

Diss. ETH No. 20900

PROGRAM ANALYSES FOR

AUTOMATIC AND PRECISE ERROR DETECTION

DISSERTATION

submitted to
ETH ZURICH

for the degree of
DOCTOR OF SCIENCES

by

MICHAEL PRADEL

Diplom-Informatiker, Technische Universität Dresden
Diplôme d’Ingénieur, Ecole Centrale Paris

born March 10, 1983
citizen of Germany

accepted on the recommendation of
Prof. Dr. Thomas R. Gross, examiner

Prof. Dr. Jonathan Aldrich, co-examiner
Prof. Dr. Andreas Zeller, co-examiner

2012

Abstract

One of the largest challenges in software development is to ensure that the software
is correct. Almost all software that is complex enough to accomplish a useful task
contains programming errors. Unfortunately, developers must allocate their time to
various activities and often, they do not have enough time for searching program-
ming errors.

The goal of this dissertation is to support developers in finding programming
errors despite a limited time budget. Therefore, we focus on program analyses with
three properties. First, the analyses are automatic, that is, the only input required to
analyze a program is the source code (or byte code) of the program itself. In particu-
lar, an automatic analysis does not rely on formal specifications or manually written
test suites. Second, the analyses are precise, that is, they report warnings that are
guaranteed to point to programming errors or that have a high chance of pointing
to programming errors, instead of false positives. Third, the analyses can be applied
to real-world software with low human and computational effort, that is, they provide
developers a push button approach for existing code.

This dissertation argues that automatic program analysis allows for precisely
detecting errors with little effort. The key idea is to leverage programs as their own
oracles, for example, by leveraging a program as an executable specification for it-
self or by checking a program against properties inferred from the program itself.
To support our thesis, we present five automatic and precise program analyses that
effectively and efficiently detect programming errors. The analyses presented in this
dissertation consider different kinds of errors (for example, incorrect API usages and
thread safety violations), different kinds of programs (sequential and concurrent),
and leverage different analysis techniques (static and dynamic). We evaluate our ap-
proach with mature and well-tested Java and C programs and show that it reveals
errors automatically, precisely, and with low effort.

Zusammenfassung

Eine der grössten Herausforderungen der Softwareentwicklung ist es, die Korrekt-
heit eines Programmes sicherzustellen. Die inhärente Komplexität jeder anspruchs-
vollen Software führt mit sehr hoher Wahrscheinlichkeit zu Programmierfehlern.
In der ihnen zur Verfügung stehenden Zeit haben Entwickler allerdings selten die
Möglichkeit, eine gründliche Fehlersuche zu realisieren.

Das Ziel dieser Dissertation ist es, Softwareentwicklern Möglichkeiten aufzu-
zeigen, Programmierfehler trotz eines knappen Zeitbudgets zu finden. Um dieses
Ziel zu erreichen, präsentieren wir Programmanalysen mit den drei folgenden Eigen-
schaften: 1) Die Analysen sind automatisch. Die einzige Eingabe, die eine Analyse
benötigt, ist der Quelltext des zu analysierenden Programmes. Insbesondere wer-
den weder ausführbare Tests noch eine formale Spezifikation benötigt. 2) Die Ana-
lysen sind präzise. Die einzige Ausgabe, die eine Analyse liefert, sind Warnungen,
welche mit Sicherheit oder mit sehr hoher Wahrscheinlichkeit auf tatsächliche Pro-
grammierfehler hinweisen. Insbesondere produziert eine präzise Analyse wenige
oder gar keine falsch-positive Warnungen. 3) Die Analysen sind nicht aufwendig.
Sie benötigen nur einen geringen Rechenaufwand und Softwareentwickler können
sie mit wenig Arbeitsaufwand nutzen.

Die vorliegende Arbeit vertritt die These, dass automatische und präzise Pro-
grammanalyse helfen kann, mit geringem Aufwand Programmierfehler zu finden.
Die Kernidee hierbei ist, Programme als ihre eigenen Testorakel zu nutzen. So
verwenden wir beispielsweise ein Programm als ausführbare Spezifikation für sich
selbst, oder überprüfen, ob ein Programm Spezifikationen einhält, welche vom
Programm selbst abgeleitet wurden. Wir stellen fünf Programmanalysen vor,
welche wirksam und effizient Fehler aufdecken. Diese Programmanalysen betra-
chten verschiedene Arten von Fehlern (z.B. inkorrekte API-Benutzungen oder Verlet-
zungen von Thread Safety), verschiedene Arten von Programmen (sequentiell und
nebenläufig), und verwenden diverse Analysetechniken (statisch und dynamisch).
Zur Evaluierung unseres Ansatzes wenden wir die Analysen auf ausgereifte und
praxiserprobte Java- und C-Programme an. Unsere Ergebnisse zeigen, dass die Ana-
lysen Programmierfehler automatisch, präzise und ohne grossen Aufwand finden.

Acknowledgments

The work described in this dissertation took about four years from conception to
completion. This period of time included countless cycles of exploration, inquiry,
meditation, enlightenment, doubt, confusion, uncertainty, and perseverance, which I
could not have faced without the help of many others.

First of all, I want to thank my adviser, Thomas R. Gross. Mentioning your adviser
first is common, but this is not the reason why I follow this tradition. The reason is
that I am deeply grateful for the various pieces of advice on doing and presenting
research. Thomas has given me the freedom to create and follow my own research
agenda and, at the same time, has provided guidance whenever needed. This unique
combination has allowed me to learn from his vast experience while becoming an
independent researcher.

Special thanks to the external members of my PhD commitee, Jonathan Aldrich
and Andreas Zeller, for committing to this duty and for their valuable feedback.

Thanks to the many people at ETH who made my PhD journey an unforgettable
trip. To Zoltán Majó for sharing the greenest office in the institute with me and for
the many spontaneous discussions on research, life, and Switzerland. To the “older”
group members, Christoph Angerer, Stephanie Balzer, Nicholas D. Matsakis, Albert
Noll, Mathias Payer, Susanne Cech Previtali, Florian Schneider, Yang Su, and Oliver
Trachsel, for sharing their insights on research, teaching, and dealing with the chal-
lenges of being a PhD student. To the “younger” group members, Mihai Cuibus,
Stefan Schmid, Luca Della Toffola, Faheem Ullah, and Fabio Zünd, for accompany-
ing me on my way through the doctoral studies. Our group lunches have been a
welcome distraction from the daily research grind and I will certainly remember the
many enjoyable tea/coffee session in BQM.

I want to thank my external collaborators, Ciera Jaspan and Jonathan Aldrich from
CMU, as well as Adrian Nistor, Qingzhou Luo, and Darko Marinov from UIUC. I am
grateful for the fruitful collaborations, which allowed me to discover new perspec-
tives on my research. During my doctoral studies, I had to privilege to supervise
several bachelor and master students, whom I owe a dept of gratitude for their ex-
cellent work: Philipp Bichsel, Jérémie Bresson, Claudio Corrodi, Severin Heiniger,
Sebastian Grössl, Christine Zeller, and Pascal Zimmermann.

Many thanks to the those who gave feedback on paper drafts and talks: Eric
Bodden, Mark Gabel, David Lo, Patrick Meredith, Markus Püschel, Grigore Rosu,
Friedrich Steimann, Marco Zimmerling, and the anonymous reviewers.

Thanks to my earlier research advisers, Uwe Assmann, Jakob Henriksson, and
Martin Odersky, who have motivated me to pursue a research career and who have
helped me to take my first steps in the academic world.

To implement our ideas, we build upon tools provided by others. I want to thank
Michael D. Ernst and Carlos Pacheco for providing Randoop, William W. Cohen,
Pradeep Ravikumar, Stephen Fienberg, and Kathryn Rivard for prodiving Second-
String, and the Soot community, in particular, Eric Bodden and Patrick Lam.

Finally, I want to thank my family and friends, in particular, my wife Antje and
my son Paul, for their unconditional love and support.

Short Contents

1 Introduction 11

2 Thread Safety Violations 18

3 Unsafe Substitutes 39

4 API Protocol Violations 57

5 Incorrectly Ordered, Equally Typed Arguments 88

6 Brittle Parameter Types 112

7 Related Work 134

8 Conclusions 144

A Programs Used for Evaluation 146

B Warnings Reported by Bug Detection Techniques 150

Bibliography 157

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Terminology . 12
1.3 Automatic and Precise Bug Detection 13
1.4 Contents and Contributions . 14
1.5 Potential Impact . 16
1.6 Further Resources . 17

2 Thread Safety Violations 18
2.1 Overview of the Approach . 20
2.2 Detailed Example . 22

2.2.1 Generating a Concurrent Test 22
2.2.2 Executing the Test . 23
2.2.3 Thread Safety Oracle . 24

2.3 Generating Concurrent Tests . 24
2.3.1 Tasks . 25
2.3.2 Test Generation Algorithm . 25

2.4 Thread Safety Oracle . 27
2.4.1 Thread Safety . 27
2.4.2 Definitions . 28
2.4.3 The Test Oracle . 29

2.5 Implementation . 30
2.6 Evaluation . 31

2.6.1 Experimental Setup . 31
2.6.2 Bugs Found . 32
2.6.3 Annotating Classes as Thread-unsafe 34
2.6.4 Performance . 35
2.6.5 Threats to Validity . 37

2.7 Support for the Thesis . 37
2.7.1 Automation . 37
2.7.2 Precision . 37
2.7.3 Effort . 37

2.8 Limitations and Future Work . 38

3 Unsafe Substitutes 39
3.1 Motivation . 40
3.2 Overview of the Approach . 42
3.3 Generating Generic Tests . 43

3.3.1 Constructor Mappings . 44
3.3.2 Generating Sequential and Concurrent Tests 45

3.4 The Superclass Oracle . 45
3.4.1 The Output Oracle . 46
3.4.2 The Crash Oracle . 47
3.4.3 Distinguishing Concurrent from Sequential Problems 48
3.4.4 Exploring Executions . 48
3.4.5 Examples . 48

3.5 Implementation . 49
3.6 Evaluation . 49

3.6.1 Experimental Setup . 49
3.6.2 Overview of Unsafe Substitutes Found 51
3.6.3 Examples of Unsafe Substitutes 51
3.6.4 Root Causes for Unsafe Substitutes 52
3.6.5 Failures Observed by the Crash Oracle 53
3.6.6 Feedback from Developers . 53
3.6.7 Performance . 54
3.6.8 Threats to Validity . 54

3.7 Support for the Thesis . 54
3.7.1 Automation . 55
3.7.2 Precision . 55
3.7.3 Effort . 55

3.8 Limitations and Future Work . 55

4 API Protocol Violations 57
4.1 API Usage Protocols . 58
4.2 Overview of the Approach . 60

4.2.1 Problem Definition . 60
4.2.2 Our Approach . 62

4.3 Random Test Generation . 63
4.4 Protocol Mining . 63

4.4.1 Gathering Execution Traces . 64
4.4.2 Extracting Subtraces from Large Execution Traces 65
4.4.3 Generating Finite State Machines 68
4.4.4 Driving Protocol Mining with Passing Tests 70

