Empir Software Eng @ CrossMark
https://doi.org/10.1007/s10664-017-9578-1

Pinpointing and repairing performance bottlenecks
in concurrent programs

Tingting Yu! - Michael Pradel?

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Developing concurrent software that is both correct and efficient is challeng-
ing. Past research has proposed various techniques that support developers in finding,
understanding, and repairing concurrency-related correctness problems, such as missing or
incorrect synchronization. In contrast, existing work provides little support for dealing with
concurrency-related performance problems, such as unnecessary or inefficient synchroniza-
tion. This paper presents SyncProf, a profiling approach that helps in identifying, localizing,
and repairing performance bottlenecks in concurrent programs. The approach consists of a
sequence of dynamic analyses that reason about relevant code locations with increasing pre-
cision while narrowing down performance problems and gathering data for avoiding them.
A key novelty is a graph-based representation of relations between critical sections, which is
the basis for computing the performance impact of a critical section and for identifying the
root cause of a bottleneck. Once a bottleneck is identified, SyncProf searches for a suitable
optimization strategy to avoid the problem, increasing the level of automation when repair-
ing performance bottlenecks over a traditional, manual approach. We evaluate SyncProf on
25 versions of eleven C/C++ projects with both known and previously unknown synchro-
nization bottlenecks. The results show that SyncProf effectively localizes the root causes of
these bottlenecks with higher precision than a state of the art lock contention profiler, and
that it suggests valuable strategies to repair the bottlenecks.

Keywords Testing - Concurrency - Performance bottlenecks

Communicated by: Martin Monperrus and Westley Weimer

P4 Tingting Yu
tyu@cs.uky.edu

Michael Pradel
michael @binaervarianz.de

Department of Computer Science, University of Kentucky, Lexington, KY, USA

Department of Computer Science, TU Darmstadt, Darmstadt, Germany

Published online: 27 November 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9578-1&domain=pdf
mailto:tyu@cs.uky.edu
mailto:michael@binaervarianz.de

Empir Software Eng

1 Introduction

Developing concurrent programs that are both correct and efficient is a challenge. On the
one hand, a program must carefully synchronize concurrent accesses to shared data to
avoid concurrency bugs, such as data races and atomicity violations. On the other hand,
the program should avoid unnecessary or overly conservative synchronization because each
synchronization operation may degrade the performance. Since these two goals, correct-
ness and performance, are often contradictory, developers struggle to achieve both. A recent
study reports that more than 25% of all critical sections (CSs) are changed at some point
by the developers, both to fix correctness bugs and to enhance performance (Gu et al.
2015). Another study shows that unnecessary synchronization is a common root cause for
real-world performance problems (Jin et al. 2012).

Over the past decades, most research has focused on analyzing and debugging the cor-
rectness of concurrent programs, e.g., through detecting data races (Kahlon et al. 2009;
Marino et al. 2009; Bond et al. 2010; Effinger-Dean et al. 2012) or atomicity viola-
tions (Artho et al. 2003; Xu et al. 2005; Wang and Stoller 2006; Flanagan and Freund 2004;
Shacham et al. 2011), schedule exploration (Visser et al. 2003; Sen 2007; Musuvathi et al.
2008; Sen 2008; Coons et al. 2010; Burckhardt et al. 2010), test generation (Pradel and
Gross 2012; Nistor et al. 2012; Choudhary et al. 2017), and static analysis (von Praun and
Gross 2003; Flanagan and Qadeer 2003; Williams et al. 2005; Naik et al. 2009; Joshi et al.
2012). In contrast, the problem of detecting and repairing concurrency-related performance
problems is currently understudied.

For example, consider a performance problem in the libvirt KVM/QEMU
driver (Ongoing work on lock contention in QEMU driver 2013). A user reports a slowdown
in virtual machine creation when multiple virtual machines are created in parallel. Figure 1
shows an excerpt of the execution of the 1 ibvirt program with five threads (T1 - T5) that
contend for two locks (L1 and L2) while executing six CSs (CS1 — CS6). Each lightgray and
darkgray horizontal box represents the execution of a CS, where the colors indicate which
lock a thread must acquire to enter a CS. We illustrate the time a thread waits until obtain-
ing the lock with a dotted line. In the example, thread T1 obtains lock L1 and enters CS1.
Next, T2, T3, and T5 all attempt to obtain L1 and thus are serialized. Before attempting to
obtain L1, T2 obtains L2 and enters CS2. The execution of CS3 is nested inside CS2, i.e.,
T2 acquires L1 while holding L2. Once CS2 is finished, T4 acquires L2 and enters CSS5.

L1
T1 cs1 | |
L2 L1
T2 2 |rmme———- o3 | | |
L1
2 L H—
L2
O —
L1
" .
} f f f f
2 4 6 8 10

Fig.1 A motiving example

@ Springer

Empir Software Eng

After careful manual inspection of the code, it turns out that CS1 is unnecessarily synchro-
nized with the other CSs that acquire lock L1. The developers fixed the problem by splitting
the lock L1 into two locks. We will use the threads and CSs in this example to illustrate our
approach in Section 3.

We call a performance problem due to unnecessary or inefficient synchronization a syn-
chronization bottleneck. Such bottlenecks occur when multiple threads contend to reach a
synchronization point, such as a lock acquisition, or when a single or multiple threads need
to reach a synchronization point before other threads can make progress. The root cause
of a synchronization bottleneck is the CS that causes the bottleneck and that needs to be
changed to avoid it.

Unfortunately, synchronization bottlenecks are difficult to detect, understand, and repair
for several reasons. First, a bottleneck may not manifest with a particular test case and in a
particular execution, e.g., because the workload does not expose the problem or because it is
amortized by the rest of the execution. As developers cannot be expected to pick the “right”
input and execution to reveal synchronization bottlenecks, one important challenge is to deal
with a multitude of inputs and executions. Second, when a performance problem manifests,
it is hard to isolate synchronization bottlenecks from other problems, such as intensive I/O.
Third, even if a problem is believed to be a synchronization bottleneck, it is non-trivial to
locate its root cause. Complex multi-threaded programs may contain several dozens of CSs
that involve dozens of locks, making it difficult to check all of them manually. Finally, not
all synchronization-related performance problems can be easily optimized. For example, a
CS may be needed because the program must synchronize concurrent accesses to shared
data. To identify bottlenecks that can be optimized, developers must carefully reason about
the behavior of all expensive CSs and filter those that can be modified without breaking the
semantics of the program.

A promising way to address the above challenges is profiling, but existing approaches
only partially address the problem. For example, Visual Studio’s Concurrency Visual-
izer (Diagnosing Lock Contention with the Concurrency Visualizer 2010) provides a
time profile that shows the time spent in different kinds of code segments, such as syn-
chronization, I/O, and memory management. While effective at revealing symptoms of
synchronization bottlenecks, such as heavy use of a lock, such approaches fail to link
symptoms to their root causes. For the example in Fig. 1, a profiler based on idleness
measurement reports CS5 as the most problematic CS, because it takes the longest time
to be acquired. However, CS5 is not the root cause, and optimizing it does not improve
performance. A profiler that measures the time spent inside each CS reports that CS2 is the
most expensive CS, because it is the CS in which the most time is spent. Again, optimizing
CS2 does not improve the performance, as CS3 still must wait for CS1 to finish. Another
problem is that profiling is based on individual executions. Manually examining the pro-
files of multiple executions is not an effective way to understand the overall performance
because each profile may show different results for the same code segment. Finally, exist-
ing profiling approaches quantify the cost of synchronization but do not suggest possible
optimizations.

This article presents SyncProf, a profiler that detects synchronization bottlenecks, pin-
points their root cause, and suggests potential optimization strategies to address them. Given
a program and tests to execute it, the approach dynamically analyzes multiple executions of
the program and selects inputs where an increased workload increases the execution time
while decreasing the CPU utilization. A key component of the approach is a novel graph
representation of wait relationships between CSs. SyncProf generates a graph from exe-
cutions and computes several metrics that summarize the impact of individual CSs on the

@ Springer

Empir Software Eng

overall execution time. Next, SyncProf reports a ranked list of likely root causes of synchro-
nization bottlenecks, along with their descriptions (e.g., code locations). Finally, SyncProf
identifies instances of known bottleneck patterns that are amenable to particular optimiza-
tions, such as removing an unnecessary lock or splitting a lock, and suggests a specific
optimization strategy for reported bottlenecks.

The presented approach provides several benefits:

— SyncProf considers multiple inputs and executions, automatically selects those that are
likely to expose a concurrency-related performance problem, and summarizes them into
a set of synchronization bottlenecks.

— SyncProf isolates synchronization-related performance problems from other kinds of
performance problems, providing concurrency-savvy developers a technique to address
these particularly intricate issues.

— SyncProf pinpoints the root cause of bottlenecks, relieving the developers from man-
ually reasoning about the interactions between multiple locks and CSs. Instead,
developers can focus on those CSs that will benefit most from optimization.

— SyncProf simplifies the task of optimizing bottlenecks by suggesting bottleneck-
specific optimization strategies. The approach does not fully automatically improve
the performance. Instead, it leaves the final decision if and how exactly to address a
synchronization bottleneck to the developer. Despite this limitation, the approach sig-
nificantly improves the level of automation of repairing synchronization bottlenecks
compared to the traditional, purely manual approach.

We envision that the approach can be used in at least three scenarios. First, a developer
that is not aware of any synchronization bottlenecks in a program may profile the program
with SyncProf to check if any such a bottleneck exists. Second, a developer that knows
that a program suffers from a concurrency-related bottleneck can use SyncProf to localize
the problem. Third, a developer looking for a way to avoid a bottleneck can use SyncProf
to obtain a concrete suggestion of an optimization strategy tailored to the specific bottle-
neck. These usage scenarios are similar to traditional testing, fault localization, and program
repair, respectively, but for performance problems.

To evaluate the effectiveness of SyncProf, we apply the approach to popular benchmarks
and real-world C/C++ programs with both known and previously unknown synchroniza-
tion bottlenecks. Our results show that SyncProf effectively identifies the root causes of
these bottlenecks and suggests profitable optimization strategies. Compared to a state of the
art lock contention profiler, Valgrind’s DRD tool, SyncProf pinpoints the root cause of a
bottleneck with higher precision: SyncProf summarizes many executions and requires the
developer to inspect between 1 and 3 CSs, whereas DRD requires the developer to inspect
various execution profiles, most of which rank the root cause at a significantly lower rank
than SyncProf. Addressing the bottlenecks pinpointed by our approach yields performance
speedups between 1.17 and 2.6.

In summary, this article contributes the following:

— A concurrency-focused profiler that detects synchronization bottlenecks, pinpoints their
root causes, and suggests bottleneck-specific optimization strategies.

— Anovel graph representation of interactions between CSs. The graphs provide a generic
basis for computing metrics that summarize the performance impact of individual CSs
on the overall execution time and for suggesting synchronization bottleneck-specific
optimization strategies.

@ Springer

Empir Software Eng

— A practical implementation and empirical evidence that the approach effectively
pinpoints performance problems in real-world C/C++ programs.

This article extends and refines a previously presented conference paper (Yu and Pradel
2016). Specifically, we introduce barrier synchronization and extend our algorithm to han-
dle this new synchronization type. We also propose a new bottleneck optimization strategy
that can reduce the size of a critical section to eliminate unnecessary bottlenecks. Fur-
thermore, we perform a more thorough empirical study on a more substantial base of
artifacts. Finally, we made a large number of changes related to the presentation of the
article and included more detailed descriptions of the algorithm, evaluation, and related
work.

In the next section we present a motivating example and background. We then describe
SyncProf in Section 3. Our evaluation follows in Sections 4 and 5, followed by a discussion
in Section 6. We present related work in Section 7, and end with conclusions in Section 8.

2 Motivation and background
2.1 A motivating example

The example discussed illustrated in Fig. 1 was well tested regarding functional correct-
ness. However, it takes a long time for OpenStack to create virtual machines (VMs) when
many VMs are requested in parallel. In the process of replicating this bug, we found that
when many VM creation threads (e.g., 20 threads) are spawned, the system is significantly
slowed down and the CPU usage is low (less than 60%). Specifically, when a domain is
created, T1 obtains the domain object’s lock DomObj and enters critical section CS1. At
the same time, T2 launches a server thread and obtains the security lock VirSecMan.
Next, T2, T4, and T5 all attempt to obtain DomOb7j and thus are serialized. The fix is to
decrease the granularity of the DomObj lock to make it more fine grained, i.e., to split
the critical section protected by DomObj into multiple critical sections protected by dif-
ferent locks. This change will avoid domainCreateFlags (i.e., options for creating
VM domains) to be unnecessarily serialized with other critical sections holding the same
lock.

While the execution scenario of this example is straightforward, the developers had a
difficult time in locating the root cause of the bottleneck due to several reasons. First, exist-
ing techniques that measure thread idleness or critical section execution time fail to track
dependencies between the critical sections. For example, a profiler based on idleness mea-
surement reported that the function ThreadPoolWorker (CS5) on T4 was problematic.
However, CSS is not the root cause, as optimizing it did not improve performance. A pro-
filer that measures the time spent inside each critical section reported that the function
NetServerDispatch (CS2) on T2 was the most critical (i.e., 90 time units). Again,
optimizing CS2 did not improve the performance much either, as CS3 still has to wait for
CS1 to finish. The true root cause of the synchronization bottleneck turns out to be the
function domainCreateFlags (CS1) on T1. Second, multiple profiles were generated
given different inputs, workloads, and system configurations. As such, it took substantial
manual effort to analyze a number of traces to locate the bottlenecks optimization. Third,
once the root cause was located, developers spent additional time figuring out how to fix the
problem.

