected bug seeding patterns. Unbound
tokens are highlighted



Usefulness of Semantic Matching

Percentage
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Comparison with Mutandis Mutation Operators

- Also present in SemSeed patterns:

- Swap function parameters.

- Change the variable type by converting x = number to x = string
- Not present in SemSeed patterns:

- Swap consecutive nested for/while.

- Removing the integer base argument 10 from parseInt(’09/11/08’, 10).



Example of Rearrangement Bug

® Bug to imitate @®
if (speed && typeof speed === "object"){ if (typeof speed === "object"){
© Seeded Bug ©
if (style && typeof style === 'object'){ if (typeof style === 'object'){




Example of Unbound Token Bug

@ Bug to imitate ®

catalog. complete .getReleaseVersion catalog. official .getReleaseVersion

© Seeded Bug ©

parent. stderr .on('data’, parent. stdout .on('data’,
function(){ }); function(){ });




Effectiveness in Training a Learning-Based Bug Finder — DeepBugs
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