4.5 Protocol Checking . 70
4.5.1 Naive Approach . 71
4.5.2 Setup Phase versus Liable Phase 71
4.5.3 Checking Approach . 72

4.6 Warnings without False Positives . 73
4.7 API-Guided Test Generation . 74
4.8 Evaluation . 78

4.8.1 Setup . 78
4.8.2 Detection of Protocol Violations 78
4.8.3 API-Guided Test Generation . 81
4.8.4 Scalability and Performance . 83

4.8.5 Threats to Validity . 83
4.9 Support for the Thesis . 86
4.10 Limitations and Future Work . 86

5 Incorrectly Ordered, Equally Typed Arguments 88
5.1 Motivation . 88
5.2 Overview of the Approach . 92
5.3 Name Extraction . 93

5.3.1 Java and C Language . 93
5.3.2 Java Language . 94
5.3.3 C Language . 94

5.4 Anomaly Detection . 95
5.4.1 Algorithm . 96
5.4.2 Example . 99
5.4.3 Refinements . 100

5.5 Evaluation . 103
5.5.1 Anomalies in Mature Programs 104
5.5.2 Recall . 106
5.5.3 Parameter Calibration . 107
5.5.4 Performance and Scalability . 110
5.5.5 Threats to Validity . 110

5.6 Support for the Thesis . 110
5.6.1 Automation . 110
5.6.2 Precision . 111
5.6.3 Effort . 111

5.7 Limitations and Future Work . 111

6 Brittle Parameter Types 112
6.1 Motivation . 112
6.2 Overview . 114
6.3 Argument Type Observations . 115

6.3.1 Points-to Analysis . 115
6.3.2 Extraction Algorithm . 115
6.3.3 Example . 117

6.4 Detecting Anomalies . 118
6.4.1 Preprocessing Argument Type Observations 119
6.4.2 Type Histograms . 120
6.4.3 Identifying Anomalies . 121
6.4.4 Clustering Warnings . 122

6.5 Evaluation . 124
6.5.1 Implementation . 124
6.5.2 Experimental Setup and Measurements 124
6.5.3 Anomalies in Real Programs . 125
6.5.4 Automated Evaluation with Seeded Bugs 128
6.5.5 Performance . 129
6.5.6 Thresholds of Anomaly Detection 129
6.5.7 Influence of Points-to Analysis 130
6.5.8 Threats to Validity . 130

6.6 Support for the Thesis . 132
6.6.1 Automation . 132

CONTENTS 10

6.6.2 Precision . 132
6.6.3 Effort . 132

6.7 Limitations and Future Work . 132

7 Related Work 134
7.1 Rule-based Static Checkers . 134
7.2 Specification Mining and Anomaly Detection 135

7.2.1 Specification Mining . 135
7.2.2 Bug Finding via Anomaly Detection 136

7.3 Finding Bugs Related to Equal Types 137
7.4 Detecting and Avoiding Concurrency Bugs 138

7.4.1 Data Races . 138
7.4.2 Atomicity Violations . 139
7.4.3 Deadlocks . 139
7.4.4 Active Testing . 139
7.4.5 Linearizability . 140
7.4.6 Other Correctness Criteria . 140
7.4.7 Support for Finding Concurrency Bugs 140

7.5 Test Generation . 140
7.6 Substitutability . 142
7.7 Other Testing and Debugging Techniques 142
7.8 Other Related Work . 143

8 Conclusions 144

A Programs Used for Evaluation 146

B Warnings Reported by Bug Detection Techniques 150

Bibliography 157

1Introduction

1.1 Motivation

Today’s society strongly depends on software. Hospitals have servers to manage pa-
tient records and software-controlled devices are crucial to keep people alive. Various
industries rely on software for producing, managing, and selling their products. Mo-
bility of people and goods depends on software because trains, airplanes, and traffic
control systems are software-driven. The internet, which by now is hard to imagine
to live without, is a tremendous software system built from various client and server
programs. Finally, most people rely on software in their every-day life, for example,
when communicating with each other via email or phone.

Given the enormous dependence of our society on software, one could naively
expect most software to be correct and reliable. Unfortunately, it is not: Most software
has bugs.1 For average industry code, the number of bugs per 1,000 lines of code has
been estimated to range between 0.5 and 25 for delivered software [107]. Even after
years of deployment, popular pieces of software still contain unnoticed bugs that
pop up at some point in time. For example, studies of the Linux kernel show that
the average bug remains in the kernel for a surprisingly long period of 1.5 to 1.8
years [29, 118].

A single bug can cause serious harm, even if it has been subsisting for a long time
without doing so. The Ariane 5 space rocket was destroyed 40 seconds after takeoff
due to an outside-expected-range value in a piece of software successfully used for
Ariane 4 [93]. A race condition in the Unix-based XA/21 energy management system
caused the Northeast blackout, a power outage that affected large parts of the U.S.
and Canada in 2003 [123]. Zhivich and Cunningham discuss more examples of soft-
ware bugs that have caused huge economic loses and even have killed people [177].
All these examples illustrate that identifying and fixing bugs is a crucial part of soft-
ware development.

There are various techniques to increase the correctness and reliability of software.
Among the techniques that apply directly to the software (rather than, for example,
to the software development process), verification and testing are the most common.
Verification provides a mathematical proof that a program fulfills a formal specifica-
tion and therefore shows the absence of a particular kind of bug. In contrast, testing

1We define the colloquial term “bug” in Section 1.2.

11

CHAPTER 1. INTRODUCTION 12

aims at discovering bugs by exploring usage scenarios of a program. Both verifica-
tion and testing are used at various levels of granularity, ranging from small code
fragments to entire software systems.

Unfortunately, neither verification nor testing can guarantee bug-free software. A
verified program may behave incorrectly because verification relies on a formal spec-
ification that may be incorrect or that may not cover a particular kind of misbehavior.
Testing relies on a test suite that exercises a program. Similar to a formal specifica-
tion, such test suites can contain bugs. Moreover, test suites typically cover only a
strict subset of all possible usage scenarios of a program because exhaustive testing
is infeasible for complex systems. As a result, even well-tested programs may have
bugs.

Since there is no silver bullet to ensure the correctness and reliability of soft-
ware [17], developers apply techniques that bring them closer to this goal. Given
tight deadlines, an important criterion in choosing these techniques are their costs.
Both verification and testing require developers to invest significant effort: Devel-
opers must create artifacts in addition to the program (formal specifications and test
suites, respectively), maintain these additional artifacts, and adapt them to changes
in the requirements and in the program.

The need to increase correctness and reliability, combined with the high costs of
existing techniques for this purpose raises the question: Can we provide developers
with low cost techniques that increase the correctness and reliability of software? This thesis
addresses this question and proposes a promising solution that helps developers find
bugs with little effort.

1.2 Terminology

We use the term programming error, or bug, for a part of a program that developers
should change because the current implementation unintentionally leads to unex-
pected behavior, reduces performance, or makes maintaining the program unneces-
sarily difficult.

For example, we consider the following problems to be programming errors:

• The program’s output is 23 but should be 42.

• The program crashes unexpectedly.

• The program performs an unnecessary computation that leads to a longer run-
ning time.

• The meaning of a method or variable is hard to understand because their names
are badly chosen.

Our terminology is in line with the IEEE Standard Glossary of Software Engineer-
ing Terminology [3]. The glossary defines an “error” as an incorrect step, process, or
data definition in a computer program, and mentions “bug” and “fault” as common
synonyms.

CHAPTER 1. INTRODUCTION 13

1.3 Automatic and Precise Bug Detection

This thesis argues that automatic program analysis allows for precisely detecting program-
ming errors with little effort. We present a class of program analyses that have three
properties:

• Automatic. The analysis can analyze existing programs as they are, without any
manual preparation. In particular, the only input to an automatic analysis is
the program’s source code (or byte code), without relying on manually written
formal specifications or tests.

• Precise. The analysis reports warnings that are guaranteed to point to program-
ming errors or that have a high chance of pointing to programming errors. We
call warnings that point to programming errors true positives, and call other,
spurious warnings false positives. If the analysis does not guarantee that all
warnings are true positives, then it provides a “knob” that allows a user to
control the trade off between precision and finding more bugs.

• Little effort. The analysis can be applied to real-world software with low human
and computational effort.

A program analysis with these three properties is an attractive approach for in-
creasing the correctness and reliability of real-world software. Experience from ap-
plying analysis tools to industrial code underlines the importance of the three prop-
erties [13]: A successful analysis must be easily applicable to existing programs and,
at the same time, report bugs with high precision.

To evaluate our hypothesis that automatic program analysis allows for precisely
detecting programming errors with little effort, we develop and apply five program
analyses. The analyses fall into two broad categories:

• Use a program as an executable specification for itself. This approach tests a program
by leveraging the program as an executable specification for itself. The key idea
is to use classes of the program in two ways that are supposed to expose the
same behavior. If the behavior of one usage diverges in a significant way from
the behavior of the other usage, the analysis raises a warning. We present two
techniques of this kind, which discover thread safety violations and classes that
are unsafe substitutes for their superclasses, respectively.

• Infer probabilistic usage patterns and search for anomalies. This approach involves
two steps. At first, an analysis infers patterns from existing usages of a method
or a set of methods. Based on the assumption that most of the analyzed us-
ages are correct, these patterns are considered to be probabilistic specifications.
Then, the analysis checks for violations of common patterns that may be due to
a programming error. We describe three techniques of this kind, which reveal
API protocol violations, incorrectly ordered method arguments, and method
arguments that have a compatible but unexpected type, respectively.

The program analyses we advocate in this thesis are incomplete, that is, they can
show the presence of bugs but cannot guarantee their absence. Experience with static
checkers, such as FindBugs [75], shows that incomplete approaches can be very effec-
tive in practice [11, 13]. Therefore, we deliberately accept incompleteness and focus
on approaches that are automatic, precise, and that can be used with little effort.

CHAPTER 1. INTRODUCTION 14

1.4 Contents and Contributions

The main contribution of this work is to demonstrate that automatic program anal-
ysis allows for precisely detecting programming errors with little effort. We support
this thesis with five independent program analyses that consider different kinds of
programming errors, address different kinds of programs (sequential and concur-
rent), and leverage different kinds of analyses (static and dynamic). In the following,
we summarize the key insights of each analysis and how it contributes to the state
of the art. Chapter 7 discusses related work and compares our work to existing ap-
proaches.

Chapter 2: Thread Safety Violations

Concurrent, object-oriented programs often use thread-safe library classes. Chapter 2
presents an automatic testing technique that reveals concurrency bugs in supposedly
thread-safe classes. The key idea is to generate tests in which multiple threads call
methods on a shared instance of the tested class. If a concurrent test exhibits an
exception or a deadlock that cannot be triggered in any linearized execution of the
test, the analysis reports a thread safety violation. The analysis finds concurrency
bugs in popular Java libraries, including two previously unknown bugs in the Java
standard library.