@ Springer

Empir Software Eng

2.2 Synchronization bottlenecks

We define a synchronization bottleneck as an execution point where threads contend to
reach a synchronization point, causing a significant impact on the overall execution time.
A synchronization bottleneck may consist of a single thread or multiple threads that need
to reach a synchronization point before other threads can make progress. Threads that are
waiting for a synchronization point are called waiters, and threads that are executing a syn-
chronization point are called executers. A single instance of a synchronization bottleneck
may be responsible for multiple waiters. The consequence of a synchronization bottleneck
can be substantial because every cycle a synchronization bottleneck is running causes its
waiters to waste one cycle. Synchronization bottlenecks may involve several kinds of syn-
chronization operations. We consider operations that are widely used and likely to incur con-
tention (Joao et al. 2012), including: (1) mutexes (pthread mutex_{lock, unlock}),
(2) binary semaphores (sem_{wait, post}), (3) spin locks (pthread_spin_{lock,
unlock}), and (4) barriers (pthread barrier_wait). The synchronization operations
can be classified into two categories.

Lock-based synchronization The first three synchronization operations (1), (2) and (3)
fall into this category. They are similar in the sense that they ensure mutual exclusion
through CSs. A CS is a code segment that must be executed by one thread at a time, and
any other threads wanting to execute it must wait. A CS can become a synchronization
bottleneck if it contends with CSs in other threads. Therefore, in the case of lock-based
synchronization, there is only one executer and possibly multiple waiters for a synchro-
nization bottleneck. A lock operation involves three steps — acquire the lock, obtain the
lock, and release the lock, so a CS is enclosed by the instruction to obtain the lock and
the instruction to release the lock. The time spent between acquiring and obtaining a
lock is the wait time for the CS protected by the lock object. Figure 1 shows the exe-
cution of five threads running six critical sections with two lock-based synchronization
objects.

Barrier-based synchronization For barrier-based synchronization, i.e., category (4)
above, all previously arrived threads will be blocked until the last thread reaches the bar-
rier. The barrier region is defined as the code segment along each path preceding the
barrier (Gupta and Epstein 1990). In this case, a critical section refers to a barrier region
itself or the code segment succeeding the barrier region. The time difference between bar-
rier entry (e.g., when pthread barrier_wait is executed) and barrier exit (e.g., when
pthread barrier_wait returns) is the wait time for the thread on that barrier. Figure 2
shows the execution of T1-T4 on a barrier. T1 and T4 reach the barrier at time 6 and
start waiting on T2 and T3. T2 reaches the barrier at time 10, leaving T3 as the only
running thread until time 12, when T3 reaches the barrier and all four threads can con-
tinue. The example involves eight CSs. CS3 takes the most time to execute (i.e., 12 time
units), whereas CS1 and CS4 introduce the most wait time (i.e., 6 time units). There are
two synchronization bottlenecks (CS2 and CS3), where each synchronization bottleneck
contends with other threads to reach the barrier. Specifically, CS2 contends with CS5 and
CS8, and CS4 contends with CS5, CS6, and CS8. Therefore, in the case of barrier syn-
chronization, there can be multiple executers and multiple waiters for a synchronization
bottleneck.

@ Springer

Empir Software Eng

T

T2

T3

T4

[css

cs2 }- ----- cs6

Cs3 Ccs7

cs4 |- ------------------ cs8

T o1 | | cs2 | |
T2 | cs3 ---1 csa
) E————
1 1 1 L L 1 1 1
e e e e e e N
2 4 6 8 10 12 14 16 18 20 22

a Lock-based synchronization

Fig. 2 Examples of synchronization bottlenecks

3 Approach

b Barrier-based synchronization.

This section presents SyncProf, a profiling approach that helps developers identify, localize,
and optimize synchronization bottlenecks. Figure 3 gives an overview of the approach. The
input to the approach is a program and test cases to exercise the program. Each test case
is assumed to have a parameter to increase its workload, e.g., by increasing the input size
or the number of threads. The approach consists of four parts. First, SyncProf executes
the program’s tests and identifies tests and workload sizes that expose a synchronization
bottleneck. Second, the approach measures the performance impact of CSs and summarizes
the impact of individual CSs across multiple inputs and executions into a graph. Third,
SyncProf uses this summary to identify bottlenecks and their likely root causes. Finally,
the approach matches each identified bottleneck against common bottleneck patterns and,
if the matching is successful, suggests an optimization strategy that is likely to address the

Program

Test cases

—

\
C

Bottleneck detection)

Selected test cases

—(

Performance impact analysis]

Impact of critical sections and locks

(

Root cause analysis)

Likely root causes

—>(Suggesting optimization strategies |<—

Root causes & optimizations

Fig. 3 Overview of the SyncProf approach

@ Springer

Empir Software Eng

performance problem. The output of SyncProf is a ranked list of CSs that are the likely
root cause of a synchronization bottleneck, along with a suggested optimization strategy for
some of the CSs.

The second and the last part are based on a graph-based representation of the relations
between CSs, which SyncProf extracts from program executions. The graphs provide a
generic representation that enables SyncProf to compute metrics that summarize the perfor-
mance impact of CSs, and to match related CSs against known bottleneck patterns. To deal
with the non-deterministic performance behavior that is inherent to concurrent programs,
SyncProf repeatedly executes tests and performs statistical analyses to identify the “typical”
performance impact of each CS and lock.

3.1 Bottleneck detection

The first part of SyncProf identifies test cases that expose synchronization bottlenecks. A
test case Ty, has a program-specific parameter w that specifies the size of the workload. For
example, in a file compression program, possible workload parameters are the file size and
the number of threads; in a server-side web application, a typical workload parameter is
the number of requests per execution (Mosberger and Jin 1998; Draheim et al. 2006; Arlitt
and Williamson 1996); in a database system, workload parameters may include a variety of
attributes, such as the number of database queries per time, the number of tables, and the
number of threads (Avritzer et al. 2002).

Given a set of parametrized test cases, SyncProf executes each test case with an increas-
ing workload size. Identifying synchronization bottlenecks based on these executions is
non-trivial because an increasing execution time is not a sufficient criterion. One reason is
that increasing the workload size is expected to increase the execution time. Another reason
is that synchronization bottlenecks may be hidden among other time-consuming behavior,
especially among expensive but necessary behavior (Yu et al. 2014), such as CPU intensive
operations (e.g., loops). Thus, additional symptoms are needed to isolate traces that contain
synchronization bottlenecks.

To address this challenge, SyncProf analyzes two symptoms of suboptimal performance:
execution time and CPU usage. The approach identifies test cases where increasing the
workload size leads to an increased execution time while the CPU usage is below a con-
figurable threshold (default: 90%). We perform the following steps for each test case. At
first, the approach executes the test case N times (default: N = 20) and obtains a set
of execution times M = {1, 1, ..., 5} and CPU usage values U = {uy, uz,...,un}.
Repeating test execution is necessary to deal with the non-deterministic performance behav-
ior of concurrent programs. Then, SyncProf increases the workload size for the test case
and again executes the test case N times, giving execution times M’ and CPU usage val-
ues U’. Now, the approach checks whether the two required symptoms manifest. To this
end, SyncProf performs statistical analysis that check (1) whether the execution time in
M’ is significantly larger than the times in M, (2) whether the values in U’ are not sig-
nificantly larger than the values in U, and (3) whether the mean of U/’ is less than 90%.
If these conditions hold, then SyncProf keeps the test case and the workload size for the
remaining parts of the approach. Otherwise, the approach continues to increase the workload
size. The increments of the workload size are provided along with the tests. For example,
for a database system, one may increase the table size by 100 in each round. If the symp-
toms do not manifest after §,,,, rounds (default: §,,,, = 50), the approach discards the test
case. We discuss the effectiveness of selecting test cases when using different parameters in
Section 6.

@ Springer

Empir Software Eng

An alternative to our approach would be to identify bottlenecks by measuring the per-
centage of time spent on synchronization. However, this alternative approach can impose
a significant runtime overhead because it requires instrumenting the program. Instead, our
approach is lightweight, enabling the first part of SyncProf to consider many tests and
workload sizes.

3.2 Performance impact analysis

Given a set of test cases that are likely to expose synchronization bottlenecks, the sec-
ond part of SyncProf computes the performance impact of each CS or lock on the overall
execution time. The performance impact analysis builds upon a graph representation that
summarizes the relations between CSs during a particular execution. To obtain this graph,
SyncProf instruments the program and executes the test cases identified in the first part of
the approach.

3.2.1 Synchronization dependence graph
SyncProf summarizes the synchronization-related behavior of a test execution into a graph:

Definition 1 A synchronization dependence graph (SyDG) is a graph (V, E). V is a set of
nodes {d1, da, . .. d;}, where d; is a dynamic instance of a CS. E is a set of directed causality
edges E = {d; — d,;}, implying d; is waiting for d;.

To uniquely identify CSs, SyncProf statically computes an identifier for each
CS. The identifier is based on the entry and exit instructions of a CS, such as
pthread-mutex_lock and pthread mutex_unlock. Furthermore, to distinguish
different paths through the CS, SyncProf computes a separate identifier for each acyclic
control-flow path between the entry and exit instructions.

A SyDG is a connected or disconnected graph that consists of one or more connected
subgraphs. Each subgraph depicts the dependence among dynamic instances of CSs.

The causality edges are constructed in three categories. A direct waiting edge reflects that
a CS attempts to obtain the lock that is currently held by another CS. An indirect waiting
edge reflects that d; in thread T;, which originally waits for d; in thread 7, now waits for
a new dynamic CS instance dj in thread T. For instance, in Fig. 2a, CS6 indirectly waits
for CS4 because it originally waits for CS2. A nested waiting edge reflects that d;, which
waits for d;, may also wait for another dynamic CS dj if dy is waited for by a CS nested
within d;.

Figure 4a displays a SyDG with two subgraphs from the example of Fig. 2a. Each node
[d;, k] represents a dynamic instance d; of a static CS identifier k. For example, nodes [d],
1] and [d5, 1] are two dynamic instances of CS1. The oval and rectangle shapes indicate two
different lock objects. The vertical dotted line in a thread indicates the time this thread spent
waiting for a CS. The solid lines reflect direct waiting edges and the dotted lines reflect
indirect waiting edges between two CS instances. For example, [d3, 3] is directly waiting on
[d1, 1] and [d5, 1] is indirectly waiting on [d3, 3]. Each edge is assigned to a cost value (the
edge labels are described later in the section). It is possible that a thread has to wait for one
CS while it is executing another CS (i.e., nested CSs). Figure 4b displays a partial SyDG for
Fig. 1 that involves nested CSs, where the dash-dotted line indicates a nested waiting edge.
Since d, is the outer CS of d3, a nested waiting edge (the dashed line) is added from d; to
the waiter of dj (i.e., ds).

@ Springer

Empir Software Eng

Logical
Clock T1 T2 T3 T4

b

a Synchronization dependence graph for Fig-
ure 2a.

Logical

Clock

o

NN
- o

© o ~NO®OOAWN=a

&
<€

b Nested critical section for (a).

Fig. 4 Examples of partial synchronization dependence graphs for Fig. 1

3.2.2 Constructing the graph

SyncProf constructs the SyDG for an execution by instrumenting the program and by ana-
lyzing the current execution trace. An execution trace is a sequence of synchronization
events, i.e., acquiring a lock, obtaining a lock, releasing a lock, and a barrier. Figure 5

procedure BuildSyDG (trace)
1:V=¢p;E=0¢
2: for each synchronization event e in trace

3: switche

4: case lock acquire:

5: V.addNode(d)

6: if d is blocked by d’

7: E.addEdge(d’, d)

8: c(d',d) + d.t

9: case lock obtain:

10: setActive (d.tid) <+ true

11: for each d’ € in(d)

12: c(d, d) + d.t-c(d, d)

13: for each d” € (out(d')/(d’, d))
14: E.addEdge(d, d")

15: c(d, d") < d.t

16: c(d,d") + d.t-c(d,d")
17: for each o € active(d.tid)/d
18: for each d” € out(o)

19: E.addEdge(d’, d)

20: c(d,d") «+ c(d, d)

21: case lock release:

22: setActive (d.tid) < false
23: case barrier:

24: V.addNode(d)

25: for each d' € V/d

26: if d.bar = d'.bar

27: E.addEdge (d’, d)

28: c(d',d) = d.st - d .ct

Fig. 5 Algorithm to compute the SyDG

@ Springer

Empir Software Eng

describes the algorithm for constructing the SyDG on the fly. Whenever a synchronization
event is executed, the algorithm updates the SyDG nodes, direct/indirect waiting edges and
their corresponding costs.

Adding a node When a lock acguire event (attempting to enter a CS) is encountered,
the algorithm adds into the SyDG a node d, which represents the dynamic instance of a CS
associated with the current trace event (line 5). At this point, the current thread does not
enter the CS yet, so the status of the CS is inactive by default. Specifically, a CS becomes
active on the current thread upon obtaining a lock (line 10) and inactive upon releasing a
lock (line 22). In the case of barrier synchronization, a node is created when a barrier is
reached (line 24).

Adding a direct waiting edge A direct waiting edge is added when a CS d’ attempts to
obtain the lock which is held by a CS d (line 7). The cost of the edge ¢(d’, d) is the time that
d’ spends on waiting for d. The cost c(d’, d) is temporarily set to the current time (line 8),
which will be used to calculate the actual cost of ¢(d’, d) when d’ obtains the lock. When
d obtains the lock, the algorithm iterates through the in-going edges of d and finds the CSs
that d was previously waiting for, i.e., waiters of d. The cost of each edge is updated by the
time difference between the current time and the time when d started waiting (line 12). In
the example of Fig. 4a, when ds is entered, the cost of edge (d, ds) is 8 (shown on the left
of the slash).

In the case of barrier synchronization, a direct waiting edge is added from each wait
event d’ to the current event d, indicating that the two events are waiting on the same barrier
(line 27). The cost of each edge is the time elapsed since d started waiting for d’. Consider
the example of Fig. 2, CS5 is blocked at time 6 and waits for the other threads to reach the
barriers. When CS2 reaches the barrier, the cost of (CS5, CS2) is 4 because CS5 spends
4 time units waiting for CS2. When CS3 reaches the barrier, the cost of (CS5, CS3) is
12—-6=6.