Contributions

This work contributes by increasing automation and precision compared to the
closest existing approach [18]. The existing approach generates tests based on
programmer-provided method calls to the class under test. Instead, our approach
generates tests in a fully automatic way that requires as only input the class under
test. Our analysis reports only true positives because it focuses on exceptions and
deadlocks that happen when using a class concurrently but that cannot happen when
using it sequentially. Instead, the closest existing approach classifies 426 of 1,800 test
executions as failing, which – after manual inspection – contain seven bugs [18].

Chapter 2 shares material with the PLDI’12 paper “Fully Automatic and Precise
Detection of Thread Safety Violations” [127].

Chapter 3: Unsafe Substitutes

Languages with inheritance and polymorphism assume that a subclass instance can
substitute a superclass instance without causing behavioral differences for clients of
the superclass. However, programmers may accidentally create subclasses that are
semantically incompatible with their superclasses. Such subclasses lead to bugs be-
cause a programmer may assign a subclass instance to a superclass reference. Chap-
ter 3 presents an automatic testing technique to reveal subclasses that cannot safely
substitute their superclasses. The key idea is to generate generic tests that analyze the
behavior of both the subclass and its superclass. If using the subclass leads to a be-
havior that cannot occur with the superclass, the analysis reports a warning. We find
a high percentage of widely used Java classes, including classes from JBoss, Eclipse,
and Apache Commons Collections, to be unsafe substitutes for their superclasses:
30% of these classes lead to crashes and even more of them have other behavioral
differences.

CHAPTER 1. INTRODUCTION 15

Contributions

To the best of our knowledge, this analysis is the first to address unsafe subclasses
with an automatic analysis. Previous work on ensuring substitutability has focused
on verifying this property [90, 8, 95, 41, 137]. A verification approach requires pro-
grammers to formally specify the behavior of superclasses and subclasses. In con-
trast, our approach does not rely on formal specifications and therefore increases
automation.

Chapter 3 shares material with the ICSE’13 paper “Automatic Testing of Sequen-
tial and Concurrent Substitutability” [129].

Chapter 4: API Protocol Violations

Programmers using an API often must follow protocols that prescribe the order of
method calls. Such protocols can involve multiple interacting objects, such as a col-
lection and an iterator over the collection. Chapter 4 presents an approach that com-
bines test generation, protocol mining, and runtime verification into a fully automatic
dynamic analysis to find unsafe API usages that violate a protocol. The approach
leverages generated tests in two ways: Passing tests drive the program during pro-
tocol mining, and failing test executions are checked against inferred protocols. The
output are warnings that show with concrete test cases how the program violates
commonly accepted protocols. The analysis reports no false positives and 54 true
positives in ten well-tested Java programs.

Contributions

The approach is the first that finds bugs based on inferred specifications while not
reporting false positives. The key idea is to focus on violations of inferred protocols
that cause an exception, that is, certainly undesired behavior. Moreover, the analysis
is the first to automate dynamic specification mining and runtime verification with
generated tests.

Chapter 4 shares material with the ICSE’12 paper “Leveraging Test Genera-
tion and Specification Mining for Automated Bug Detection without False Posi-
tives” [128], the ICSM’10 paper “A Framework for the Evaluation of Specification
Miners Based on Finite State Machines” [124], and the ASE’09 paper “Automatic
Generation of Object Usage Specifications from Large Method Traces” [125].

Chapter 5: Incorrectly Ordered, Equally Typed Arguments

In statically typed programming languages, the compiler ensures that method ar-
guments are passed in the expected order by checking the type of each argument.
However, calls to methods with multiple equally typed parameters slip through
this check. The uncertainty about the correct order of equally typed arguments can
cause various problems, for example, if a programmer accidentally reverses two ar-
guments. Chapter 5 presents a static analysis that detects such problems without any
input except for the source code of a program. The analysis leverages the observation
that programmer-given identifier names convey information about the semantics of
arguments, which can be used to assign equally typed arguments to their expected
position. We evaluate the approach with a large corpus of Java programs and show
that the analysis finds relevant anomalies with a precision of 76%.

CHAPTER 1. INTRODUCTION 16

Contributions

This work contributes by introducing the notion of anomalies of equally typed argu-
ments, a kind of problem not considered by any previous work on bug finding. The
closest existing approach is to prevent incorrectly ordered arguments with named pa-
rameters, a language construct offered, for example, by Scala and Smalltalk. Named
parameters impose additional annotation overhead to programmers and many pop-
ular languages, such as Java, do not provide them. In contrast, our approach searches
for bugs in a fully automatic way.

Chapter 5 shares material with the ISSTA’11 paper “Detecting Anomalies in the
Order of Equally-typed Method Arguments” [126].

Chapter 6: Brittle Parameter Types

To avoid receiving incorrect arguments, a method specifies the expected type of each
formal parameter. However, some parameter types are too general and have sub-
types that the method does not expect as actual argument types. For example, this
may happen if there is no common supertype that precisely describes all expected
types. As a result of such brittle parameter types, a caller may accidentally pass argu-
ments unexpected by the callee without any warnings from the type system. Chap-
ter 6 presents a static analysis to find brittle parameter types and unexpected argu-
ments given to them. First, the analysis infers from callers of a method the types
that arguments commonly have. Then, the analysis reports potentially unexpected
arguments that stand out by having an unusual type. We apply the approach to 21
real-world Java programs that use the Swing API, an API providing various meth-
ods with brittle parameters. The analysis reveals previously unknown bugs and code
smells and has a precision of 47%.

Contributions

The analysis contributes by identifying brittle parameters as a source of program-
ming errors and by presenting the first bug finding technique to address this prob-
lem.

Chapter 6 shares material with the ISSTA’12 paper “Static Detection of Brittle Pa-
rameter Typing” [130].

1.5 Potential Impact

We hope and expect this thesis to have immediate practical impact as well as long-
term impact on the research community. The thesis presents techniques that are ready
to be used in practice. We present prototype implementations of all analyses pre-
sented in this thesis and evaluate them with large, real-world programs. Our results
show that the analyses detect relevant problems in an automatic and precise way
that requires little effort. During our evaluation, the analyses found a total of over
200 programming errors. We reported bugs to the developers of various open source
projects, including Sun’s Java standard library, Eclipse, Apache Commons Collec-
tions, and AspectJ. At the time of this writing, we are collaborating with a major
software company that is interested in adopting some of our techniques.

The broader impact of this thesis is to show how powerful automatic approaches
are for finding bugs. Society depends more and more on software. At the same time,

CHAPTER 1. INTRODUCTION 17

no single solution to avoid software bugs is to be expected in the foreseeable future.
Therefore, the need for low-cost techniques to improve the correctness and reliability
of software will increase. Our work addresses this need in a promising way. We
expect more research on automatic program analyses for finding bugs and hope that
future work benefits from the results of this thesis.

1.6 Further Resources

To facilitate others to reproduce our results and to compare their work with ours,
Appendices A and B list details about the programs we analyze and the warnings
reported by our approaches, respectively. Furthermore, we provide a web site with
additional material, such as source code of our prototype implementations:

http://mp.binaervarianz.de/dissertation/

The analysis presented in Chapter 2 is available at:

http://www.thread-safe.org

http://mp.binaervarianz.de/dissertation/
http://www.thread-safe.org

2Thread Safety Violations

Writing correct concurrent programs is hard. Since developers are used to sequential
reasoning, the parallelism and non-determinism of concurrent programs makes these
programs hard to write and understand. The problem is compounded because devel-
opers do not have enough tool support for testing concurrent programs [60]. Testing
techniques for concurrency have not yet reached the sophistication of techniques for
sequential programs.

Existing approaches to find concurrency bugs are either not automatic, not pre-
cise, or neither automatic nor precise. Existing dynamic analyses are not automatic
because they rely on tests that exercise the software under test. Writing tests is often
neglected due to time constraints. Furthermore, writing effective concurrent tests is
difficult because they should lead the program to sharing state between concurrently
executing threads and should trigger many different execution paths. Another rea-
son for not being automatic is that many existing static and dynamic analyses rely
on explicit, formal specifications, which must be developed in addition to the pro-
gram itself. Unfortunately, few programs provide such specifications. Many existing
approaches are not precise because, in addition to true positive, they report false pos-
itives.

This chapter addresses concurrency bugs in thread-safe classes. A class is thread-
safe if it “behaves correctly when accessed from multiple threads, regardless of the
scheduling or interleaving of the execution of those threads by the runtime environ-
ment, and with no additional synchronization or coordination on the part of the call-
ing code” [61]. We say that a class is thread-unsafe otherwise. Thread safety is a widely
used correctness guarantee, and thread-safe classes serve as building blocks for creat-
ing concurrent programs. Many libraries offer thread-safe classes and the correctness
of programs using them relies on the correctness of the thread safety classes.

Unfortunately, ensuring that a class is thread-safe is non-trivial, and even mature
and well-tested classes that are supposedly thread-safe may turn out to be thread-
unsafe in some usages. As a motivating example, consider a previously unknown
bug that our approach detects in the StringBuffer class of Sun’s Java standard
library in versions 1.6 and 1.7.1 StringBuffer is documented as thread-safe and
synchronizes accesses to its internal data by locking on the StringBuffer instance.

1We reported the problem and the developers acknowledged it as a bug. See entry 7100996 in Sun’s bug
database.

18

CHAPTER 2. THREAD SAFETY VIOLATIONS 19

StringBuffer sb = new StringBuffer();
sb.add("abc");

sb.insert(1, sb); sb.deleteCharAt(0);

Thread 1 Thread 2

Result: IndexOutOfBoundsException in Thread 1

(a) Concurrent usage that exposes a thread safety violation.

1 class StringBuffer {
2 StringBuffer(String s) {
3 // initialize with the given String
4 }
5 synchronized void deleteCharAt(int index) {
6 // modify while holding the lock
7 }
8 void insert(int dstOffset, CharSequence s) {
9 int l = s.length();

10 // BUG: l may change
11 this.insert(dstOffset, s, 0, l);
12 }
13 synchronized void insert(int dstOffset,
14 CharSequence s, int start, int end) {
15 // modify while holding the lock
16 }
17 }

(b) Supposedly thread-safe class.

Figure 2.1: A thread safety violation in StringBuffer.

For example, Figure 2.1a shows a multi-threaded usage of StringBuffer, where
a single-threaded sequence of calls is followed by multiple concurrent threads that
use a shared variable sb.2 This multi-threaded usage of StringBuffer is legal
and should not cause any problems. However, executing the example leads to an
exception because insert() retrieves the length of s, a parameter of type CharSe-
quence, before acquiring the lock. The documentation of StringBuffer states:
“This class synchronizes only on the string buffer performing the operation, not on
the source.” This behavior is fatal if the passed source is the StringBuffer itself,
a case the developers of the class apparently forgot to consider (Figure 2.1b). In this
case, retrieving the size of the StringBuffer is non-atomic with the consecutive
update, leading to a potential boundary error caused by an interleaved update.

2We use a graphical notation for representing code that runs concurrently. The example in Figure 2.1a
is equivalent to Java code that creates two threads after the call to add() and that starts them with
Thread.start().

CHAPTER 2. THREAD SAFETY VIOLATIONS 20

In this chapter, we present an automatic and precise bug detection approach to
find thread safety violations. The approach is automatic because it requires a single
input: the class under test (CUT), possibly accompanied by other classes on which
the CUT depends. The approach is precise because it produces a single output: true
positive reports about concurrency bugs in the CUT. We implement the approach
and apply it to six popular code bases, including the Java standard library and the
Apache Commons Database Connection Pools (DBCP) library. The analysis detects
previously unknown bugs, for example, the problem illustrated in Figure 2.1. To find
these violations, the analysis requires minimal human effort and an acceptably low
computational effort.

The following two sections outline our approach and illustrate it with a detailed
example. Sections 2.3 and 2.4 explain the two contributions that enable the approach,
followed by a description of our prototype implementation in Section 2.5. Section 2.6
evaluates the approach. Sections 2.7 argues why the approach supports the thesis of
this work, and finally, Section 2.8 outlines directions of future work.

2.1 Overview of the Approach

This section explains the key ideas of a dynamic analysis to detect concurrency bugs
in thread-safe classes. There are three requirements for detecting a thread safety bug
with a dynamic analysis:

1. A test that drives an instance of the CUT to a state that can expose the bug.

2. An execution environment that exposes the bug when executing the test.

3. An oracle that recognizes the execution as erroneous.

Various approaches addressing the second requirement have been proposed [42, 140,
110, 35, 19]. This work focuses on the first and the third requirement, and we con-
tribute two techniques that address these requirements.

The first contribution is a test generation technique that creates input to exercise
the methods of a CUT from multiple threads. Each generated test consists of a se-
quential part, which instantiates the CUT, and a concurrent part, in which multiple

Class under test

Thread safety violation

Generate
concurrent test

Execute

Thread
safety oracle

Figure 2.2: Overview of the approach.

CHAPTER 2. THREAD SAFETY VIOLATIONS 21

threads call supposedly thread-safe methods of the CUT instance. The technique en-
hances existing techniques that generate sequential tests [36, 117] by adapting them
to a concurrent setting. Simply running generated sequential tests in parallel is very
unlikely to result in shared state and to expose concurrency bugs. Instead, our tech-
nique generates tests that share a single CUT instance, called the object under test
(OUT), between multiple threads and that expose concurrency bugs by using the
OUT concurrently.

Some existing bug finding techniques use a manually written test harness that,
given a set of calls with concrete arguments, randomly selects and executes calls [67,
18]. Our test generation technique advances upon this approach in two ways. First,
it relieves developers from providing calls and from finding appropriate arguments
for these calls. The test generator creates arguments by instantiating classes and by
calling methods that return objects of the required types. Second, and even more im-
portant, an automatic approach produces more diverse tests than manually written
calls because it tries to combine many different methods, arguments, and receiver ob-
jects. As a result, generated tests include usage scenarios that a human may not come
up with. For example, the test in Figure 2.1a triggers a bug by passing a String-
Buffer to itself, a situation that apparently remained untested for several years.

The second contribution is a test oracle, called the thread safety oracle, that deter-
mines whether the execution of a concurrent test exposes a thread safety violation.
The oracle classifies a concurrent execution as erroneous if the execution leads to an
exception or to a deadlock and if this exception or deadlock cannot be triggered by
any linearization of the calls in the concurrent execution. A linearization maps all calls
of a concurrent test into a single thread while preserving the order of calls made by
individual threads. The thread safety oracle is generic, automatic, and precise. It
is generic because it can detect different kinds of concurrency bugs, including data
races, atomicity violations, and deadlocks, given that the bug eventually causes an
exception or a deadlock. A study of 105 real-world concurrency bugs found that 62%
of all bugs lead to a crash or a deadlock [100], suggesting that the thread safety oracle
addresses a significant problem. The oracle is automatic because it does not require
any explicit specification of the CUT and instead leverages generic and implicit indi-
cators of incorrectness. Finally, the oracle is precise because it guarantees that each
reported problem is a bug, as exceptions and deadlocks are certainly undesired be-
havior.

A main assumption of the oracle is that sequential executions are deterministic.
If this assumption was false, the oracle could not guarantee precision. The reason is
that the oracle might non-deterministically miss an exception or a deadlock in a lin-
earization and might incorrectly conclude that the exception or the deadlock occurs
only concurrently. In practice, we find that most thread-safe classes are sequentially
deterministic. For classes that are sequentially non-deterministic, our analysis can be
combined with a runtime environment that ensures deterministic sequential execu-
tion [122].

The thread safety oracle relates to seminal work on linearizability as a correctness
criterion [73] and its recent adaption to object-oriented programs in Line-Up [18]. In
contrast to Line-Up, our oracle is more effective and more efficient. It is more effec-
tive because each test execution that fails according to the oracle is a true positive. In
contrast, the Line-Up oracle classifies 426 of 1,800 test executions as failing, which—
after manual inspection—contain seven bugs [18]. This high violations-to-bugs ratio
is due to benign linearizability violations and to multiple violations caused by the
same bug. Our oracle is more efficient because it only runs linearizations of a concur-

CHAPTER 2. THREAD SAFETY VIOLATIONS 22

rent test if the concurrent test leads to an exception or a deadlock. Instead, Line-Up
explores all linearizations before running a concurrent test.3

Our analysis combines these two contributions into a system that iteratively per-
forms three steps (Figure 2.2), which correspond to the three requirements. At first,
the test generator creates a test that sets up the OUT and that calls methods of the
OUT from multiple threads. Next, we execute the generated test. Since the class
is supposedly thread-safe, it should synchronize concurrent calls on the OUT as
needed. That is, the methods should “behave as if they occur in some serial order
that is consistent with the order of the method calls made by each of the individual
threads involved” [4]. The third step of our analysis checks whether the OUT be-
haves as expected. If the oracle finds that the concurrent execution shows behavior
not possible with any linearization of the calls in the test, then it reports a thread
safety violation and terminates. Otherwise, the analysis goes back to the first step
and continues until a stopping criterion, such as a timeout or a maximum number of
generated tests, is reached.

2.2 Detailed Example

Before explaining the details of our approach, we walk through an example. Sup-
pose a developer wants to test the StringBuffer class, which is documented to be
thread-safe. All the developer must do is to provide the source code or byte code of
the class.

2.2.1 Generating a Concurrent Test

As a first step, the analysis generates a concurrent test that exercises a String-
Buffer instance. To get such an instance, the test generator randomly chooses
among the public constructors of StringBuffer. Suppose the generator chooses
the default constructor:

StringBuffer sb = new StringBuffer();

Whenever the test generator adds a constructor call or a method call to a test, it
executes the test to check whether the added call leads to an uncaught exception or to
a deadlock. If it does, then extending the test cannot explore further behavior because
the test crashes when the added call is executed. Executing the default constructor of
StringBuffer succeeds in this case, so the test generator continues to extend the
test.

After instantiating the StringBuffer, the test generator calls methods on sb to
bring the object in a state that may allow us to trigger a bug. For this purpose, the
test generator randomly chooses a public and concrete method of StringBuffer,
for example, append(String). To call this method, we require a String argument.
The test generator randomly chooses among the following three options:

• Use a String variable from the so far generated test. This option is not possible
for the example because the test does not have any String variables.

• Call a method that returns a String.

3A direct comparison of our results with those of Line-Up is not possible because the details about the
classes under test [18], as well as the specific bugs found, are no longer available [20].

CHAPTER 2. THREAD SAFETY VIOLATIONS 23

• Use a randomly generated value.

Suppose the test generator selects the last option and extends the test as follows:

StringBuffer sb = new StringBuffer();
sb.append("abc");

The test generator executes the so far constructed test and, again, finds that it
succeeds. The goal is to generate a concurrent test that exercises sb from multiple
concurrent threads. To achieve this goal, the test generator spawns two threads in the
test and adds to each thread calls with sb as the receiver. For the first thread, the test
generator chooses to call insert(int,CharSequence). The generator requires an
int argument and a CharSequence argument and chooses them based on the three
above options. Suppose the generator extends the test as follows: 4

StringBuffer sb = new StringBuffer();
sb.append("abc");

sb.insert(-5, sb);

Thread 1 Thread 2

To avoid adding calls that certainly lead to a crash of the test, the generator checks
whether executing the three calls in a single thread of execution succeeds (that is, as
if sb.insert(-5, sb) was added before forking threads). The execution raises an
IndexOutOfBoundsException because -5 is an invalid index. Instead of this call,
the test generator tries to find other arguments that do not crash the test. Suppose it
generates a call to sb.insert(1, sb), which does not raise an exception.

Next, the test generator adds a call to the second thread by randomly choosing
a method, selecting arguments for it, and checking whether adding the call fails the
test. After this step, we obtain the following, concurrent test:

StringBuffer sb = new StringBuffer();
sb.append("abc");

sb.insert(1, sb); sb.deleteCharAt(1);

Thread 1 Thread 2

2.2.2 Executing the Test

The second step of our analysis is to execute the generated test. Different interleav-
ings of the concurrent threads may result in different behavior. One possible behav-
ior, which we suppose to happen, is that sb.insert(1, sb) raises an IndexOut-
OfBoundsException. That is, executing the generated concurrent test leads to a
crash.

4For presentation purposes, we use a graphical notation for creating and starting threads. Our imple-
mentation creates tests that use Java’s standard thread facilities, for example, Thread.start().

CHAPTER 2. THREAD SAFETY VIOLATIONS 24

2.2.3 Thread Safety Oracle

Does the exception thrown by the concurrent test indicate an error? The third step of
our analysis, the thread safety oracle, answers this question by leveraging the defini-
tion of thread safety. For a thread-safe class, the behavior obtained when executing
method calls concurrently must be the same as the behavior obtained in a lineariza-
tion at the granularity of method calls. For our example, there are two linearizations:

StringBuffer sb = new StringBuffer();
sb.append("abc");
sb.insert(1, sb);
sb.deleteCharAt(1);

and
StringBuffer sb = new StringBuffer();
sb.append("abc");
sb.deleteCharAt(1);
sb.insert(1, sb);

Executing neither of the two linearizations leads to an exception, that is, the
crash occurs only when using StringBuffer concurrently. This behavior exposes
a thread safety violation and our analysis reports the problem to the developer.

The example illustrates how using an automatic and precise analysis helps de-
velopers to find thread safety bugs with little effort. In the following sections, we
explain the approach in more detail.