Adding an indirect waiting edge The algorithm computes the indirect edge by iterating
through each CS d” that was previously waiting for d’ (line 13). An indirect waiting edge
is added from d to d” (line 14), indicating that d” begins waiting on d instead of d’. As
such, the cost of (d, d”) is temporarily set to the current time (line 15), and then updated
when d” is entered (line 12). In the meantime, the direct waiting edge (d’, d”) is updated by
subtracting the old edge cost from the current time (line 16) because d” is currently waiting
on d. In the example of Fig. 4a, when d3 is entered, an indirect waiting edge (the dotted line)
is added from d3 to ds, indicating that d5 becomes a waiter of both d; and d3. The cost of
the direct waiting edge (d1, ds) is then reduced from 8 to 4 (shown on the right of the slash).

Note that the barrier synchronization does not involve indirect edges because all CSs
converge at the same barrier point. In other words, a CS can directly wait for multiple CSs
at the same time. For example, in Fig. 2, CS5 directly waits for CS2 and CS3.

Adding a nested waiting edge To construct a SyDG in the case of nested CSs, the algo-
rithm first iterates through all outer CSs of d by locating each active CS o (excluding d)
on the current thread (line 17). The waiters of o are in turn waiting on d’ (on which d is
waiting). Thus, the algorithm adds a nested waiting edge from d’ to each waiter d” of o,
indicating that d” is currently waiting for d’. The edge cost of (d’, d”) is updated to (d’, d)
because d” spends the same waiting time as d on waiting for d’. For example, in Fig. 4b,
when d3 is entered, the cost of (d1, d3) is updated to 2. The cost of the nested waiting edge

@ Springer

Empir Software Eng

is equal to c(dj, d3). In the meantime, the cost of edge (d>, ds) is reduced to to 4 — 2 = 2.
Thus, the wait time incurred by T4 is attributed to both CS1 and CS2.

The current implementation of SyncProf does not support the nested waiting edge for
barrier synchronizations. While it is possible that barriers can be nested, we do not find such
cases in our studied subjects.

The timestamps used to construct the SyDGs are based on a logical clock, which mea-
sures the number of executed conditionals, including direct/indirect calls and direct/indirect
branches, instead of actual wall-clock execution time. A direct/indirect call is considered
to be a conditional because it involves runtime cost, so we account for the cost by increas-
ing the conditional counter. The rational for measuring time through this proxy metric,
which is inspired by Pradel et al. (2014), is twofold. First, accurately measuring the time
span between two events that are close to each other in time is challenging due to the lim-
ited precision of the timestamps provided by the operating system. As a result, measuring
wall-clock time risks to yield inaccurate and potentially misleading values. Second, as the
instrumentation added by SyncProf influences the execution time of the profiled program,
measurements of wall-clock execution time may be distorted. In contrast, the number of
executed conditionals is not influenced by instrumentation.

3.2.3 Performance impact metrics

Based on the SyDG of an execution, SyncProf quantifies the performance impact of the
CSs and locks. The result of this step is a set of impact values for each test 7', denoted by
PlIr. We use PIr cs to denote the cost value associated with a particular CS, where CS
refers to the unique static CS. Unlike existing contention measurement approaches (Joao
et al. 2012; Chen and Stenstrom 2012; Tallent et al. 2010) that focus on a specific metric,
SyDGs provide a generic representation that enables SyncProf to compute multiple metrics
that summarize the performance impact of CSs. Here, we introduce three metrics used by
SyncProf.

All-path wait time (APWT) This metric measures the performance impact of a CS by
aggregating the time spent by all other threads waiting for the CS:

Plrcs = Z Z c(e)
(weV(SyDGr)Av.sid=CS) ecout (v)

V(SyDGr) are all nodes in SyDGr obtained by exercising test 7', v.sid is the CS
identifier, out(v) are the outgoing edges of v, and c(e) is the cost of an outgoing edge
of v.

For example, consider the SyDG constructed for the example in Fig. 4a. The performance
impact of CS1 is the sum of performance impacts across all dynamic instances (i.e., [d1,1]
and [ds,1]) of CS1, thatis, PIr1 =4 +4 = 8, Likewise, PIr o =2+2+2 =06.

Critical-path wait time (CPWT) Considering wait time can be effective at identifying
synchronization bottlenecks, but the results may be misleading when the synchronization
bottleneck does not impact the completion time of a program. To address this problem, the
CPWT metric considers the critical path1 (Barford and Crovella 2001; Chen and Stenstrom

1A path that directly impacts the completion time of a program.

@ Springer

Empir Software Eng

2012) of an execution while quantifying the performance impact of a CS. Applying CPWT
requires isolating critical path graphs from other subgraphs in each SyDG:

Definition 2 A critical path graph is a subgraph of a SyDG, where the last node of each
connected component is from the last finished thread.

In the example in Fig. 4a, since T4 is the last finished thread, the critical path graph
contains the nodes d», da, dg, and d7. In contrast to APWT, CPWT indicates that CS2
induces the highest performance impact because it is in the critical path.

SyncProf also enables developers to combine multiple metrics. In this case, the perfor-
mance impact of a CS is the mean of the impacts computed by multiple metrics.

All-path lock time (APLT) The APWT and CPWT metrics quantify performance impact
for individual CSs. In some cases, performance bottleneck optimization is done for multiple
CSs associated with the same lock (Zheng et al. 2015). As such, the APLT metric enables
developers to analyze the performance impact for individual locks. The APLT measures the
total time spent by other threads waiting for L, denoted by PIr ;. Specifically, for each
lock object L, SyncProf locates the nodes in a SyDG associated with L, and adds up the
costs of all their outgoing edges.

In the example in Fig. 4a, where the two SyDGs involve different locks L1 (top subgraph)
and L2 (bottom subgraph). Thus, PIr 1 =4+4+4=12,and PIr ;0 =2+2+4+2+
2+2+2=12.

3.2.4 Dealing with non-deterministic performance

Different program executions for one input may expose different performance prop-
erties due to the non-deterministic behaviors of multi-threaded programs. To mitigate
such non-determinism, SyncProf takes additional executions for each input and considers
only performance impact values that vary within specified bounds. Specifically, SyncProf
assumes a fixed testing budget B for executing all test cases. Let N be the number of
times one can repeat a test case 7 within B. SyncProf repeatedly executes test 7' and cal-
culates PIr cs for each CS (see Section 3.2.3). At the end of each repetition, SyncProf
accumulates Pl cs using a set Mr cs, ie., Mt .cs = {PIT,CS] s PIT,CSQ, ey PIT,CSn},
where 7 is the n'" repetition and n < N. Next, the standard deviation of M7 cg is calcu-
lated, denoted by o (PIr,cs). The standard deviation is expected to decrease as more data
points for PIr cs are collected. SyncProf stops repeating executions when o (P It cs) is
below a specified threshold §;,, or when n reaches the maximum value N. By default,
SyncProf sets 85, to the percentage (o) of the mean of the M,, thatis, Mt cs - o), (Pradel
et al. 2014). For the evaluation, we use a testing budget B of 12 hours, 85,, = 0.01,
and N = 10.

It is possible that the standard deviation o (P I cs) is above the specified threshold &,
after the number of repetitions reach N. In this case, SyncProf will report the CS CS as
inconclusive (Pradel et al. 2014) and leave it for manual inspection. However, we did not
find any inconclusive test cases in our evaluation. The final Pl cg is the mean of M7 cs,
excluding any inconclusive test cases, i.e., PIr cs = M7 cs.

Another source of nondeterminism involves cache misses, which can greatly increase
response times of SyncProf (Lozi et al. 2012). This can happen when a CS accesses a shared
resource that has recently been accessed by another core. To address this issue, before the

@ Springer

Empir Software Eng

Table 1 Example of a suggested

optimization CSID Lock Object Source location Action
1 mutex._enter g-lock foo.c:(1,10) — L1
3 mutex_enter g-lock foo.c:(21,29) — L2
5 mutex_enter g-lock bar.c:(2,11) — Remove
6

training process starts on each test j, SyncProf repeatedly executes j for W times to warm
up the cache.

3.3 Root cause analysis

Given the performance impact values of all critical sections and tests, SyncProf ranks CSs
by their likelihood to be the root cause of a bottleneck. Each CS corresponds to a set PIcg
={M cs, Ma s, ..., Mr,cs} of performance impact values, where T is the index of a test
input. Next, SyncProf ranks the CSs in terms of the mean of each P Ics. Formally, SyncProf
considers CS; to be more critical than CS; if Plcs, > Plcs,. Once CSs are prioritized,
SyncProf enables developers to choose which CSs to optimize and suggests optimization
strategies.

Another possible approach is to perform an ANOVA test?> (Mertler and Vannatta 2002)
among all CS sets (e.g., PIcss) and to conclude that one CS has more performance impact
than another when there is a statistically significant difference. We rejected this idea because
this approach ranks CSs in a partial order, which could be difficult for developers to
understand.

3.4 Suggesting optimization strategies

The final step of SyncProf heuristically suggests optimization strategies for the detected
synchronization bottlenecks. We consider four optimizations: unnecessary synchronization
elimination, lock split, reader-writer locks, and CS reduction. SyncProf reports descrip-
tions of suggested optimizations, that each contain a static CS identifier, locks and objects,
code locations, and suggested actions. Table 1 describes a sample output, which indicates
that CS1, CS3, and CSS5 are protected by the same lock (i.e., mutex_enter with object
g-lock). This lock can be split into two locks on CS1 and CS3, and can be removed on
CSs.

To obtain such suggestions, SyncProf performs the following steps. First, the approach
instruments synchronization operations, CS entry and exit points, and memory reads and
writes. The tests are exercised against the instrumented program to generate a new set of
SyDGs specific for optimization (denoted as SyDG,). The SyDG, is constructed similarly
to the SyDG (Section 3.2), except for three differences. First, a SyDG, does not record
or update timestamps because timing information is not needed when optimizing the CSs
that deal with positioning locks. Second, every SyDG, node maintains a read set (CS,4)
and a write set (CSy,) that record all memory locations accessed in the CS. Third, besides
instrumenting CS entry and exit points and synchronization operations when generating
a SyDG, SyncProf instruments memory reads and writes for constructing a SyDG,. To
mitigate runtime overhead, SyncProf instruments only the top K CSs in the ranking and the

2 ANOVA tests the significance of group differences between two or more groups

@ Springer

Empir Software Eng

CSs that use the same lock as these K CSs; this information can be retrieved by analyzing
the original SyDGs. The process of generating SyDG,s is repeated N times. Thus, the
number of traces is |T'| * N, where |T| is the number of tests. We set K =5 and N = 20 in
the evaluation.

Next, SyncProf transforms the set of all SyDG,s into a universal synchronization depen-
dence graph (USyDG). As in the SyDG, a node in the USyDG is a dynamic instance of a
CS and an edge indicates the a wait relation between CSs. However, a USyDG describes the
wait relations between CSs across all threads over all test cases. As a result, the optimiza-
tion can be performed on a single graph. One challenge in building the USyDG involves
merging dynamic CS instances across multiple executions because thread IDs may vary
across different executions. To address this challenge, SyncProf uses the static thread ID as
the key, and the dynamic CS instances are merged only when they share the same static ID
on the same thread.

Figure 6 shows the algorithm for computing the USyDG. The algorithm first constructs
a matrix M for program P where each row indicates a SyDG,, and each column indicates
a dynamic thread ID. A dynamic thread ID is denoted as m.n, where m is the static thread
ID and 7 is the index of the dynamic instance of m. The initial value of n is 0, and n is
increased when a new instance of m is created. An element in the matrix M indicates a list
of CSs on the thread m.n of a SyDG,s.

To construct a U Sy DG, for each thread across all SyDG,s (i.e., each column of M), the
nodes with common static CS identifiers are merged on this thread, and their read and write
sets are joined, respectively. The incoming or outgoing points of the associated edges are
merged. Figure 7a and b display two SyDG,s from two tests 7; and #,. Table 2 shows the
corresponding SyDG,, matrix. The first row indicates the threads (i.e., m.n). Each cell in
rows 2-3 indicates the static CS IDs on a thread of a SyDG,. There are six static CSs with
a common lock. Next the CSs on the same thread for all SyDG, are merged. Figure 7c
displays the USyDG by merging SyDG,, and SyDG,,. The static CSs with common iden-
tifiers SyDG, are merged into one node (i.e., node 1 in T1 and node 5 in T4) and their read
and write sets are joined. In the USyDG, r indicates there exists a shared variable read in
a node (i.e., CS,4 = {r}), and w indicates the same shared variable is written (i.e., C Sy,
= {w}). For example, because node 1 in SyDG,, and node 1 in SyDG,, involve the same
shared variable read, node 1 in USyDG contains a read set CS,; = {r}. The same with node
5 and other nodes. (L) indicates a CS is protected by a lock L.

3.4.1 Identifying optimization patterns
To identify optimizable CSs, SyncProf considers three patterns to match with each pair of

connected nodes (m and n) in the USyDG: (1) null-shared, (2) read-read, (3) low-degree-
conflicts, and (4) long-critical-section.

rocedure BuildUSyDG ({SysDG.})
V=¢;E=20
: construct M|[S][T]
: for each t in T
for each s in S
USyDG(t] - USyDG[t] U M|s][t]
add edges

kel

Fig. 6 Algorithm to compute the USyDG

@ Springer

Empir Software Eng

T T2 T3 T4 T T2 T3 T4 T5

a SyDGy b SyDG,
T T2 T3 T4 T5 T T2 T3 T4 T5
r
L) L)

r
L ' ’ (LiLo))
w 5)
D) ()

4 r r r
0) © () (L L)

¢ USyDG d Updated USyDG

Fig. 7 Optimization example

The null-shared pattern happens when there exist no shared memory accesses between
two CSs. Two USyDG nodes match the null-shared pattern if ((CS,4,, UC Syr,,) N (CSrq, U
CSuyt,)) = ¢. The read-read pattern refers to the case where two CSs protected by the
same lock access the shared variable but none of them is a write. This pattern is matched if
(CSrdm n CSwt,, = ¢) A (CSrdm n CSrdn 5& ¢)

The low-degree-conflicts is a special pattern that indicates that two CSs protected by
the same lock both read and write to a shared location, but such conflicting accesses occur
very infrequently. To identify the degree of conflicts between two CSs, SyncProf measures
the percentage of two consecutive executions of a CS pair that matches either pattern (1)
or pattern (2) (i.e., a non-conflicting access pattern) over all consecutive executions of the
pair. If the percentage exceeds a threshold d4.¢, the CS pair matches the low-degree-write
pattern. We set 840, = 80% as a default.