2.3 Generating Concurrent Tests

This section presents a technique to generate concurrent tests that exercise a CUT
from multiple threads. The input to the test generator is a class C and, optionally,
a set A of auxiliary classes that C depends on. The generator creates call sequences.
Each call ci in a call sequence (c1, . . . , cn) consists of a method signature, a possibly
empty list of input variables, and an optional output variable. The input variables of
a call represent arguments passed to the method. For an instance call, the first input
variable is the receiver of the call. The output variable of a call represents its return
value. We model constructor invocations as calls where the output variable repre-
sents the new object. Similarly, we model field accesses as calls where the underlying
object is the only input variable and where the output variable represents the field
value. We require all call sequences to be well-defined, that is, each input variable of a
call cj is the output variable of a call ci with i < j, or in other words, each variable
used in a call is defined by a prior call.

A test consists of a prefix and a set of suffixes. The prefix is a call sequence sup-
posed to be executed in a single thread. The prefix instantiates the CUT and calls
methods on the OUT to “grow” the object, that is, to bring it into a state that may
allow the suffixes to trigger a bug. A suffix is a call sequence supposed to be exe-
cuted concurrently with other suffixes after executing the prefix. All suffixes share
the output variables of the prefix and can use them as input variables for suffix calls.
In particular, all suffixes share the OUT created in the prefix. While our general ap-
proach is independent of the number of suffixes, we focus on two suffixes per test.
That is, a test is a triple (p, s1, s2), where p is the prefix and s1, s2 are suffixes. The
rationale for this choice is that most real-world concurrency bugs can be reproduced
with at most two threads [100].

CHAPTER 2. THREAD SAFETY VIOLATIONS 25

The test generated in Section 2.2 is a simple example for a test. The prefix contains
a call to a constructor of StringBuffer, which returns the OUT sb, and a call on
the OUT. Each of the two suffixes calls a single method using the shared OUT sb as
the receiver. In practice, effective concurrent tests are not always that simple. Calling
a method often requires providing arguments of a particular type, which in turn may
require calling other methods. Furthermore, triggering a bug often requires bringing
the OUT into a particular state, for example, by calling setter methods.

2.3.1 Tasks

We divide the generation of a test into tasks that build and extend call sequences.
Each task takes a call sequence sin = (c1, . . . , ci) and returns a new sequence sout =
(c1, . . . , ci, cj , . . . , cn) that appends n − j + 1 additional calls to sin. The additional
calls can use output variables of previous calls as their input variables. We use three
kinds of tasks:

• instantiateTask, which appends calls to create the OUT,

• callTask, which appends a call to the OUT, and

• argumentTask, which makes an argument of a particular type available.

A task succeeds if it extends sin with additional calls in such a way that sout exe-
cutes in a single thread without throwing an uncaught exception. This requirement
adapts an idea from sequential test generation [117], namely to use the result of exe-
cuting call sequences for selecting which sequences to extend further. Generated call
sequences that result in an exception typically contain an illegal call, for example, a
call that violates the precondition for calling the method. Although focusing on non-
exceptional call sequences does not guarantee that each call is legal, it ensures that
extending a sequence will eventually lead to executing more calls without reaching
an obviously illegal state.

To successfully accomplish a task, the test generator extends sin into candidates for
sout until a candidate is found that executes without an exception. If no candidate
has fulfilled these conditions after creating a configurable number of candidates, the
test generator gives up on this task and the task fails. For example, the callTask may
fail if the OUT is at a state that does not allow calling any of the CUT methods.

2.3.2 Test Generation Algorithm

Algorithm 1 describes how our analysis generates a concurrent test. There are three
global variables, which maintain their values over multiple invocations of the algo-
rithm: the set P of prefixes, the map M assigning a prefix to its set of suffixes, and
the set T of already generated but not yet returned tests.

The algorithm has three main steps. At first, it creates a new prefix or chooses
a previously created prefix (lines 6 to 20). Then, it creates a new suffix for the pre-
fix (lines 21 to 26). Finally, the algorithm creates tests by combining the new suffix
with each existing suffix (lines 27 to 29). To create prefixes and suffixes, the algo-
rithm invokes tasks. The functions randTake and randRemove randomly select an
element of a set with a uniform probability distribution. The randRemove function
also removes the selected element from the set.

CHAPTER 2. THREAD SAFETY VIOLATIONS 26

Algorithm 1 Returns a concurrent test (p, s1, s2)

1: P : set of prefixes B global variables
2: M : maps a prefix to suffixes
3: T : set of ready-to-use tests
4: if |T | > 0 then
5: return randRemove(T)
6: if |P| < maxPrefixes then B get a prefix
7: p← instantiateTask(empty call sequence)
8: if p = failed then
9: if P = ∅ then

10: fail(”cannot instantiate CUT”)
11: else
12: p← randTake(P)
13: else
14: for i← 1,maxStateChangerTries do
15: pext ← callTask(p)
16: if pext 6= failed then
17: p← pext
18: P ← P ∪ {p}
19: else
20: p← randTake(P)
21: s1 ← empty call sequence B create a new suffix
22: for i← 1,maxCallTries do
23: s1,ext ← callTask(s1, p)
24: if s1,ext 6= failed then
25: s1 ← s1,ext
26: M(p)←M(p) ∪ {s1}
27: for all s2 ∈M(p) do B one test for each pair of suffixes
28: T ← T ∪ {(p, s1, s2)}
29: return randRemove(T)

Creating Prefixes During the first step (lines 6 to 20), the algorithm creates a new
prefix unless maxPrefixes (discussed in Section 2.5) have already been created. To
create a new prefix, the algorithm invokes the instantiateTask. This task randomly
chooses a method m from all methods that are provided by C or by classes in A and
that haveC or a subtype ofC as return type. If callingm requires arguments, the task
invokes the argumentTask to make these arguments available. The instantiateTask
returns a call sequence that creates all required arguments, stores them into output
variables, and calls m. If the test generator cannot instantiate the CUT, for example,
because there is no public constructor, the algorithm fails.

After instantiating the CUT, the algorithm tries to invoke methods on the OUT
to change state of the OUT. The callTask randomly chooses a method among all
methods of C, invokes the argumentTask for each required argument, and calls the
chosen method.

Creating Suffixes During the second step (lines 21 to 26), the algorithm creates a
new suffix s1 for the prefix p by repeatedly invoking the callTask. In addition to the

CHAPTER 2. THREAD SAFETY VIOLATIONS 27

suffix, the call in line 23 passes the prefix to the task so that callTask can use output
variables from the prefix as input variables in the suffix. After appending calls to the
OUT, the new suffix s1 is added to the set of suffixes for the prefix p.

Tasks that append method calls depend on the argumentTask for getting method
arguments. This task uses three strategies to make an argument of a particular type t
available. If the given call sequence already has one or more output variables of type
t or a subtype of t, the task randomly chooses between reusing a variable and creating
a fresh variable. The rationale for creating fresh variables is to diversify the generated
tests instead of passing the same arguments again and again. To reuse a variable, the
task randomly chooses from all available variables with matching type. To create a
fresh variable, the behavior depends on the type t. If t is a primitive type or String,
the task returns a randomly created literal. Otherwise, the tasks randomly chooses
a method from all methods that are provided by C or a class in A and that return
t or a subtype of t. If calling this method requires arguments, the task recursively
invokes itself. We limit the number of recursions to avoid infinite loops and fail the
task if the limit is reached. If there is no method providing t, the argumentTask
returns null. Using null as an argument may be illegal. In this case, executing the
sequence may result in an exception, for example, a NullPointerException, so
that the candidate is rejected.

Creating Tests The third step of the algorithm (lines 27 to 29) creates tests by com-
bining the new suffix with each existing suffix for the prefix. The algorithm stores the
created tests in T and on future invocations returns a randomly selected test from T
until T becomes empty.

2.4 Thread Safety Oracle

This section presents an automatic technique to determine whether the execution of
a concurrent test exposes a thread safety violation.

2.4.1 Thread Safety

A class is said to be thread-safe if multiple threads can use it without synchronization
and if the behavior observed by each thread is equivalent to a linearization of all
calls [61, 4]. Saying that a class is thread-safe means that all its methods are thread-
safe. Alternatively, our approach can also deal with classes that guarantee thread
safety for a subset of all methods by excluding the unsafe methods when generating
suffixes for a test.

Figure 2.3 is an example for a thread-unsafe class and a test execution that exposes
this property. Concurrently using java.util.ArrayList results in an exception
that does not occur in any of the three possible linearizations of the calls:

add("a")→ add("b")→ hashCode() succeeds
add("a")→ hashCode()→ add("b") succeeds
hashCode()→ add("a")→ add("b") succeeds

That is, the execution in Figure 2.3 shows that ArrayList is thread-unsafe, which is
not surprising because the class is not supposed to be thread-safe.

A property related to thread safety is atomicity, that is, the guarantee that a se-
quence of operations performed by a thread appears to execute without interleaved

CHAPTER 2. THREAD SAFETY VIOLATIONS 28

ArrayList l = new ArrayList();

l.add("a");
l.add("b");

l.hashCode();

Thread 1 Thread 2

Result: ConcurrentModificationException in Thread 2

Figure 2.3: Test execution using a thread-unsafe class.

CopyOnWriteArrayList l = new CopyOnWriteArrayList();

l.add("a");
println(l);

l.add("b");

Thread 1 Thread 2

Result: [a], [a,b], or [b,a]

Figure 2.4: Test execution using a thread-safe class.

operations by other threads. One way to make a class thread-safe is to guarantee that
each call to one of its methods appears to be atomic for the calling thread. However,
a thread-safe class does not guarantee that multiple calls to a shared instance of the
class are executed atomically [142]. For example, consider the usage of the thread-
safe class java.util.concurrent.CopyOnWriteArrayList in Figure 2.4. Ex-
ecuting the concurrent test has three possible outputs. For all three, there is a lin-
earization of calls that provides the same result, so the test execution does not expose
a thread safety violation:

add("a")→ println(l)→ add("b") gives [a]
add("a")→ add("b")→ println(l) gives [a,b]
add("b")→ add("a")→ println(l) gives [b,a]

2.4.2 Definitions

The thread safety oracle answers the question whether a concurrent test execution
exposes a thread safety violation by comparing the concurrent execution to execu-
tions of linearizations of the test. We use ⊕ to concatenate sequences, and c →s c

′

indicates that call c comes before call c′ in a call sequence s.

CHAPTER 2. THREAD SAFETY VIOLATIONS 29

Definition 1 (Linearization). For a test (p, s1, s2), let P12 be the set of all permutations of
the call sequence s1 ⊕ s2. The set of linearizations of the test is:

L(p,s1,s2) = {p⊕ s12 | s12 ∈ P12 ∧
(∀c, c′ (c→s1 c

′ ⇒ c→s12 c
′) ∧

(c→s2 c
′ ⇒ c→s12 c

′))}

That is, a linearization of a test (p, s1, s2) appends to p all calls from s1 and from
s2 in a way that preserves the order of calls in s1 and s2.

Definition 2 (Execution). For a test (p, s1, s2), we denote the set of all executions of this
test as E(p,s1,s2). Each e(p,s1,s2) ∈ E(p,s1,s2) represents the sequential execution of p followed
by a concurrent execution of s1 and s2. Likewise, we denote the sequential execution of a call
sequence s as es.