The long-critical-section pattern happens when a CS pair matches none of the patterns
(1), (2) and (3), but a number of consecutive accesses in a CS do not involve conflict
accesses. For example, a CS contains 100 instructions, but only the last 20 instructions
involve conflict accesses. In this case, the first 80 instructions do not need to be protected

Table 2 Example of SyDG,

matrix 1.1 1.2 1.3 1.4 1.5
SyDG,, 1 1 3 5 _
SyDG,, 1 2 4 5 6

@ Springer

Empir Software Eng

by the CS. To identify this pattern, SyncProf begins with the CS entry and tracks the num-
ber of consecutive memory accesses that do not contain conflicts, denoted by M,. SyncProf
then analyzes the trace that records memory accesses in a backward way from the CS exit
to the last conflict access in the CS; this number is denoted by M. If the ration between the
sum of M, and M, and all memory accesses exceeds a threshold 87,4, the CS pair matches
the long-critical-section pattern. We set 819, = 20% as a default.

3.4.2 Suggesting concrete optimizations

SyncProf can suggest four types of concrete optimizations for the detected optimization
patterns.

Unnecessary synchronization elimination If a pair of nodes matches either pattern (1)
or (2), and if the static CS identifiers in the pair are not identical, the edge for the pair
is removed. If the static CS identifiers are identical, the edge is removed only when the
identifiers do not connect with other nodes that have different CS identifiers. In the example
of Fig. 7c, edges (T1:1,T2:2), and (T1:1,T3:4) are removed (updated in Fig. 7d), because
the nodes in both edges match the read-read pattern. The edge (T1:1,T2:1) is not removed
because the node identifiers are identical. Next, for each standalone node in the updated
USyDG, SyncProf suggests to remove the synchronization in the node, as the node does
not have dependences on other CS nodes. In Fig. 7d, SyncProf suggests to remove node
2in T2.

Lock split For the remaining connected USyDG nodes, SyncProf reconstructs lock depen-
dences to suggest fine-grained locks that guard disjoint sets of shared variables. To do this,
SyncProf first removes the original locks in each node, and then uses dummy locks to recon-
struct its lock set. Specifically, SyncProf assigns a dummy lock to every node s that has only
outgoing edges. A node ¢t with incoming edges should be synchronized by the given lock of
its source node s. Thus, the lock set of ¢ is updated by joining with the lock set of s. In the
meantime, the lock sets of all other nodes with the same identifiers are updated to ensure
consistency. In the example of Fig. 7d, node 1 (on T1) is assigned a new dummy lock L;
and node 4 is assigned a dummy lock L;. The lock set of node 1 on T2 is also updated to
L;. Next, node 3 and node 5 are updated by joining the lock set of node 1 (i.e., L1). In the
end, the original lock L is split into two locks so that node 4 does not acquire the same lock
as node 1.

Reader-writer locks SyncProf can further suggest to use reader-writer locks instead of
locks that enforce full mutual exclusiveness. To do this, for each node s with a non-empty
write set, SyncProf finds all undirected simple paths starting from s. If all nodes except s in
a path have common node identifiers, and if the write sets of these nodes are all empty, the
identifier of the last node of the path is a reader of s. In Fig. 7d, <3:T3, I:'T1, 1:T2> is a
simple path starting from node 3. In fact, node 1 is a reader of node 3 and can be executed
concurrently. Thus, node 1 and node 3 can be protected by a reader-writer lock.

Critical section reduction For each simple dynamic path in the CS, SyncProf identifies
the first and last conflict accesses in the CS, denoted by SV, and SV, respectively. SyncProf
groups the paths that have conflict accesses and their SV,s belong to the same basic block.
For each group, SyncProf picks the shared variable (denoted by SV,’) that is closest to the
CS entry and moves this entry to the location right above the statement involving SV,’. In

@ Springer

Empir Software Eng

Fig. 8, there are two simple paths that contain conflict accesses: p; = <1-4, 6-7> and p»
= <1-5, 6-7>. Since the conflict access at node 3 is closest to the CS entry (node 1), the
lock at node 1 is moved to the position above the node 3. Next, SyncProf filters out the
simple dynamic paths that traverse the newly assigned lock. SyncProf groups the paths in
which their SV, s belong to the same basic block. For each group, SyncProf picks the shared
variable (denoted by SV,’) that is closest to the CS exit and moves this exit to the location
above the statement involving SV,’. In Fig. 8, the SV,s on the two simple paths do not
belong to the same basic block. Specifically, the SV, on p; is node 3 and that on p; is node
5. Thus, the unlock is assigned to each path separately. The algorithm guarantees that the
CS entry and exit points are properly paired after optimization.

Handling the low-degree-write pattern In practice, it is almost impossible to sug-
gest concrete optimizations for the low-degree-write pattern, as it often depends on the
specific program and thus requires developers’ knowledge to optimize the code. For exam-
ple, developers may choose to set flags to enable synchronizations under certain condition,
applying specific data structures (e.g., non-blocking algorithm Micheal and Scott 1996). In
this case, SyncProf only reports CSs that match pattern (3), and leaves them for developers
to investigate.

Fig. 8 An example for
illustrating the critical section
reduction

@ Springer

Empir Software Eng

Note that the four types of optimizations can also be applied to barrier synchronizations
because critical sections involving barriers can be encoded into the USyDG. For example,
in Fig. 2, if CS5 and CS2 — CS4 match the pattern (1) (i.e., null-shared), SyncProf would
suggest to remove the barrier in CS5 because it will not conflict with the other CSs. Nev-
ertheless, the methods of eliminating, splitting, and reducing barrier regions are different
from locks, which are left for developers to investigate.

3.5 Implementation

SyncProf is implemented on top of the PIN instrumentation framework (Luk et al.
2005). To obtain CS identifiers, we use CODESURFER? to perform context-sensitive and
flow-sensitive analysis that enumerates the paths enclosed in each CS. SyncProf moni-
tors system executions and generates information that can be recorded for use in either
online or offline analysis. The instrumentation considers entry and return instructions
of all synchronization operations, event types, identifiers of synchronization objects, and
identifiers of thread and memory accesses. All these events are recorded using APIs
provided by PIN. When a test run completes, a SyDG along with its runtime infor-
mation is recorded into a trace file, which is fed into the analysis modules for further
processing.

4 Empirical study

We apply SyncProf to several C/C++ programs to address four research questions:

RQ1: How effective is SyncProf at identifying synchronization bottlenecks?
RQ2: How does SyncProf compare to a state-of-the-art profiler?

RQ3: How effective is SyncProf at suggesting profitable optimizations?
RQ4: How efficient is SyncProf?

The first research question allows us to evaluate the effectiveness of the root cause anal-
ysis in SyncProf. The second research question evaluates SyncProf by comparing it to a
state-of-the-art lock contention profiling tool. The third research question lets us further
investigate whether SyncProf can effectively suggest optimization strategies. The fourth
research question explores the cost of SyncProf in the root cause analysis and optimization
suggestion.

4.1 Experimental setup
4.1.1 Subject programs

Table 3 lists the C/C++ programs we use in the evaluation. We use programs with known
bottlenecks to evaluate whether SyncProf identifies them and suggests profitable opti-
mizations. We also use the latest program versions to evaluate whether SyncProf detects
previously unknown synchronization bottlenecks (indicated by). Table 3 also lists the
numbers of lines of non-comment code in the applications (Column 2) and the sources of
bottlenecks (Column 3).

3http://www.grammatech.com/products/codesurfer/overview.html.

@ Springer

http://www.grammatech.com/products/codesurfer/overview.html

Empir Software Eng

Table 3 Subject programs

Program NLOC Issue T Tser CS CScov OBJ OBl oy
UTS 49K (Chen and 16 8 17 17 [8, 14] 6 6 [6, 6]

Stenstrom

2012)
Radiosity 8.2K (Chen and 22 14 54 5421, 32] 6 6 [6, 6]

Stenstrom

2012)
Ocean 2.6K (Heinrich and 44 21 44 (40) 44125, 30] 15 15 [13,15]

Chaudhuri

2003)
Barnes 2.0K (Woo et al. 12 9 12 (6) 1219, 12] 4 414,4]

1995)
Cholesky* 3.7K - 21 12 10 (4) 10 [5,6] 4 414,4]
FMM: 3.2K - 26 0 41 (13) 41[21,24] 9 919, 9]
Raytrace 6.1K - 22 12 18 (3) 18 [13, 15] 6 6[6,6]
Water 1.2K - 34 19 17 (9) 17 [14, 17] 6 61[6,6]
MySQLI1 199K 38941 98 31 870 220 [52, 67] 156 251[17,19]
MySQL2 236.9K 62018 98 29 264 82 [29, 40] 34 28 [21, 24]
MySQL3 315.5K 73361 94 32 462 118 [35,48] 67 38 [24, 30]
MySQL4 413.7K 75534 83 21 556 122 [30,39] 38 23[17,22]
MySQL5 398.0K 72829 85 24 322 98 [25, 29] 73 42 [29, 35]
MySQL6 422.8K 76509 91 43 324 105[32,42] 38 28 [20, 23]
MySQL7 427.8K 76686 102 25 333 109 [28,45] 40 28 [20, 22]
MySQLS8 315.5K 77094 100 25 329 102 [32,40] 73 45 (29, 38]
MySQL9* 443.1K - 112 28 336 114 [35,48] 76 49 [31, 39]
Firefox1 1,120K 733277 42 15 87 45 [34, 39] 23 16 [10, 13]
Firefox2 1,258K 488148 40 11 88 40 [29, 36] 31 159, 13]
Firefox3 1,223K 121523 39 12 82 41 [20, 32] 28 15[8, 12]
Firefox4x 2,169K - 45 0 196 90 [39, 71] 35 22 [15,20]
Bitcoinl 2433K 2840 91 61 205 92 [21, 26] 26 16 [8, 12]
Bitcoin2 2732K 7112 88 32 306 121[25,33] 32 22 (12, 19]
Bitcoin3 332.8K 4795 95 40 235 95 [22,29] 26 16 [10, 13]
Bitcoin4 259.4K 6688 84 39 291 109 [24,30] 29 19 [10, 15]

NLOC=#lines of code. Issue=known synchronization bottleneck from existing literatures and bug IDs, T and
Tsec=H#(selected) test cases. C'S and C S, =#(covered) critical sections with 95%-confidence intervals. O BJ
and O B J.,,=#(covered) synchronization objects with 95%-confidence intervals

The first eight programs are benchmark programs used by others to study concurrency
and performance (Heirman et al. 2011; Novillo and Lu 2003; Olivier et al. 2007; Sahe-
lices et al. 2009; Chen and Stenstrom 2012; Woo et al. 1995). UTS performs an exhaustive
search on an unbalanced tree (Olivier et al. 2007). The other seven benchmark programs are
from the SPLASH-2 benchmark suite (Woo et al. 1995). Only the first four benchmark pro-
grams have previously known bottlenecks (Sahelices et al. 2009; Chen and Stenstrom 2012;
Woo et al. 1995). The remaining programs (i.e., Firefox, MySQL, and Bitcoin) are different
versions of popular open source projects, each with known synchronization bottlenecks.

@ Springer

Empir Software Eng

The subject programs cover various application spectrums — one of the world’s most
widely used web browsers, the world’s most popular database engine, and a widely used
payment system. To identify these bottlenecks, we search the project’s issue trackers for
key words “mutex/lock/synchronization contention” and “performance”, manually filter the
issue descriptions for synchronization-related performance problems. We then randomly
selected ten MySQL issues from the latest two major versions (i.e., 5.6.x and 5.7.x), three
Firefox issues, and four Bitcoin issues. We could reproduce eleven issues in our environ-
ment (MySQL1 to MySQLS and Firefox1 to Firefox3). In addition, we also include the
latest versions of MySQL (5.7.10) and Firefox (44.0b9), listed as MySQL9 and Firefox4.
Before applying SyncProf, we did not know any bottlenecks in these versions, indicated
by .

4.1.2 Test cases

For each program, we gather several test cases and workload sizes. For the benchmark
programs, the workload can be specified as small, medium, or large. For example, the test
case “. /Radiosity -p 2 -batch -room” uses batch mode (does not display the
rendered image) and 2 threads to compute the distribution of light in a scene. Here, the
regular configuration option is -batch the workload attributes are the number of threads
(-p 2)and the input size (-room). The thread number is increased by 1 and input size can
be increased to -largeroom.

For MySQL, we use two existing test suites that trigger requests to the database: (i)
mysqlslap, where the workload size is the number of queries, writes, indexes, and threads;
(ii) sysbench, where the workload size is the number of tables, the table size, and the num-
ber of threads.* For example, a mysqlslap test case “mysglslap --user=sysadmin
--password --host=localhost --concurrency=50 --iterations=10
--auto-generate-sgl-write-number= 1000 uses 50 concurrent connec-
tions, and has 1000 row inserts run 10 times. The options --concurrency and
--auto-generate-sgl-write-number are workloads, where the former is always
increased by 10 and the latter is increased by 100. The other options are regular inputs. For
Firefox, we write Selenium tests that open multiple tabs with popular web sites simulta-
neously. The workload size is the number of requested sites, and is increased by 10. For
Bitcoin, which accepts configuration files, we used 2-way covering arrays (Fouché et al.
2007) to generate test cases. For example, a configuration that sets “maxconnections
= 128, server=1, rpcthreads=8, keypool=300, and rpckeepalive=false”
indicates a test case. It uses the command bitcoin-cli to send RPC request to
bitcoind. As such, the number of requests is the workload size (e.g., . /bitcoin-cli
--regtest gettransaction ccfb9f516f), which is increased by 10.

Table 3 gives the number of test cases for each program (column 4), the number of
test cases selected as bottleneck-exposing test cases (column 5), and the number of static
CSs (column 6) and static synchronization objects (column 8), as well as how many of
these are covered by the test cases (columns 7 and 9). The number in each parenthesis of
column 6 indicates the number of barrier regions. Because the number of covered CSs and
synchronization objects may differ between different executions, we give the mean and the
confidence interval. We set the confidence level (i.e., p-value) as « = 0.05.

“http://www.jonahharris.com/osdb/mysql/mysql-performance- whitepaper.pdf.

@ Springer

http://www.jonahharris.com/osdb/mysql/mysql-performance-whitepaper.pdf

Empir Software Eng

4.1.3 Previously unknown, optimizable bottlenecks

To evaluate whether SyncProf finds bottlenecks that are not among those known to us before
running the profiler, we manually inspect reported code locations. If this inspection suggests
that a bottleneck can be optimized, we check whether the code has been optimized by the
developers in a later version of the program. If not, we patch the program as suggested by
SyncProf and run its test cases. We consider an optimization is valid if it does not fail any
test case and if it improves performance.

4.1.4 Evaluating the effectiveness in identifying bottlenecks

To answer RQI1 (i.e., the effectiveness of SyncProf in identifying synchronization bottle-
necks), we measure the rank number (position) of CSs and locks that contain synchroniza-
tion bottlenecks. We also use the rank number to compute the percentage of critical sections
or locks that need to be examined to find a synchronization bottleneck in the program. This
ranking strategy has been widely adopted by existing fault localization techniques (Jones
and Harrold 2005; Cleve and Zeller 2005).

4.1.5 Comparison with Valgrind lock contention profiler

To answer RQ2, we compare SyncProf to a state of the art profiler to detect synchronization-
related bottlenecks, the Valgrind lock contention tool DRD (2015). The DRD tool com-
putes mutex contention by measuring the amount of time that a CS is blocked trying to
acquire a lock. We choose DRD as a baseline because it is open source and extensible.
DRD profiles individual test executions, i.e., applying it to the test cases from Table 3
results in many execution profiles. We apply DRD to all test cases and selected test cases,
respectively.

4.1.6 Evaluating effectiveness of SyncProf in suggesting optimizations

To answer RQ3 (i.e., the effectiveness in suggesting beneficial optimizations), we compare
the optimization strategy suggested by

SyncProf to the optimizations known from previous work and from the developers’ fixes
for the reported issues. To determine whether a SyncProf” optimization strategy matches the
known optimization (i.e., ground truth), we manually examined the solution discussed in
the corresponding issue report and the patch used for fixing the issue. We also examined the
code locations of CSs in the patch to confirm that they match the optimization descriptions
suggested by SyncProf.

4.1.7 Threats to validity

The primary threat to external validity for this study involves the representativeness of our
objects and test cases. Other objects and test cases may exhibit different behaviors and cost-
benefit tradeoffs. However, we do reduce this threat to some extent by using several varieties
of well studied open source subjects for our study, and test suites generated by practical
approaches. Though generating performance test cases is not the focus of this work, it is
true that different test cases may cause the programs to exhibit different behaviors. Finally,
SyncProf works on programs using pthread libraries. The general idea of our approach

@ Springer

Empir Software Eng

could translate to programs using other concurrency constructs and methods (e.g., optimistic
concurrency control).

The primary threat to internal validity for this study is possible faults in the implemen-
tation of our approach and in the tools that we use to perform evaluation. We controlled
for this threat by extensively testing our tools and verifying their results against a smaller
program for which we can manually determine the correct results.

Where construct validity is concerned, it is true that optimizing bottlenecks can be sub-
jective. To mitigate this threat, we used the developers’ fixes for the reported issues as the
ground truth to assess our approach.

5 Results and analysis
5.1 RQL1: effectiveness in localizing bottlenecks

To answer RQ1, we compare the ranked list of CSs reported by SyncProf with the critical
section CS,), and the lock L,,, that are improved in the known and previously unknown
but beneficial optimizations. The higher the approach ranks CS,,; and L, the quicker the
developer localizes the program location to optimize. While the size of CSs may also affect
the manual effort required by developers, CSs are usually short. Based on a calculation
on all programs, the CS size ranges from 2 to 52 lines of code, with an average of 10.
Table 4 lists the bottlenecks identified by SyncProf (MySQL4-1 and MySQLA4-2 indicate
two bottlenecks found in MySQL4 (V 5.7.5)). FMM and Firefox4 are not listed because no
synchronization bottlenecks are detected or have been known. The first block of columns
shows the rank by the three metrics of SyncProf. The numbers in parentheses indicate the
percentage of CSs (locks) that the developer would have to inspect among all executed CSs
(locks) in the program.

SyncProf found three previously unknown and valid bottlenecks in Cholesky, Raytrace,
and Water. Furthermore, SyncProf found another two bottlenecks that were previously
unknown to us (MySQL4-2 and MySQL9). MySQLA4-2 has been fixed independently of
us in the next version of MySQL. We reported the bottleneck in MySQL9 to the MySQL
developers (bug #80101) and this bug has been linked to an existing bug #76728.

For all 24 detected bottlenecks, SyncProf guides the programmer to the desired CS by
examining at most 5% of all CSs. In fact, for nine of 24 bottlenecks using the CPWT metric,
the root cause is ranked first among all CSs. For six out of 24 bottlenecks, the CPWT
metric is more effective than the APWT metric. For the other bottlenecks, the CSs that
introduces significant performance impact are executed in short-execution threads. For 21
of 24 bottlenecks, the lock is ranked as the first among all locks using the APLT metric.
We conclude that SyncProf is effective at pinpointing the root cause of synchronization
bottlenecks and that the critical path metrics are particularly effective.

We further examined the three bottlenecks (i.e., MySQL4-2, MySQLS, and MySQL9)
that were not ranked at the top using the APLT metric. While the top ranked CSs have the
highest performance impact values, they do not cause low CPU usage (i.e., the second and
third conditions for revealing bottlenecks described in Section 3.1 are not met). In fact, the
higher ranked CSs in the three programs involve SQL queries and caching in the presence
of large number of queries, which are normal time-consuming operations. These cases are
further validated in our bottleneck optimization step; the symptom of the synchronization
bottleneck disappeared after we optimize the bottlenecks identified by SyncProf.

@ Springer

Empir Software Eng

Table 4 SyncProf’s effectiveness and efficiency in localizing bottlenecks

Bottleneck SyncProf (%) Time SyncProf w/o selection Time

CPWT APWT APLT AVG (min) CPWT APWT APLT (min)

UTS 1(0) 1(0) 1(0) 1(0) 495 2(09%) 2(09%) 2(0.9%) 86.1
Radio. 1(0) 1(0) 1(0) 1(0) 386 1(0) 1(0) 1(0) 64.3
Ocean 1(0) 2(2.3%) 1(0) 1(0) 132 223%) 2Q23%) 1(0) 85.2
Barnes. 1 (0) 1 (0) 1 (0) 1 (0) 445 1(0) 1 (0) 1 (0) 50.2
Cholesky* 1 (0) 1 (0) 1 (0) 1 (0) 360 2(16.7%) 2(16.7%) 2(25%) 522
Raytrace 1(0) 1 (0) 1 (0) 1 (0) 325 1(0) 2(56%) 2(16.7%) 59.3
Water 1 (0) 2(5.9%) 1(0) 1 (0) 398 2(59%) 2(59%) 2(16.7%) 62.0
MySQLI 2(0.5%) 2(0.5%) 1(0) 2(0.5%) 2893 2(0.5%) 3(0.9%) 1(0) 783.2
MySQL2 1(0) 3(24%) 1(0) 3(24%) 2884 2(12%) 3(24%) 2(3.5%) 892.2
MySQL3 1(0) 1(0) 1 (0) 1(0) 281.5 1(0) 1(0) 1(0) 832.2
MySQLA-1 2(0.8%) 2(0.8%) 1(0) 2(0.8%) 2402 4(25%) 3(1.6%) 1(0) 450.4
MySQL4-2 5(3.3%) 5(3.3%) 3(8.7%) 5(3.3%) 2402 6(4.1%) 7(4.9%) 4(13%) 4504
MySQLS 1(0) 1 (0) 1 (0) 1 (0) 2245 2(1%) 2(1%) 1(0) 800.3
MySQL6 2(1%) 3(1.9%) 1(0) 3(1.9%) 2214 3(1.9%) 4(2.9%) 1(0) 462.5
MySQL7 2(0.9%) 2(0.9%) 1(0) 2(09%) 3125 3(1.8%) 3(1.8%) 1(0) 1198.4

MySQL8 3(2%) 3(2%) 2(22%) 3Q2%) 2564 3(2%) 3 (2%) 2(22%) 999.5
MySQLY9x 3 (1.8%) 3(1.8%) 2((22%) 3(1.8%) 340.0 5(3.5%) 5@3.5%) 2(22%) 1198.4

Firefox] 1 (0) 1(0) 1 (0) 1(0) 2394 2(22%) 222%) 1(0) 618.5
Firefox2 2(2.5%) 3(5%) 1(0) 3(5%) 1985 2(2.5%) 3(5%) 1(0) 600.3
Firefox3 3(22%) 3(22%) 1(0) 3(2.2%) 1852 5(44%) 5(44%) 3(9.1%) 592.4
Bitcoinl 1(0) 1 (0) 1 (0) 1 (0) 2525 2(1%) 2(1%) 1(0) 481.4
Bitcoin2 1(0) 1 (0) 1 (0) 1 (0) 269.4 1(0) 1 (0) 1 (0) 526.2
Bitcoin3 3(0.9%) 3(0.9%) 1(0) 3(1%) 3028 4(13%) 5(13%) 1(0) 558.8
Bitcoind 2(1.2%) 3 (24%) 1(0) 2(24%) 2432 3(24%) 3(24%) 1(0) 490.6

5.1.1 Usefulness of selecting bottleneck-exposing tests

We also evaluated whether the step of selecting bottleneck-exposing test cases impacts the
effectiveness of SyncProf (“Rank by SyncProf w/o selection” of Table 4). Without this step,
SyncProf was less effective for 16 out of 24 bottlenecks using the CPWT metric, showing
that the test selection step is beneficial.

5.2 RQ2: comparison with existing profiler

To compare SyncProf with the existing DRD profiler, we consider the ranked list of CSs that
DRD reports as potential bottlenecks. In contrast to our approach, DRD does not summarize
the profiling results of multiple test cases, leaving the task of picking the “right” test case
to the developer. For a fair comparison, we first run DRD on all test cases (“DRD w/o
selection” of Table 5). To evaluate SyncProf’s ability in detecting bottlenecks regardless the
quality of test cases, we also run only the selected bottleneck-exposing test cases on DRD
(“DRD w/ selection” of Table 5). For each method, we compute the number N of CSs to

@ Springer

Empir Software Eng

Table 5 DRD’s effectiveness and efficiency in localizing bottlenecks

Bottleneck DRD w/o selection Time DRD w/ selection Time

MAX AVG Conf. Int. (min) MAX AVG Conf. Int. (min)

UTS 3 1.3 [1.2,2.4] 225 2 1.2 [1.1,2.2] 14.3
Radio. 3 1.5 [1.1,2.5] 20.8 3 L5 [1.1,2.5] 12.2
Ocean 4 2.5 [1.8,3.2] 30.3 3 2.0 [1.8,2.9] 19.4
Barnes. 5 32 [2.1, 3.6] 19.3 4 2.8 [1.9,3.2] 10.4
Cholesky 3 1.3 [1.2,2.1] 15.3 3 1.1 [1.0, 1.5] 9.8
Raytrace 4 1.4 [1.2,2.9] 16.8 2 1.2 [1.1,2.4] 10.4
Water 3 1.5 [1.3,3.5] 18.2 3 1.3 [1.2,2.8] 11.5
MySQLI1 7 3.6 [2.9,5.2] 290.0 5 3.1 [2.5,4.8] 89.8
MySQL2 11 6.8 [4.9,9.2] 282.4 8 5.2 [3.5,8.8] 92.5
MySQL3 5 2.5 [2.8,4.8] 285.3 5 L5 [1.9,2.9] 82.2
MySQL4-1 11 43 [2.9,9.8] 202.7 8 43 [2.7,9.2] 60.5
MySQL4-2 11 8.1 [6.4,9.9] 202.7 9 8.1 [5.8,8.5] 60.5
MySQL5 5 29 [2.5,3.4] 198.6 5 2.5 [2.3,3.2] 522
MySQL6 12 52 [3.7,9.4] 208.7 9 45 [3.2,8.1] 101.4
MySQL7 8 33 [2.2,5.3] 300.0 8 3.0 [2.2,4.5] 61.2
MySQLS8 14 8.2 [5.5,11.8] 228.4 12 7.5 [5.5,9.9] 59.4
MySQL9x* 14 8.2 [5.5,11.8] 320.8 13 8.0 [5.3,10.2] 82.2
Firefox1 6 3.0 [1.8,5.4] 180.3 6 2.8 [1.8,4.6] 62.9
Firefox2 13 9.1 [6.4,10.2] 1825 11 8.0 [6.2, 8.4] 70.2
Firefox3 13 8.3 [6.4,10.2] 169.3 11 7.9 [6.1,8.2] 55.9
Bitcoinl 3 2.8 [1.2,2.6] 283.2 3 2.4 [1.2,2.3] 189.2
Bitcoin2 3 1.3 [1.1,2.5] 257.3 3 1.2 [1.1,2.2] 1155
Bitcoin3 6 4.2 [3.2,5.1] 266.8 6 3.8 [3.2,4.9] 129.5
Bitcoin4 7 4.5 [3.5,5.5] 2224 7 4.2 [3.3,4.8] 120.1

inspect before hitting the desired CS for each run. Columns “MAX” and “AVG” of Table 4
show the maximum and average number of CSs over all analyzed runs, respectively. The
next column shows the confidence interval of N over all analyzed runs, indicating the range
in which N is likely to be.

We compare SyncProf to DRD by comparing how many CSs a developer must inspect to
find the root cause of a bottleneck. For SyncProf, we use a ranking that combines the perfor-
mance impacts reported by both APWT and CPWT (column “AVG” in the first block). For
DRD, we consider the average rank at which the root cause CS appears across all profiled
executions. All rankings provided by SyncProf are strictly more effective in pinpointing the
root cause than DRD with or without test selection.