A single test can have multiple executions because concurrent executions are non-
deterministic.

The following definition of thread safety refers to the equivalence e1 ∼= e2 of two
executions e1 and e2. We discuss in Section 2.4.3 how our oracle decides whether two
executions are equivalent.

Definition 3 (Thread safety). Let TC be the set of all possible tests for a class C. C is
thread-safe if and only if:

∀(p, s1, s2) ∈ TC ∀e(p,s1,s2) ∈ E(p,s1,s2)∃l ∈ L(p,s1,s2) so that e(p,s1,s2) ∼= el

That is, a class is thread-safe if each concurrent test execution has an equivalent
linearization.

2.4.3 The Test Oracle

Showing that a class is thread-safe according to Definition 3 is difficult in practice
because all possible tests and all possible executions of these tests would have to
be considered. However, the thread safety oracle can show that a class C is thread-
unsafe by showing:

∃(p, s1, s2) ∈ TC ∃e(p,s1,s2) ∈ E(p,s1,s2) so that ∀l ∈ L(p,s1,s2) e(p,s1,s2) � el

That is, the thread safety oracle tries to find a test that exposes behavior not possible
with any linearization of the test. To decide whether two executions are equivalent,
the oracle compares the exceptions and deadlocks caused by the executions.

Definition 4 (Equivalence of executions). Two executions e1 and e2 are equivalent if

• neither e1 nor e2 results in an exception or a deadlock, or

• both e1 and e2 fail for the same reason (that is, the same type of exception is thrown or
both executions end with a deadlock).

Although this abstraction ignores many potential differences between executions,
such as different return values of method calls, Definition 4 is crucial to ensure that
the analysis only reports a class as thread-unsafe if the class is definitely thread-
unsafe.

CHAPTER 2. THREAD SAFETY VIOLATIONS 30

Algorithm 2 Checks whether a test (p, s1, s2) exposes a thread safety bug

1: repeat
2: e(p,s1,s2) ← execute(p, s1, s2)
3: if failed(e(p,s1,s2)) then
4: seqFailed← false
5: for all l ∈ L(p, s1, s2) do
6: if seqFailed = false then
7: el ← execute(l)
8: if failed(el) ∧ sameFailure(e(p,s1,s2), el) then
9: seqFailed← true

10: if seqFailed = false then
11: report violation e(p,s1,s2) and exit
12: until maxConcExecs reached

Algorithm 2 shows how the analysis checks whether a test (p, s1, s2) exposes a
thread safety problem. The algorithm repeatedly executes the test until a maximum
number of concurrent executions is reached, or until a thread safety violation is
found. If the test fails, that is, it throws an exception or results in a deadlock, the
algorithm executes all linearizations of the test to check whether the same failure oc-
curs during a sequential execution of the same calls. If no linearization exposes the
same failure, the algorithm reports a thread safety violation.

The thread safety oracle is sound and incomplete.5 Every execution for which
the oracle reports a bug is guaranteed to expose a thread safety violation according
to Definition 3, but the oracle may classify an execution as correct even though it ex-
poses a thread safety problem. The soundness of the oracle ensures that our approach
detects concurrency bugs without reporting false positives.

We build upon two assumptions, which we find true for most real-world classes
during our evaluation. First, we assume that uncaught exceptions and deadlocks that
occur in a concurrent usage of a class but not in a sequential usage are considered a
problem. This assumption is in line with the commonly accepted definition of thread
safety [61, 4]. Second, we assume that sequential executions of a call sequence be-
have deterministically. Sequentially non-deterministic methods, for example, meth-
ods that depend on the current system time, should be excluded from our analysis.
Alternatively, our analysis can be combined with a runtime environment that ensures
deterministic sequential execution [122]. For concurrent executions, the analysis sup-
ports non-deterministic behavior by repeatedly executing concurrent tests to trigger
different interleavings.

2.5 Implementation

We implement the test generator and the thread safety oracle into an automatic and
precise bug detection tool for thread-safe Java classes. This section presents several
challenges faced by the implementation and how we address them.

5We mean soundness and completeness regarding incorrectness [144]. In other contexts, such as type
systems, the terms are typically used with respect to correctness, that is, inverse to the usage here.

CHAPTER 2. THREAD SAFETY VIOLATIONS 31

The test generator executes many call sequences and must ensure that each call se-
quence executes efficiently and without influencing later executions of call sequences.
To execute sequences efficiently we take a reflection-based approach similar to the se-
quential test generator Randoop [117]. A problem not addressed by Randoop is that
sequentially executed call sequences may influence each other because of static state.
This problem is independent of concurrency. For example, a call sequence s1 may
assign a value to a static field and a call sequence s2 may read the static field. As a
result, the outcome of executing s2 may vary depending on whether s1 is executed
before s2. We address the problem by resetting all static state of a class before each ex-
ecution of a call sequence. For this purpose, our implementation instruments classes
so that all modifications of static state are recorded and can be reset to the state just
after loading the class. Csallner and Smaragdakis describe a similar approach for a
sequential test generator [36].

The test generator takes a random seed as an input, which allows for replay-
ing the test generation process by using the same seed again, as long as the tested
classes behave deterministically in sequential executions. Experience with sequen-
tial, random test generation shows that many short runs with different seeds trigger
bugs faster than few long runs [31]. Our initial experiments confirmed this obser-
vation, so we run the analysis in multiple rounds that each use a different random
seed. The first rounds stop after trying a small number of suffixes (ten) for a sin-
gle prefix. Later rounds gradually raise the maximum number of generated prefixes
(maxPrefixes) to 25 and the maximum number of generated suffixes to 500. The val-
ues of other parameters used in Algorithms 1 and 2 aremaxStateChangerTries = 5,
maxConcExecs = 100, and maxCallTries = 2.

To detect deadlocks, we use the management interface of the thread system of
the Java virtual machine. A daemon thread periodically queries this interface and
notifies the thread safety oracle in case of a deadlock.

2.6 Evaluation

We evaluate our approach by applying the prototype implementation to classes
from six popular code bases: the Java standard library shipped with Sun’s JDK, the
database connection pool library Apache Commons DBCP, the serialization library
XStream, the text processing toolkit LingPipe, the chart library JFreeChart, and Joda-
Time, a library to handle data and time. We select these classes based on documen-
tation claiming that a class is thread-safe and based on known bug reports related to
thread safety.

2.6.1 Experimental Setup

All experiments are done on an eight-core machine with 3GHz Intel Xeon processors
and 8GB memory running 32-bit Ubuntu Linux and the Java Hotspot VM version
1.6.0 27, giving 2GB memory to the VM. We run experiments with different CUTs
in parallel but run at most four tests at a time to reserve a core for each concurrent
thread exercising the CUT. We repeat each experiment with ten different random
seeds [117].

To analyze a CUT, we give auxiliary classes to the test generator, namely all other
public classes from the code base and common classes from the Java standard library.

CHAPTER 2. THREAD SAFETY VIOLATIONS 32

ConcurrentHashMap map = new ConcurrentHashMap();
map.put("a", map);

map.clear();
map.hashCode();

map.putAll(map);

Thread 1 Thread 2

Result: StackOverflowError in Thread 1

(a) Execution of a generated concurrent test that exposes a thread
safety violation.

1 class ConcurrentHashMap {
2 void clear() {
3 final Segment[] segments = this.segments;
4 for (int j = 0; j < segments.length; ++j) {
5 Segment s = segmentAt(segments, j);
6 if (s != null) s.clear(); // locks the segment
7 }
8 }
9 void putAll(Map m) {

10 for (Map.Entry e : m.entrySet())
11 // BUG: m’s entries may change
12 put(e.getKey(), e.getValue());
13 }
14 Object put(Object key, Object value) {
15 Segment s = /* get segment in a thread-safe way */;
16 return s.put(key, value); // locks the segment
17 }
18 }

(b) Supposedly thread-safe class.

Figure 2.5: Concurrency bug in ConcurrentHashMap.

2.6.2 Bugs Found

The analysis finds 15 bugs in supposedly thread-safe classes, six of them previously
unknown. Each bug can cause a crash in a concurrent program that relies on the
thread-safe class. Table 2.1 lists all bugs along with the reason for failing. The last
column indicates whether the reason is an exception thrown explicitly in the analyzed
code base, or whether it is an exception thrown by the Java standard library or a
failure triggered implicitly by the virtual machine. For twelve of 15 bugs, a failure
triggered by the standard library or by the virtual machine is sufficient to reveal the
bug. That is, our approach reveals most bugs without requiring the analyzed classes
to throw an exception if an unsafe state is reached.

The analysis reveals two previously unknown bugs in the Java standard library,
one of them shown in the detailed example in Section 2.2. The other previously un-

CHAPTER 2. THREAD SAFETY VIOLATIONS 33

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
re

su
lt

s.
Th

e
la

st
co

lu
m

n
in

di
ca

te
s

w
he

th
er

th
e

re
as

on
fo

r
fa

ili
ng

is
an

ex
ce

pt
io

n
ex

pl
ic

it
ly

th
ro

w
n

in
th

e
co

de
ba

se
un

de
r

te
st

,o
r

if
it

is
an

ex
ce

pt
io

n
th

ro
w

n
by

th
e

Ja
va

st
an

da
rd

lib
ra

ry
or

an
im

pl
ic

it
fa

ilu
re

tr
ig

ge
re

d
by

th
e

vi
rt

ua
l

m
ac

hi
ne

.

ID
C

od
e

ba
se

C
la

ss
D

ec
la

re
d

Fo
un

d
R

ea
so

n
fo

r
fa

ili
ng

T
hr

ow
n

th
re

ad
-s

af
e

un
sa

fe
by

C
U

T

Pr
ev

io
us

ly
un

kn
ow

n
bu

gs
:

(1
)

JD
K

1.
6.

0
27

an
d

1.
7.

0
St

ri
ng

Bu
ff

er
ye

s
ye

s
In

de
xO

ut
O

fB
ou

nd
sE

xc
ep

ti
on

no
(2

)
JD

K
1.

6.
0

27
an

d
1.

7.
0

C
on

cu
rr

en
tH

as
hM

ap
ye

s
ye

s
St

ac
kO

ve
rfl

ow
Er

ro
r

no
(3

)
C

om
m

on
s

D
BC

P
1.

4
Sh

ar
ed

Po
ol

D
at

aS
ou

rc
e

ye
s

ye
s

C
on

cu
rr

en
tM

od
ifi

ca
ti

on
Ex

ce
pt

io
n

no
(4

)
C

om
m

on
s

D
BC

P
1.

4
Pe

rU
se

rP
oo

lD
at

aS
ou

rc
e

ye
s

ye
s

C
on

cu
rr

en
tM

od
ifi

ca
ti

on
Ex

ce
pt

io
n

no
(5

)
X

St
re

am
1.

4.
1

X
St

re
am

ye
s

ye
s

N
ul

lP
oi

nt
er

Ex
ce

pt
io

n
no

(6
)

Li
ng

Pi
pe

4.
1.