For example, for MySQL2, SyncProf reports the desired CS at rank one or three (depend-
ing on the metric), whereas DRD without test selection is likely to rank the CS at a position
between 4.9 and 9.2, with an average rank of 6.8. To summarize the increase in precision of
SyncProf over DRD, we compute for each program how much SyncProf reduced the num-
ber of CSs to inspect compared to DRD without test selection, and compute the geometric
mean across all bottlenecks. We find that, overall, SyncProf reduced the number of CSs to

@ Springer

Empir Software Eng

inspect by an average of 55%, i.e., the approach almost halves the effort that a developer
must spend. With test selection enabled, DRD was more effective in 13 out of 24 bottle-
necks in terms number of CSs to inspect than that without test selection. Nevertheless, it
required inspecting 42% more CSs than SyncProf on average.

These results confirm two design decision of our approach. First, quantifying the wait
time of CSs alone, as done by DRD, is not enough to evaluate the performance impact of
CSs. Second, summarizing performance impact across test executions simplifies localizing
bottlenecks.

5.3 RQa3: effectiveness in suggesting optimizations

Table 6 lists the concrete optimizations and their detected patterns (1. null-shared, 2. read-
read, and 3. low-degree-conflicts) separated by commas. The notation “-” indicates that
a pattern is not found or a concrete optimization cannot be suggested. For example, “-
, (3)” means pattern 3 is detected and no optimizations are suggested. The “strikeout”
line indicates a change that breaks the program’s semantics. Column 3 lists the fixes

for the known issues. The notation “v"” indicates the suggested optimization matches

Table 6 Effectiveness in suggesting optimizations

Bottleneck Suggested optimization Ground truth Imp.
UTS --, (3) nonblocking queue 17%
Radio. --, (3) nonblocking queue 20%
Ocean CS reduction, (4) v 22%
Barnes. --, (3) increase lock array size 21%
Cholesky.* --, (3) nonblocking queue 19%
Raytrace --, (3) nonblocking queue 15%
Water CS reduction, (4) v 12%
MySQL1 --, -- replace a random generator 80%
MySQL2 lock split, (1,2) v 160%
MySQL3 lock elimination, (2) v 125%
MySQLA4-1 lock split, (1,2), v 140%
CS reduction, (4)
MySQLA4-2 use reader locks, (2) v 21%
MySQLS5 lock split, (1,2) v 40%
MySQL6 lock—elimination; (152) set conditions 18%
MySQL7 --, (3) partition accesses 21%
MySQLS8 --, -- add an additional buffer 42%
MySQL9x lTocks—elimination;{(2) set conditions 22%
Firefox 1 lock split, (1,2) v 40%
Firefox2 lock split, (1,2) v 28%
Firefox3 --, (3) partition accesses and CS split 95%
Bitcoinl CS reduction, (4) v 92%
Bitcoin2 lock elimination, (2) v T2%
Bitcoin3 lock elimination, (2) v 44%
Bitcoin4 --,- - modify semantics of CSs 39%

@ Springer

Empir Software Eng

with the real fix. The last column lists the performance improvements after applying the
optimizations. The improvement is calculated by averaging the improvements across all
bottleneck-exposing test cases. The improvement of an execution is T_TT/ where T is the
original execution time and T’ is the execution time after applying the optimization. To
mitigate non-determinism, we ran each test case ten times.

As Table 6 shows, SyncProf finds optimization patterns in 18 out of 24 bottlenecks.
For the 18 optimizable bottlenecks, SyncProf suggests 13 concrete optimizations; seven
of them matched the ground truth and were beneficial. Applying the optimizations led to
improvements between 12% and 160%. We further explain these results in four categories.

Patterns found and true optimizations suggested For twelve bottlenecks, SyncProf
finds optimization patterns and suggests optimizations that match the ground truth.
For example, in MySQL3, when a dummy table is created, the CS protected by the
zip_pad.mutex lock is a top synchronization bottleneck. SyncProf detected several read-
read patterns for this CS, and suggests to remove the lock. Likewise, on MySQLA4-2, the
lock used in the update_on_commit is suggested to be replaced with a reader lock.

In MySQL2, MySQL4-1, MySQLS, Firefox1, and Firefox2, the optimizations involve
splitting the locks for finer-grained locking. For example, in MySQL4-1, the buffer pool
mutex that protects a number of CSs was suggested to be split into four different mutex
objects. In Firefox1, the jemalloc function (an implementation of memory allocation)
is protected using the same lock on both the timer thread the main thread for allocating
objects. SyncProf suggests to use separate locks, as the two CSs do not conflict.

In Ocean, Water, MySQL4-1, and Bitcoinl, SyncProf detected the long-critical-section
pattern and suggests to reduce the CS size. For example, in Ocean, the optimization is
to reduce the amount of code in the CS to eliminate unnecessary lock acquire attempts
(Heinrich and Chaudhuri 2003). In the Water program, the InterfBar barrier is used
to synchronize updates of the force array. This barrier region is unnecessarily long and
is suggested to be reduced. In Bitcoinl, the SendMessages function spends much time
acquiring a cs_main lock to enter the CS. SyncProf suggests to reduce the size of this CS
by moving a part of the code out of the CS. MySQL4-1 is discussed in Section 5.5.

Patterns found but optimizations not suggested For seven bottlenecks, SyncProf
detected optimization patterns involving low-degree conflicts but does not suggest optimiza-
tions targeting specific CSs. For example, on UTS, Radiosity, Cholesky and Raytrace, the
shared queue is protected by a lock, but the conflict accesses rarely happen. This bottleneck
can be optimized with a non-blocking queue algorithm. In Barnes, a lock array is too small
to support fine-grained locking, which can be optimized by increasing the array size (Woo
et al. 1995). Suggesting concrete optimizations for the above bottlenecks requires a deep
understanding of the semantics of the programs.

In MySQLY7, the threads waiting for a condition variable are simultaneously woken up
and contend to enter the same CS. This CS rarely involves conflicting accesses. The real
fix is to use separate condition variables to wake up threads in multiple phases. In Firefox3,
the optimization is to partition the session lock into a bucket of locks, such that each lock is
indexed in different sessions. Again, these optimizations require the developer’s knowledge.

Patterns found and optimizations falsely suggested In MySQL6, a CS is used to
examine a list of plugins. Since no plugins are installed in the tested program, SyncProf
detected several read-read patterns in this CS. However, conflicting accesses may occur
when plugins are installed. The real fix is to use counters to track the loading and unloading

@ Springer

Empir Software Eng

of each plugin and to enable the lock when the counter is not zero. Suggesting such
optimizations requires additional software components.

In MySQL9, SyncProf detected several read-read patterns in the CS of the function
lock_trx release_locks. SyncProf suggests to remove the lock. However, the bot-
tleneck is only exposed with read-only transactions; conflicts may still occur for write
transactions. After manually examining the code, we suggest to check whether a transac-
tion is read-only, and returns without acquiring the lock. We reported this optimization to
the MySQL developers.

Patterns not found For three bottlenecks, SyncProf could not match any optimization
patterns. On MySQL1, the random number generator inside the CS should be replaced
with a lower cost one. On MySQLS, two logging functions (commit and write) both
use the log_sys->mutex lock to write to a buffer. The real optimization is to use
two different buffers, so the commit and wrzite functions execute concurrently. On Bit-
coin4, the bottleneck occurs due the contention between the Get Transaction and the
ReadBlockFromDisk functions. The real solution is to remove and rewrite parts of the
CS code to reduce the CS size.

All of the above three cases require developer knowledge to find the optimizations.
However, SyncProf is still beneficial because it identifies synchronization bottlenecks and
can relieve developers from manually locating the problems before getting to specific
optimizations.

5.4 RQ4: efficiency of SyncProf

The “Time” columns in Table 4 (shown previously) report the end-to-end total analysis time
of SyncProf (including test selection, SyDG construction, performance impact analysis,
USyDG construction, and optimization) and SyncProf without the first step that selects test
cases. Specifically, the time spent on test case selection accounted for less than 2% of the
overall testing time for each subject program. Without the first step of the approach, the
analysis time is significantly higher because up to four times more test cases need to be
executed and summarized, whereas selecting test cases accounts for less than 2% of the
overall analysis time. The “Time” columns in Table 5 report the analysis time of DRD
and DRD without the first step that selects test cases. Comparing to SyncProf, DRD is
8.7% more efficient in terms of the total execution time across all subject programs. This
is primarily because it does not need additional runs for test summarization. However, this
slight advantage in efficiency is outweighed by SyncProf’s improvements in effectiveness
(Section 5.2).

The runtime overhead for binary instrumentation was about 10x for the open source
projects, and 4x for the benchmark programs. If the search for optimizations was enabled,
the overhead was up to 60x for open source projects, and 100x for the memory inten-
sive benchmark programs. These overheads are in the same order of magnitude as that
of other profilers (Gong et al. 2015; Nistor et al. 2013). We consider these overheads to
be acceptable for in-house performance profiling, which is the intended usage scenario of
SyncProf.

5.5 A case study

We present an example (MySQLA4-1 issue 75534) where SyncProf succeeded in detecting,
localizing, and optimizing synchronization performance bottlenecks. InnoDB is the default

@ Springer

Empir Software Eng

MySQL storage engine and maintains a storage area called the buffer pool for caching data
and indexes in memory. When the InnoDB buffer pool is large, many data requests can be
satisfied by retrieving the data from memory. However, in MySQL-4, bottlenecks occurred
when multiple threads try to access the buffer pool at the same time. Figure 9 shows a code
snippet where the bottleneck exists. The numbers on the left indicate the static CS IDs.
Thread T'1 calls the btr_search validate to validate the search of InnoDB buffer
pool. Threads 72 and T3 are two instances of the function buf_page_get_gen to get
access to a database page and obtain pages and load them into the buffer. Thread T4 calls
innodb buffer_pool_size_update to resize the pages. If the request aims to reduce
the buffer pool size, the buf_pool_withdraw blocks function is invoked.

Figure 10 shows a partial SyDG from a MySQL execution trace. Each node indicates a
CS with an object. The nodes < 4,5,6 >, < 3,7,8 > and < 11, 12 > involve nested
critical sections. When applying SyncProf to the program using the APLT metric, node 3
has the highest performance impact, followed by nodes 12 and 4.

Figure 11 shows a partial USyDG. The edges (T1:1, T2:3), (T2:3, T3:9) and (T3:3,
T4:10) are removed according to the read-read pattern. Since the CSs T2:5 and T2:6 are
nested inside the CS T2: 4, the union of their lock set is assigned to the CS T1:2. SyncProf
splits the buf £ lock on the CSs T2:3, T3:3, T3:9 and T4:10 into two different locks (i.e.,
LRU and 1ist). Furthermore, the sizes of the CSs T3:7 and T4:12 are reduced because
the long-critical-section pattern is detected. These optimizations are correct and have been
known before (MySQL4-1 in Table 6).

btr_search_validate (void) {
. buf_page_get_gen(...){
1. buf_pool_mutex_enter (buf_pool);

cell_count = hash_get_n_cells(...); buf_page_init_for_read (...);

buf_pool_mutex_exit (buf_pool); 4. buf_pool_mutex_enter (buf_pool);
2. buf_pool_mutex_enter (buf_pool); if (...) {
5. buf_page_mutex_enter(block);

buf_pool_mutex_exit (buf_pool); ..

mutex_enter(&buf_pool—>zip_mutex);

fix_block = block;

buf _LRU_block_free_non_file_page (
block);

mutex_exit (&buf_pool->zip_mutex);

buf_page_mutex_exit (block);

}
buf_pool_mutex_exit (buf_pool);
access_time = buf_page_is_accessed(&

block->page);

buf_pool_withdraw_blocks (...){
if (..o
10. buf_pool_mutex_enter (buf_pool);
scan_depth = UT_LIST_GET_LEN (
buf_pool->LRU);
buf_pool_mutex_exit (buf_pool);
¥
11.ﬁﬁf_pool_mutex_enter(buf_pool);
while (bpage !'= NULL) {
12. Vmutex_enter(block_mutex);

mutex_exit (block_mutex);

buf_pool_mutex_exit (buf_pool);

buf_page_init_for_read(...) {

3. buf_pool_mutex_enter (buf_pool);
hash_lock = buf_page_hash_lock_get

..
if (.01
7. buf_page_mutex_enter (block);
buf_LRU_block_free_non_file_page (
block) ;
buf_page_mutex_exit(block);
b
if (...) o
8. mutex_enter (&buf_pool->zip_mutex)

H

mutex_exit (&buf_pool->zip_mutex);

buf_pool_mutex_exit (buf_pool);

Fig. 9 Code snippet showing the synchronization bottleneck of MySQL-4

@ Springer

Empir Software Eng

T1 T2 T3 T4

Fig. 10 A SyDG for MySQL issue 75534

6 Discussion

It is possible that optimizing a CS introduces a new bottleneck due to CS reordering.
We address this problem by validating whether the optimization can improve overall
performance. Another potential problem is the overhead of profiling. To avoid the problem
that profiling influences the performance and may distort the profiling results, we do not
measure wall-clock time. Instead, SyncProf uses a logical clock that counts the number of
evaluated conditionals (see Section 3.2.2).

T1 T2 T3 T4

y

Fig. 11 An USyDG for MySQL

@ Springer

Empir Software Eng

SyncProf may fail to detect a problem if the bottleneck CS is not exercised by the exist-
ing test cases. Also, SyncProf may suggest incorrect optimizations that affect the program’s
correctness (e.g., data races due to lock elimination). In our study, the reason for the incor-
rect suggestions is that the test cases do not exercise all CSs needed for precise optimization.
In addition, without using all inputs, the performance impact reported by SyncProf may be
different from that in the deployed environment. Work on automated test input generation
may address these limitations.

Itis also possible that the amount of work performed inside each CS can vary significantly
over time. For example, one queue can be shrinking at one point but growing at a later point. As
such, the performance impact of a highly contended CS at a certain point can be amortized by
the rest of its executions. One possible solution is to add hardware support in the deployed envi-
ronment to adaptively accelerate the program execution (Bois et al. 2013; Joao et al. 2012).

The test cases that are selected in the first step may affect the effectiveness of syn-
chronization bottleneck detection. We next examine the influence of the CPU usage and
workload parameters used for test case selection.

CPU usage While longer execution times and low CPU usage are necessary conditions
of synchronization performance bottlenecks, we believe that exercising the test cases used
by SyncProf may also trigger other non-CPU activities, such as I/O intensive code, leading
to low CPU usage. Therefore, we further assess the effects of choosing different levels of
CPU usage. In addition to the default CPU usage (90%), we studied two other different
thresholds: 70% and 100%. When the threshold is set to 70%, a test case is only selected
when the mean of I/’ is less than 70%. When the threshold is set to 100%, it indicates that
only execution time is considered when selecting test cases (i.e., the first two conditions
described Section 3.1)

In Table 7, Columns 2-7 list the number of selected test cases and the effectiveness scores
of the CPWT metric under the default setting, 70% CPU usage and the 100% CPU usage,
respectively. Here we choose CPWT because it performs best among all metrics. When the
threshold is 70%, 12 out of 25 bottlenecks cannot be detected because none of the test cases
can bring the CPU usage down to 70% under the given workloads. When the threshold is set
to 100%, comparing to the default setting, more test cases are selected. The effectiveness is
decreased on eight programs (rendered in bold font). These results indicate that using a high
CPU threshold can help select test cases that generally affect the system’s performance, but
these test cases may not be specific to exposing synchronization performance bottlenecks.
On the other hand, a low CPU threshold may overconstrain the test selection and adversely
affect the bottleneck detection effectiveness. Therefore, the CPU threshold must be tuned
into an appropriate value, and in our case the optimal threshold is 90%.

Workload increments The default number of increments of the workload is set to 50,
i.e., Smax = 50 (Section 3.1). However, if §,,4x is too small, it may discard test cases that
could have been selected otherwise. For instance, in a file archiver application (e.g., gzip),
while increasing the file size increases the workload, it also spawns more threads, which is
used to speedup the execution time. As such, increasing the workload in a small scale does
not increase the execution time or CPU usage. The workload must reach a certain value to
expose synchronization performance bottlenecks.

Here, we examine how varying §,,, can affect the effectiveness and efficiency of
SyncProf. We studied 8,,4x = 20 and 6,4 = 80. The results are shown in the Columns 8-
11 of Table 7. On five out of the 25 programs, when 8,4 = 20, SyncProf fails to select
test cases due to the small workload size. On the other 20 programs, SyncProf achieves

@ Springer

Empir Software Eng

Table 7 Effectiveness when using different CPU usage thresholds and number of increments of workloads

Bottleneck U < 90%, U <70%, U < 100%, U <90%, U <90%,

Smax = 50 Smax = 50 Smax = 50 Smax = 20 Smax = 80

Tse: CPWT Tset CPWT Tset CPWT Tset CPWT Tset CPWT
UTS 8§ 10 0o - 10 209%) 0 - 10 10
Radio. 14 100 6 1 (0) 20 1(0) 14 100 16 1(0)
Ocean 21 1(0) 10 1(0) 210 15 1(0) 21 1(0)
Barnes. 9 1(0) 0o - 19 1(0) 0o - 9 1(0)
Choleskyx 12 1(0) 5 10 15 2167%) 6 1(0) 12 10
Raytrace 12 1(0) 5 1(0) 15 1(0) 5 10 15 1(0)
Water 9 1(0) 4 1(0) 16 1(0) 4 1(0) 12 1(0)
MySQLI 31 2(05%) 10 2(0.5%) 65 2(05%) 18 2(0.5%) 31 2(0.5%)
MySQL2 29 1(0) 0o - 64 2(12%) 22 1(0) 38 1(0)
MySQL3 32 1(0) 11 100 65 1(0) 25 1(0) 37 100
MySQLA-1 32 2(08%) 0 - 71 208%) 0 - 32 2(0.8%)
MySQL4-2 21 5(33%) 0 - 9 6@1%) 0 - 29 5(3.3%)
MySQLS 24 1(0) 35 1(0) 49 1(0) 19 1(0) 24 1(0)
MySQL6 43 2(1%) O - 52 2(1%) 0 - 43 2(1%)
MySQL7 25 2(09%) 0 - 58 3(1.8%) 11 2(09%) 32 2(0.9%)
MySQL8 25 3Q%) 0 - 2 302%) 20 3(28%) 30 3(2%)
MySQL9%x 25 3 (1.8%) 12 3(1.8%) 61 3(1.8%) 22 3(1.8%) 25 3(1.8%)
Firefox 1 15 1(0) 13 1) 3110 10 1(0) 15 1(0)
Firefox2 1 2Q5%) 0 - 28 2Q25%) 8 2Q25%) 11 2(2.5%)
Firefox3 12 3Q2%) 0 - 26 5@4%) 10 3Q22%) 19 3 (2.2%)
Bitcoinl 61 1(0) 2 10 69 1(0) 61 1(0) 61 1(0)
Bitcoin2 30 1(0) 15 1(0) 71 1(0) 2 10 30 1(0)
Bitcoin3 40 3(09%) 0 - 72 4(13%) 35 3(09%) 40 3 (0.9%)
Bitcoind 39 2(12%) 0 - 65 3(24%) 18 2(12%) 39 2(1.2%)

the same effectiveness as the default setting but requires fewer test cases. When 6,4, = 80,
SyncProf detects all bottlenecks that are detected using the default setting. However, on 7
out of the 25 programs, it uses more test cases to expose the bottlenecks (rendered in bold
font). These results indicate that the workload size does affect the effectiveness and effi-
ciency of SyncProf, and that choosing appropriate workload sizes is important. The default
value 6,4 = 50 is more cost-effective than the other values.

7 Related work

Several profiling techniques identify and optimize synchronization bottlenecks using soft-
ware and hardware approaches (Tallent et al. 2010; Eyerman and Eeckhout 2010; Chen
and Stenstrom 2012; Joao et al. 2012; Lozi et al. 2012; Identify Thread Contention
2015; Miller et al. 1990). These techniques focus on individual executions. For example,

@ Springer

Empir Software Eng

Tallent et al. (2010) use an idleness metric to locate the threads that are responsible for the
idleness, so the threads can be accelerated by the hardware. This approach does not pin-
point the root cause of synchronization bottlenecks. Joao et al. (2012) propose a cooperative
software-hardware approach to identify and accelerate the most critical serializing bottle-
necks at runtime by counting the number of waiters on each CS. Chen and Stenstrom (2012)
use critical path analysis to identify performance bottlenecks in multithreaded applications.
The foregoing techniques and our technique both require performance metrics to identify
bottlenecks. Dynatrace (Identify Thread Contention 2015) and Intel Vtune (Intel® ytune™
amplifier xe 2014) report lock contention by computing thread synchronization time. Sim-
ilar to DRD, they analyze individual executions, whereas SyncProf identifies summarizes
the performance impact of each CS across multiple executions. None of the existing tech-
niques tracks indirect or nested dependences of CSs, which may lead to imprecise results.
Moreover, none of the above techniques suggests optimizations.

Moreover, few existing tools on profiling synchronization bottlenecks can localize the
root cause of synchronization bottleneck in the source code or suggest optimization opportu-
nites. For example, DYNATRACE (Identify Thread Contention 2015) can determine whether
performance slowdown is caused by synchronization at a high-level, but does not point to
the specific code.

Other research finds performance problems through dynamic analysis (Selakovic et al.
2017; Han et al. 2012; Nistor et al. 2013; Jin et al. 2012; Ammons et al. 2004) or static
pattern matching (Selakovic and Pradel 2016). For example, Memoizelt (Toffola et al. 2015)
detects repeated method calls that can be optimized through memoization. StackMine mines
call stack traces to discover call sequences with a high performance impact (Han et al.
2012). It then applies a clustering algorithm to group similar callstack patterns that lead to
the performance problem (Han et al. 2012). While the above techniques are inspiring and
effective, they focus on sequential programs.

Several approaches analyze concurrency-related performance issues (Pradel et al. 2014;
Yu et al. 2014; Wert et al. 2013; Gu et al. 2015; Curtsinger and Berger 2015; Alam et al.
2017). For example, SpeedGun (Pradel et al. 2014) generates multi-threaded performance
test cases to expose performance differences between two program versions. Yu et al. (2014)
propose a trace-based dynamic approach to effectively identify general performance prob-
lems (including lock contention) and report root causes. Wert et al. (2013) characterize
symptoms of performance problems, which can be used to determine a specific type of issue,
such as synchronization-related performance problems. However, none of the above tech-
niques localizes the root cause of bottlenecks or suggests optimizations. Alam et al. (Alam
et al. 2017) et al. develop a lightweight approach to detect synchronization-related perfor-
mance bottlenecks, but their approach is based on single executions and does not suggest
optimizations.

Some techniques optimize critical sections or locks to improve performance (Zheng et al.
2015; Curtsinger and Berger 2015; Sim et al. 2012; Rajwar and Goodman 2001; Roy et al.
2009). For example, Lock Elision (LE) (Rajwar and Goodman 2001; Roy et al. 2009) uses a
hardware approach to dynamically remove unnecessary locks. However, this approach does
not localize bottlenecks or suggest optimizations at the code level. Zheng et al. (2015) iden-
tify unnecessary locks from single executions. This approach, however, does not localize the
root cause of synchronization bottlenecks. Curtsinger and Berger (2015) use a causal pro-
filing approach to identify code with optimization opportunities. Their approach requires
developers to insert progress/delay points at the start and end of an event of interest (e.g.,
a transaction). Again, this approach uses single inputs and does not suggest optimizations.
However, we may build upon their work to predict the benefits of optimization.

@ Springer

Empir Software Eng

There has been some work on using lock-related graphs to achieve different goals (Kosk-
inen and Herlihy 2008; Yu et al. 2014; Wang et al. 2008; Gray et al. 1975; Samak and
Ramanathan 2014). For example, the wait-for graph and its extensions have been widely
used to detect deadlocks (Koskinen and Herlihy 2008; Wang et al. 2008; Samak and
Ramanathan 2014). Yu et al. (2014) propose a wait graph to identify general performance
problems in device drivers. Our SyDG approach is different in several aspects. First, the
SyDG specifically targets synchronization bottlenecks and thus can effectively help devel-
opers identify ineffective synchronization usage. Second, a SyDG models several types
of causal-edges, which can precisely compute the performance impact of CSs. Third, the
SyDG provides a generic basis for computing multiple performance metrics.

8 Conclusions

We present SyncProf, a concurrency-focused performance profiler that helps developers
identify synchronization bottlenecks, localize their root cause, and find suitable opti-
mizations. The approach summarizes the performance behavior from multiple inputs and
executions into a ranked list of critical sections. A key ingredient of SyncProf is a novel
graph representation of the wait relations between critical sections, which provides a generic
basis for metrics that summarize the performance impact of critical sections and for sug-
gesting bottleneck-specific optimization strategies. Our study shows that the approach
successfully identifies and localizes both existing and previously unknown bottlenecks, and
that it suggests effective optimization strategies for most of them. Given the increasing need
for efficient concurrent software, we consider our work to be a useful contribution to the
developer’s toolbox. In the context of automated program repair, SyncProf contributes an
approach that supports developers in repairing programming mistakes beyond functional
correctness, in particular, performance bottlenecks.

Acknowledgments This research is supported in part by the NSF grants CCF-1464032 and CCF-1652149,
by the German Research Foundation within the Emmy Noether project “ConcSys” and by the German
Federal Ministry of Education and Research and the Hessian Ministry of Science and the Arts within
“CRISP”.

References

Alam K, Ahmad R, Ko K (2017) Enabling far-edge analytics: performance profiling of frequent pattern
mining algorithms. IEEE Access

Ammons G, Choi J-D, Gupta M, Swamy N (2004) Finding and removing performance bottlenecks in large
systems

Arlitt MF, Williamson CL (1996) Web server workload characterization: the search for invariants. 126137

Artho C, Havelund K, Biere A (2003) High-level data races. J Softw Test Verif Reliab 13:207-227

Avritzer A, Kondek J, Liu D, Weyuker EJ (2002) Software performance testing based on workload char-
acterization. In: Proceedings of the international workshop on software and performance, pp 17—
24

Barford P, Crovella M (2001) Critical path analysis of TCP, transactions. Proc Conf Appl Technol Architect
Protoc Comput Commun 9:238-248

Bois K, Eyerman S, Sartor JB, Eeckhout L (2013) Criticality stacks: identifying critical threads in parallel
programs using synchronization behavior. In: Proceedings of the 40th annual international symposium
on computer architecture, pp 511-522

Bond MD, Coons KE, McKinley KS (2010) PACER: proportional detection of data races. In: Proceedings of
the ACM SIGPLAN conference on programming language design and implementation, pp 255-268

@ Springer

Empir Software Eng

Burckhardt S, Kothari P, Musuvathi M, Nagarakatte S (2010) A randomized scheduler with probabilistic
guarantees of finding bugs. In: Proceedings of the international conference on architectural support for
programming languages and operating systems, pp 167-178

Chen G, Stenstrom P (2012) Critical lock analysis: Diagnosing critical section bottlenecks in multi-
threaded applications. In: Proceedings of the international conference on high performance computing,
networking, storage and analysis

Choudhary A, Lu S, Pradel M (2017) Efficient detection of thread safety violations via coverage-guided
generation of concurrent tests. In: International conference on software engineering, pp 266-277

Cleve H, Zeller A (2005) Locating causes of program failures. In: Proceedings of the international conference
on software engineering, pp 342-351

Coons KE, Burckhardt S, Musuvathi M (2010) GAMBIT: effective unit testing for concurrency libraries. In:
Proceedings of the ACM SIGPLAN symposium on principles and practice of parallel programming, pp
15-24

Curtsinger C, Berger ED (2015) Coz: finding code that counts with causal profiling. In: Proceedings of the
ACM symposium on operating systems principles, pp 184-197