0
M

ed
lin

eS
en

te
nc

eM
od

el
ye

s
ye

s
Il

le
ga

lS
ta

te
Ex

ce
pt

io
n

ye
s

Pr
ev

io
us

ly
kn

ow
n

bu
gs

:

(7
)

JD
K

1.
1

Bu
ff

er
ed

In
pu

tS
tr

ea
m

ye
s

ye
s

N
ul

lP
oi

nt
er

Ex
ce

pt
io

n
no

(8
)

JD
K

1.
4.

1
Lo

gg
er

ye
s

ye
s

N
ul

lP
oi

nt
er

Ex
ce

pt
io

n
no

(9
)

JD
K

1.
4.

2
Sy

nc
hr

on
iz

ed
M

ap
ye

s
ye

s
D

ea
dl

oc
k

no
(1

0)
JF

re
eC

ha
rt

0.
9.

8
Ti

m
eS

er
ie

s
ye

s
ye

s
N

ul
lP

oi
nt

er
Ex

ce
pt

io
n

no
(1

1)
JF

re
eC

ha
rt

0.
9.

8
X

Y
Se

ri
es

ye
s

ye
s

C
on

cu
rr

en
tM

od
ifi

ca
ti

on
Ex

ce
pt

io
n

no
(1

2)
JF

re
eC

ha
rt

0.
9.

12
N

um
be

rA
xi

s
ye

s
ye

s
Il

le
ga

lA
rg

um
en

tE
xc

ep
ti

on
ye

s
(1

3)
JF

re
eC

ha
rt

1.
0.

1
Pe

ri
od

A
xi

s
ye

s
ye

s
Il

le
ga

lA
rg

um
en

tE
xc

ep
ti

on
ye

s
(1

4)
JF

re
eC

ha
rt

1.
0.

9
X

Y
Pl

ot
ye

s
ye

s
C

on
cu

rr
en

tM
od

ifi
ca

ti
on

Ex
ce

pt
io

n
no

(1
5)

JF
re

eC
ha

rt
1.

0.
13

D
ay

ye
s

ye
s

N
um

be
rF

or
m

at
Ex

ce
pt

io
n

no

A
ut

om
at

ic
cl

as
si

fic
at

io
n

of
cl

as
se

s
as

th
re

ad
-u

ns
af

e:

(1
6)

Jo
da

-T
im

e
2.

0
D

at
eT

im
eF

or
m

at
te

rB
ui

ld
er

no
ye

s
In

de
xO

ut
O

fB
ou

nd
sE

xc
ep

ti
on

(1
0x

)
no

(1
7)

Jo
da

-T
im

e
2.

0
D

at
eT

im
eP

ar
se

rB
uc

ke
t

no
ye

s
Il

le
ga

lA
rg

um
en

tE
xc

ep
ti

on
(9

x)
ye

s
N

ul
lP

oi
nt

er
Ex

ce
pt

io
n

(1
x)

no
(1

8)
Jo

da
-T

im
e

2.
0

D
at

eT
im

eZ
on

eB
ui

ld
er

no
ye

s
N

ul
lP

oi
nt

er
Ex

ce
pt

io
n

(6
x)

no
A

rr
ay

In
de

xO
ut

O
fB

ou
nd

sE
xc

ep
ti

on
(2

x)
no

Il
le

ga
lF

ie
ld

V
al

ue
Ex

ce
pt

io
n

(2
x)

no
(1

9)
Jo

da
-T

im
e

2.
0

M
ut

ab
le

D
at

eT
im

e
no

ye
s

Il
le

ga
lF

ie
ld

V
al

ue
Ex

ce
pt

io
n

(9
x)

ye
s

A
ri

th
m

et
ic

Ex
ce

pt
io

n
(1

x)
no

(2
0)

Jo
da

-T
im

e
2.

0
M

ut
ab

le
In

te
rv

al
no

ye
s

Il
le

ga
lA

rg
um

en
tE

xc
ep

ti
on

(1
0x

)
ye

s
(2

1)
Jo

da
-T

im
e

2.
0

M
ut

ab
le

Pe
ri

od
no

ye
s

A
ri

th
m

et
ic

Ex
ce

pt
io

n
(1

0x
)

no
(2

2)
Jo

da
-T

im
e

2.
0

Pe
ri

od
Fo

rm
at

te
rB

ui
ld

er
no

ye
s

C
on

cu
rr

en
tM

od
ifi

ca
ti

on
Ex

ce
pt

io
n

(5
x)

no
In

de
xO

ut
O

fB
ou

nd
sE

xc
ep

ti
on

(4
x)

no
Il

le
ga

lS
ta

te
Ex

ce
pt

io
n

(1
x)

ye
s

Jo
da

-T
im

e
2.

0
Z

on
eI

nf
oC

om
pi

le
r

no
no

(s
to

pp
ed

af
te

r
24

h)
–

CHAPTER 2. THREAD SAFETY VIOLATIONS 34

known bug in the Java standard library is illustrated in Figure 2.5. The class Concur-
rentHashMap is part of the java.util.concurrent package, which provides
thread-safe collection classes. For better scalability, the class divides the map into
segments that are locked independently of each other, instead of relying on a sin-
gle exclusion lock. Unfortunately, putAll() does not consider the case where the
passed map is the same as the receiver object of the call. The method retrieves the en-
tries of the passed map without any synchronization and then passes each element to
the correctly synchronized put(). As a result, a call to map.putAll(map) can undo
changes done by a concurrently executing thread that also modifies the map—a clear
thread safety violation. Our analysis generates the test in Figure 2.5a, which exposes
the problem. Calling hashCode() results in a stack overflow for self-referential col-
lections because the method recursively calls itself (this is documented behavior). If
ConcurrentHashMapwere thread-safe, this behavior should not be triggered by the
test because all three possible linearizations of the calls in Figure 2.5a call clear()
before calling hashCode(). However, the test fails with a StackOverflowError
because putAll() undoes the effects of the concurrently executed clear().

Figure 2.6 shows a previously unknown bug that our analysis detects in Apache
Commons DBCP. The supposedly thread-safe class SharedPoolDataSource pro-
vides two methods setDataSourceName() and close() that register and dereg-
ister the data source via static methods of InstanceKeyObjectFactory, respec-
tively. The factory class maintains a thread-unsafe HashMap that assigns names to
data sources. Although registering new instances is synchronized to avoid concur-
rent accesses to the HashMap, deregistering instances is not synchronized. The gen-
erated test in Figure 2.6a shows that this lack of synchronization leads to an exception
when calling setDataSourceName() and close() concurrently.

2.6.3 Annotating Classes as Thread-unsafe

Beyond finding bugs in thread-safe classes, our analysis can be used to analyze
classes that do not have any documentation on their thread safety and to automati-
cally annotate these classes as thread-unsafe. In a preliminary study for this work, we
found that one of the most common concurrency-related questions of Java develop-
ers is whether a particular library class is thread-safe. Few libraries come with precise
documentation to answer this question. To address this lack of documentation, our
analysis can automatically annotate classes as thread-unsafe. Since the thread safety
oracle is sound (Section 2.4), these annotations are guaranteed to be correct.

To evaluate this usage scenario, we run our analysis on a library that specifies
for each class whether it is thread-safe or not. The library (Joda-Time) contains 41
classes, of which 33 are documented as thread-safe and eight are documented as
thread-unsafe. The lower part of Table 2.1 summarizes the results. For seven of the
eight thread-unsafe classes, our analysis detects a thread safety problem. The missing
class, ZoneInfoCompiler, reads files from the file system, transforms them, and
writes other files as output. Since the thread safety oracle does not check the integrity
of such files, it cannot detect problems caused by concurrent usages of the class. For
the 33 classes that are documented as thread-safe, no problems have been found after
running the analysis for 24 hours.

CHAPTER 2. THREAD SAFETY VIOLATIONS 35

SharedPoolDataSource ds = new SharedPoolDataSource();
ds.setConnectionPoolDataSource(null);

ds.setDataSourceName("a"); ds.close();

Thread 1 Thread 2

Result: ConcurrentModificationException in Thread 1

(a) Execution of a generated concurrent test that exposes a thread safety
violation.

1 class SharedPoolDataSource {
2 void setDataSourceName(String v) {
3 key = InstanceKeyObjectFactory.registerNewInstance(this);
4 }
5 void close() {
6 InstanceKeyObjectFactory.removeInstance(key);
7 }
8 }
9

10 class InstanceKeyObjectFactory {
11 static final Map instanceMap = new HashMap();
12 synchronized static String registerNewInstance(SharedPoolDataSource ds) {
13 // iterate over instanceMap
14 }
15 static void removeInstance(String key) {
16 // BUG: unsynchronized access to instanceMap
17 instanceMap.remove(key);
18 }
19 }

(b) Supposedly thread-safe class.

Figure 2.6: Concurrency bug in Apache Commons DBCP.

2.6.4 Performance

Figure 2.7a shows how long the analysis takes to trigger the problems from Table 2.1.
The horizontal axis shows the IDs of CUTs from Table 2.1. The vertical axis gives
the minimum, average, and maximum time taken to find the violation over ten runs.
Most of the problems are found within one hour. For several classes, the analysis
takes only a few seconds. Other classes require several hours of computation time,
with up to 8.2 hours for bug 8 (JDK’s Logger). Given that the bug remained unno-
ticed for several years in one of the most popular Java libraries, we consider this time
to be still acceptable. Section 2.8 outlines approaches to reduce the running time of
our implementation with additional engineering effort.

A question related to running time is how many tests the analysis generates and
executes before hitting a bug. Figure 2.7b shows the average number of generated

CHAPTER 2. THREAD SAFETY VIOLATIONS 36

 0.01

 0.1

 1

 10

 100

 1000

11 7 16 22 13 10 15 12 20 17 21 18 6 14 1 9 2 19 3 5 4 8

Ti
m

e
(m

in
/a

vg
/m

ax
 m

in
ut

es
)

CUTs (sorted by avg. time)

< 1 minute

> 1 hour

(a) Time to detect thread safety violations.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

11 7 16 22 13 10 15 12 20 17 21 18 6 14 1 9 2 19 3 5 4 8

G
en

er
at

ed
 te

st
s

(a
vg

.)

CUTs (sorted by avg. time)

(b) Tests generated before triggering a thread safety problem.

Figure 2.7: Computational effort required to detect thread safety violations.

tests for each bug, listing the bugs in the same order as in Figure 2.7a. For some
bugs, a small number of tests (several hundreds or even less than hundred) suffices
to expose the problem. Other bugs require more tests, up to 17 million for bug 4. A
manual inspection of bugs requiring many tests suggests that the task of executing
a bug-exposing test with the “right” thread interleaving dominates over the task of
generating a bug-exposing test.

The approach has very moderate memory requirements. The test generator selects
methods randomly and therefore does not maintain significant amounts of state. If
executing a generated call sequence exceeds the available memory, an exception is
thrown and the sequence is not extended.