Diagnosing Lock Contention with the Concurrency Visualizer (2010) Microsoft MSDN

Draheim D, Grundy J, Hosking J, Lutteroth C, Weber G (2006) Realistic load testing of web applications. In:
Conference on software maintenance and reengineering, pp 11-70

DRD (2015) A thread error detector, http://valgrind.org/docs/manual/drd-manual.html

Identify Thread Contention (2015) https://community.dynatrace.com

Intel® vtune™ amplifier xe (2014) http://software.intel.com/en-us/articles/intel- vtune-amplifier-xe/

Effinger-Dean L, Lucia B, Ceze L, Grossman D, Boehm H-J (2012) Ifrit: interference-free regions for
dynamic data-race detection. In: Proceedings of the ACM SIGPLAN international conference on object
oriented programming systems languages and applications, pp 467484

Eyerman S, Eeckhout L (2010) Modeling critical sections in amdahl’s law and its implications for multicore
design. In: Proceedings of the international symposium on computer architecture, pp 362-370

Flanagan C, Freund SN (2004) Atomizer: a dynamic atomicity checker for multithreaded programs. In:
Proceedings of the international symposium on principles of programming languages, pp 256267

Flanagan C, Qadeer S (2003) A type and effect system for atomicity. In: Proceedings of the ACM SIGPLAN
conference on programming language design and implementation, pp 338-349

Fouché S, Cohen MB, Porter A (2007) Towards incremental adaptive covering arrays. In: Proceedings of the
ACM SIGSOFT symposium on foundations of software engineering, pp 557-560

Gong L, Pradel M, Sen K (2015) JITProf pinpointing JIT-unfriendly JavaScript code. In: Proceedings of the
ACM SIGSOFT symposium on foundations of software engineering, pp 357-368

Gray JN, Lorie RA, Putzolu GR (1975) Granularity of locks in a shared data base. In: Proceedings of the
international conference on very large data bases, pp 428451

Gu R, Jin G, Song L, Zhu L, Lu S (2015) What change history tells us about thread synchronization. In:
Proceedings of the ACM SIGSOFT symposium on foundations of software engineering, pp 426438

Gupta R, Epstein M (1990) Achieving low cost synchronization in a multiprocessor system. Fut Gen Comput
Syst 6(3):255-269

Han S, Dang Y, Ge S, Zhang D, Xie T (2012) Performance debugging in the large via mining millions of
stack traces. In: Proceedings of the international conference on software engineering, pp 145-155

Heinrich M, Chaudhuri M (2003) Ocean warning: avoid drowning. SIGARCH Comput Archit News
31(3):30-32

Heirman W, Carlson T, Che S, Skadron K, Eeckhout L (2011) Using cycle stacks to understand scaling
bottlenecks in multi-threaded workloads. In: International symposium on workload characterization, pp
38-49

Jin G, Song L, Shi X, Scherpelz J, Lu S (2012) Understanding and detecting real-world performance bugs. In:
Proceedings of the ACM SIGPLAN conference on programming language design and implementation,
pp 77-88

Joao JA, Suleman MA, Mutlu O, Patt YN (2012) Bottleneck identification and scheduling in multithreaded
applications. In: Proceedings of the international conference on architectural support for programming
languages and operating systems, pp 223-234

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique. In:
Proceedings of international conference on automated software engineering, pp 273-282

Joshi S, Lahiri SK, Lal A (2012) Underspecified harnesses and interleaved bugs. In: Proceedings of the
international symposium on principles of programming languages, pp 19-30

Kahlon V, Sinha N, Kruus E, Zhang Y (2009) Static data race detection for concurrent programs with
asynchronous calls. In: Proceedings of the ACM SIGSOFT symposium on foundations of software
engineering, pp 13-22

@ Springer

http://valgrind.org/docs/manual/drd-manual.html
https://community.dynatrace.com
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Empir Software Eng

Koskinen E, Herlihy M (2008) Dreadlocks: efficient deadlock detection. In: Proceedings of the symposium
on parallelism in algorithms and architectures, pp 297-303

Lozi J-P, David F, Thomas G, Lawall J, Muller G (2012) Remote core locking: migrating critical-section
execution to improve the performance of multithreaded applications. In: USENIX annual technical
conference, pp 6-6

Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K (2005) Pin:
building customized program analysis tools with dynamic instrumentation. In: Proceedings of the ACM
SIGPLAN conference on programming language design and implementation, pp 190-200

Marino D, Musuvathi M, Narayanasamy S (2009) LiteRace: effective sampling for lightweight data-race
detection. In: Proceedings of the ACM SIGPLAN conference on programming language design and
implementation, pp 134—143

Mertler CA, Vannatta RA (2002) Advanced and multivariate statistical methods, Pyrczak, Los Angeles

Michael MM, Scott ML (1996) Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In: Proceedings of the ACM symposium on principles of distributed computing, pp 267—
275

Miller B, Clark M, Hollingsworth J, Kierstead S, Lim S-S, Torzewski T (1990) IPS-2: the second generation
of a parallel program measurement system. In: IEEE transactions on parallel and distributed systems, pp
206-217

Mosberger D, Jin T (1998) A tool for measuring web server performance. ACM SIGMETRICS Perform Eval
Rev 26(3):31-37

Musuvathi M, Qadeer S, Ball T, Basler G, Nainar PA, Neamtiu I (2008) Finding and reproducing Heisenbugs
in concurrent programs. In: Proceedings of the USENIX conference on operating systems design and
implementation, pp 267-280

Naik M, Park C-S, Sen K, Gay D (2009) Effective static deadlock detection. In: Proceedings of the
international conference on software engineering, pp 386-396

Nistor A, Luo Q, Pradel M, Gross TR, Marinov D (2012) Ballerina: automatic generation and clustering of
efficient random unit tests for multithreaded code. In: Proceedings of the international conference on
software engineering, pp 727-737

Nistor A, Song L, Marinov D, Lu S (2013) Toddler: detecting performance problems via similar memory-
access patterns. In: Proceedings of the international conference on software engineering, pp 562-571

Novillo E, Lu P (2003) A case study of selected SPLASH-2 applications and the sbt debugging tool. In:
Proceedings of the international symposium on parallel and distributed processing, p 290.2

Olivier S, Huan J, Liu J, Prins J, Dinan J, Sadayappan P, Tseng C-W (2007) UTS: an unbalanced tree search
benchmark. In: LCPC, pp 235-250

Ongoing work on lock contention in QEMU driver (2013). https://www.redhat.com/archives/libvir-list/
2013-May/msg01247.html

Pradel M, Gross TR (2012) Fully automatic and precise detection of thread safety violations. In: Proceed-
ings of the ACM SIGPLAN conference on programming language design and implementation, pp 521-
530

Pradel M, Huggler M, Gross TR (2014) Performance regression testing of concurrent classes. In: Proceedings
of the international symposium on software testing and analysis, pp 13-25

Pradel M, Schuh P, Necula G, Sen K (2014) EventBreak: analyzing the responsiveness of user inter-
faces through performance-guided test generation. In: Proceedings of the ACM SIGPLAN international
conference on object oriented programming systems languages and applications

Rajwar R, Goodman JR (2001) Speculative lock elision: enabling highly concurrent multithreaded execution.
In: Proceedings of the ACM/IEEE international symposium on microarchitecture, pp 294-305

Roy A, Hand S, Harris T (2009) A runtime system for software lock elision. In: Proceedings of the
SIGOPS/EuroSys European conference on computer systems, pp 261-274

Sahelices B, Ibdfiez P, Vifals V, Llaberia JM (2009) A methodology to characterize critical section bot-
tlenecks in dsm multiprocessors. In: Proceedings of the international euro-par conference on parallel
processing, pp 149-161

Samak M, Ramanathan MK (2014) Trace driven dynamic deadlock detection and reproduction. In: Pro-
ceedings of the ACM SIGPLAN symposium on principles and practice of parallel programming, pp
29-42

Selakovic M, Pradel M (2016) Performance issues and optimizations in JavaScript: an empirical study. In:
Proceedings of the international conference on software engineering

Selakovic M, Glaser T, Pradel M (2017) An actionable performance profiler for optimizing the order of
evaluations. In: International symposium on software testing and analysis, pp 170-180

Sen K (2007) Effective random testing of concurrent programs. In: Proceedings of international conference
on automated software engineering, pp 323-332

@ Springer

https://www.redhat.com/archives/libvir-list/2013-May/msg01247.html
https://www.redhat.com/archives/libvir-list/2013-May/msg01247.html

Empir Software Eng

Sen K (2008) Race directed random testing of concurrent programs. In: Proceedings of the ACM SIGPLAN
conference on programming language design and implementation, pp 11-21

Shacham O, Bronson N, Aiken A, Sagiv M, Vechev M, Yahav E (2011) Testing atomicity of composed con-
current operations. In: Proceedings of the ACM SIGPLAN international conference on object oriented
programming systems languages and applications, pp 51-64

Sim J, Dasgupta A, Kim H, Vuduc R (2012) A performance analysis framework for identifying potential
benefits in GPGPU applications. In: Proceedings of the ACM SIGPLAN conference on programming
language design and implementation, pp 11-22

Tallent NR, Mellor-Crummey JM, Porterfield A (2010) Analyzing lock contention in multithreaded appli-
cations. In: Proceedings of the ACM SIGPLAN symposium on principles and practice of parallel
programming, pp 269-280

Toffola LD, Pradel M, Gross TR (2015) Performance problems you can fix: a dynamic analysis of memoiza-
tion opportunities. In: Proceedings of the ACM SIGPLAN international conference on object oriented
programming systems languages and applications

Visser W, Havelund K, Brat GP, Park S, Lerda F (2003) Model checking programs. Autom Softw Eng
10(2):203-232

von Praun C, Gross TR (2003) Static conflict analysis for multi-threaded object-oriented programs. In: Pro-
ceedings of the ACM SIGPLAN conference on programming language design and implementation, pp
115-128

Wang L, Stoller SD (2006) Accurate and efficient runtime detection of atomicity errors in concurrent
programs. In: Proceedings of the ACM SIGPLAN symposium on principles and practice of parallel
programming, pp 137-146

Wang Y, Kelly T, Kudlur M, Lafortune S, Mahlke S (2008) Gadara: dynamic deadlock avoidance for
multithreaded programs. In: Proceedings of the USENIX conference on operating systems design and
implementation, pp 281-294

Wert A, Happe J, Happe L (2013) Supporting swift reaction: automatically uncovering performance problems
by systematic experiments. In: Proceedings of the international conference on software engineering, pp
552-561

Williams A, Thies W, Ernst MD (2005) Static deadlock detection for java libraries. In: European conference
on object-oriented programming, pp 602-629

Woo SC, Ohara M, Torrie E, Singh JP, Gupta A (1995) The SPLASH-2 programs: characterization
and methodological considerations. In: Proceedings of the international symposium on computer
architecture, pp 24-36

Xu M, Bodik R, Hill MD (2005) A serializability violation detector for shared-memory server programs. In:
Proceedings of the ACM SIGPLAN conference on programming language design and implementation,
pp 1-14

Yu T, Pradel M (2016) Syncprof: detecting, localizing, and optimizing synchronization bottlenecks. In:
Proceedings of the international symposium on software testing and analysis, pp 389—400

Yu X, Han S, Zhang D, Xie T (2014) Comprehending performance from real-world execution traces:
a device-driver case. In: Proceedings of the international conference on architectural support for
programming languages and operating systems, pp 193-206

Zheng L, Liao X, He B, Wu S, Jin H (2015) On performance debugging of unnecessary lock contentions
on multicore processors: a replay-based approach. In: Proceedings of the IEEE/ACM international
symposium on code generation and optimization

@ Springer

Empir Software Eng

Tingting Yu is an Assistant Professor of Computer Science at University of Kentucky. She received her M.S.
and Ph.D degree from University of Nebraska-Lincoln in 2014, and B.E. degree in Software Engineering
from Sichuan University in 2008. Her research is in software engineering, with focus on developing methods
and tools for improving reliability and security of complex software systems; testing for sequential and
concurrent software; regression testing; and performance testing.

Michael Pradel is an assistant professor at TU Darmstadt, which he joined after a PhD at ETH Zurich and
a post-doc at UC Berkeley. His research interests span software engineering and programming languages,
with a focus on tools and techniques for building reliable, efficient, and secure software. In particular, he is
interested in dynamic program analysis, test generation, concurrency, performance profiling, and JavaScript-
based web applications.

@ Springer

	Pinpointing and repairing performance bottlenecks in concurrent programs
	Abstract
	Introduction
	Motivation and background
	A motivating example
	Synchronization bottlenecks
	Lock-based synchronization
	Barrier-based synchronization

	Approach
	Bottleneck detection
	Performance impact analysis
	Synchronization dependence graph
	Constructing the graph
	Adding a node
	Adding a direct waiting edge
	Adding an indirect waiting edge
	Adding a nested waiting edge

	Performance impact metrics
	All-path wait time (APWT)
	Critical-path wait time (CPWT)
	All-path lock time (APLT)

	Dealing with non-deterministic performance

	Root cause analysis
	Suggesting optimization strategies
	Identifying optimization patterns
	Suggesting concrete optimizations
	Unnecessary synchronization elimination
	Lock split
	Reader-writer locks
	Critical section reduction
	Handling the low-degree-write pattern

	Implementation

	Empirical study
	Experimental setup
	Subject programs
	Test cases
	Previously unknown, optimizable bottlenecks
	Evaluating the effectiveness in identifying bottlenecks
	Comparison with Valgrind lock contention profiler
	Evaluating effectiveness of SyncProf in suggesting optimizations
	Threats to validity

	Results and analysis
	RQ1: effectiveness in localizing bottlenecks
	Usefulness of selecting bottleneck-exposing tests

	RQ2: comparison with existing profiler
	RQ3: effectiveness in suggesting optimizations
	Patterns found and true optimizations suggested
	Patterns found but optimizations not suggested
	Patterns found and optimizations falsely suggested
	Patterns not found

	RQ4: efficiency of SyncProf
	A case study

	Discussion
	CPU usage
	Workload increments

	Related work
	Conclusions
	Acknowledgments
	References