CHAPTER 2. THREAD SAFETY VIOLATIONS 37

2.6.5 Threats to Validity

There are a number of potential threats to the validity of the evaluation. First, the
selection of classes we analyze may not be representative for thread-safe Java classes
and another set of classes may give different results. To address this threat, we se-
lect classes from well-tested code bases. We suspect that classes in an earlier stage
of development contain at least as many thread safety problems as the classes we
analyze. Second, the parameters of the test generator, such as maxStateChangerTries,
may influence the results. We set these parameters based on our intuition and the
results from initial experiments, and therefore, we cannot guarantee them to be op-
timal in any sense. Third, the set of auxiliary classes provided to the test generator
influences the ability of the analysis to find thread safety violations, and we may ac-
cidentally have selected auxiliary classes that bias our results. Fourth, the analysis
has two major sources of non-determinism: the random-based test generator and the
non-deterministic Java scheduler. The number of repetitions we use for measuring
performance may not be sufficient to accurately characterize these random processes.
Also, performing the experiments on a different platform than the one we use may
change the results because scheduling decisions may differ. Finally, the assessment
that all reported warnings are true positives depends on the assumption that the an-
alyzed classes are supposed to be thread-safe. If this safety property is not desired,
then the warnings may not be relevant for developers. To mitigate this threat, we
select classes that are explicitly documented as thread-safe.

2.7 Support for the Thesis

The analysis presented in this chapter supports our thesis that automatic program
analysis allows for precisely detecting programming errors with little effort.

2.7.1 Automation

The analysis is fully automatic because all input that the analyses requires is the sup-
posedly thread-safe class under test, possibly accompanied by auxiliary classes that
the test generator may need, for example, to create method arguments. In practice,
we find other classes from the same library or program to be sufficient as auxiliary
classes, so that the analysis can be run fully automatically.

2.7.2 Precision

Each warning reported by the analysis corresponds to a thread safety violation,
which—given that the CUT is supposedly thread-safe—is certainly a bug. The thread
safety oracle ensures this property by focusing on certainly undesired behavior, ex-
ceptions and deadlocks, and by comparing concurrent tests to their linearizations.

2.7.3 Effort

Using the analysis involves minimal human and reasonable computational effort.
Human effort is minimal because the input to the analysis is available for every piece
of compilable software (simply because it is the software itself), and because all out-
put of the analysis is relevant for developers. The performance of our prototype

CHAPTER 2. THREAD SAFETY VIOLATIONS 38

implementation shows that the analysis finds bugs in an acceptable amount of time
(Section 2.6.4), in particular, given that the analysis runs without human interaction.

2.8 Limitations and Future Work

Directions of future work include:

• The current approach has limited support for multi-object bugs. Although the
generated tests combine multiple classes and objects, these tests only reveal
bugs triggered by concurrent calls to a single object. Exploring ways to extend
the current analysis to groups of interacting objects is a promising line of future
work.

• The approach is limited to bugs that manifest through an exception or dead-
lock, and therefore the approach may miss more subtle problems that lead to
incorrect but not obviously wrong results. The challenge is to address this lim-
itation while maintaining the precision of the analysis.

• The current approach assumes that exceptions and deadlocks are undesirable.
We found this “implicit specification“ to be true in practice, but in principle a
class could throw exceptions as part of its legal, concurrent behavior. Future
work may identify exceptions that are part of the expected concurrent behav-
ior, for example, by mining the documentation of the CUT or by analyzing
executions of programs that use the CUT.

• The test generator may not be able to generate reasonable input for classes that
rely on a particular environment, such as a database connection, or that require
complex input, such as valid HTML code. One way to address this limitation
could be to extract code sequences from existing programs that use a class and
to incorporate these code sequences into generated tests.

• Future work may improve the performance of our implementation. The by far
most important bottleneck in the current implementation are the repeated con-
current executions of tests. For example, for the CUT that requires most time
during our evaluation, 99.5% of the time is spent with concurrent executions.
We envision two approaches to address this problem. First, the analysis can
exploit multiple cores by exploring different concurrent executions of the same
test in parallel. Second, our analysis can be easily combined with existing tech-
niques to increase the probability of hitting a bug by controlling or perturbing
the scheduler [42, 140, 110, 35, 19]. Our current implementation executes tests
with the standard Java thread scheduler. To plug a more sophisticated schedul-
ing technique into our approach, one can redefine the execute() function of
Algorithm 2.

• Generating concurrent tests allows automating a wide range of existing dy-
namic analyses. For example, executions of generated tests can be ana-
lyzed by existing detectors of data races [139, 50, 104, 141] or atomicity vio-
lations [51, 67, 120, 86, 142]. Without generated tests, these analyses are limited
to manually created tests and the bugs exposed by these tests.

3Unsafe Substitutes

With great power comes great responsibility. When creating a subclass, programmers
have great power: They can add, remove, and modify behavior. Even though stat-
ically typed languages, such as Java, restrict this power on the type level, program-
mers can create subclasses that modify superclass behavior on the semantic level. For
example, a subclass can replace a method that performs a complex computation with
an empty method, replace a pure method with a non-pure one, or replace a method
that succeeds for some input with a method that fails for this input.

The responsibility that comes with this power is to ensure substitutability [94]: A
subclass instance should behave like a superclass instance when being referred to
through the superclass type. The reason for this requirement is that a polymorphic
reference of a superclass type can point to a subclass instance and that the program-
mer may not know the runtime type of the reference. Substitutability is commonly
accepted as one of the bedrock principles of object-oriented programming. We call a
subclass that fulfills the substitutability requirement a safe substitute for its superclass
and an unsafe substitute otherwise.

Although substitutability is crucial for object-oriented programming, developers
get little help from existing languages and tools to ensure that subclasses are safe
substitutes. Popular languages, such as Java, enforce substitutability only on the
type level but not on a deeper, semantic level. While the type system ensures that an
overriding method is type-compatible with the overridden method, it does not guar-
antee that the overriding method semantically substitutes the overridden method.
Specification and verification techniques to ensure substitutability through behav-
ioral subtyping have been proposed [90, 8, 95, 41, 137], but none of them has found
its way into mainstream programming. Furthermore, we are not aware of any auto-
matic and precise tool that addresses the problem of ensuring substitutability.

This chapter presents an automatic and precise bug detection approach that finds
unsafe substitutes. The approach is automatic because to test whether a subclass
is a safe substitute for a superclass it suffices to provide these two classes, possibly
together with other classes on which the superclass and subclass may depend. The
approach is precise because all reported warnings point to classes that are unsafe
substitutes.1

1Precision is guaranteed only to the degree that constructor mappings (Section 3.3.1) are precise. During
our evaluation, all unsafe substitutes that are reported because they cause a crash are true positives.

39

CHAPTER 3. UNSAFE SUBSTITUTES 40

The following section motivates the problem of revealing unsafe substitutes. Sec-
tion 3.2 outlines our automatic and precise bug detection approach. The details of the
approach are presented in Sections 3.3 to 3.5. In Section 3.6, we present the results
from applying the approach to real-world Java classes. Section 3.7 discusses how this
chapter supports the thesis of this work, and Section 3.8 outlines directions of future
work.

3.1 Motivation

The need to ensure substitutability is the result of combining two language features
that are part of most class-based, object-oriented programming languages: polymor-
phism and subtyping via subclassing. Polymorphism allows a reference of type
Super to point to an object of any subtype Sub of Super. Polymorphic references that
point to subtype instances occur in various situations, for example, when a method
with declared return type Super returns a Sub instance, or when a Sub argument is
passed to a method expecting a Super parameter, or when a Sub instance is stored
in a field of type Super. Subclassing and subtyping are merged into a single concept
in most popular languages. That is, a programmer that creates a subclass not only
creates a new class but also creates a new subtype of the superclass type.

The ubiquity of polymorphic references combined with subclasses that create sub-
types leads to a problem: A subclass Sub that behaves differently from its superclass
Super can surprise a client of Super that unconsciously works with an instance of
Sub. For example, consider a client that calls a method on a variable with static type
Super, where the variable is the return value of a call to a third-party library. The
client cannot foresee the runtime type of the returned object and decides to call the
method based on the variable’s static type. If the behavior of the call depends on the
object’s runtime type, the programmer is caught off guard and may have to deal with
a bug that she is not responsible for and that she cannot foresee.

To avoid surprises due to subtype instances that are hidden by polymorphic refer-
ences, a subclass should not diverge from the superclass behavior. This idea, coined
as substitutability, has become textbook knowledge [148, 57] and is widely accepted
as one of the core principles of object-oriented programming. Substitutability is cru-
cial for object-oriented programming because it allows a programmer to reason about
the behavior of an object based on the object’s statically declared type, that is, without
knowing its runtime type. What if a programmer that uses objects of declared type
Super could not assume subclasses to be safe substitutes? A prudent programmer
would have to study all subclasses of Super, figure out which of them are compatible
with the intended usage, and add runtime type checks before each use of an object
with an unknown runtime type. Since this approach would add boilerplate code
and runtime overhead, it obviously reduces the benefits of subclassing and polymor-
phism. Instead, substitutability allows programmers to use a polymorphic reference
without knowing its runtime type.

Despite the importance of substitutability, programmers do not have any tools
to test whether subclasses are safe substitutes. As a result of this lack of testing
tools, programmers are susceptible to creating subclasses that are unsafe substitutes.
For example, consider FastTreeMap from the Apache Commons Collections library.
FastTreeMap is a subclass of TreeMap and therefore should behave like its super-
class when being referred to as a TreeMap. Figure 3.1 shows a usage of these classes

CHAPTER 3. UNSAFE SUBSTITUTES 41

TreeMap m = new TreeMap() OR new FastTreeMap();
m.put(23, m);
m.pollLastEntry();
m.hashCode();

Result:
OK if m is TreeMap

StackOverflowError if m is FastTreeMap

Figure 3.1: Sequential usage that shows FastTreeMap to be an unsafe substitute.

Properties p = new Properties() OR new PropertyMap();
p.setProperty("a", "b");

p.remove("a"); p.clear();

Thread 1 Thread 2

Result:
OK if p is Properties

NullPointerException if p is PropertyMap

Figure 3.2: Concurrent usage that shows PropertyMap to be an unsafe substitute.

that reveals that FastTreeMap is an unsafe substitute for TreeMap.2 Executing the
code succeeds if m is a TreeMap but raises an exception if m is a FastTreeMap. This
difference may crash a client program that expects a TreeMap reference to behave
like a TreeMap. We reported this problem to the developers, who acknowledged our
report.3

Substitutability, which traditionally has been considered in sequential programs,
is equally important in concurrent programs. Similar to the sequential setting, a sub-
class instance referenced through a superclass type and shared by multiple concur-
rent threads should behave like a superclass instance. In particular, subclasses of a
thread-safe class must be thread-safe as well. That is, if multiple threads are allowed
to call methods of a shared object without synchronization, then this property must
be preserved by subclasses.

Unfortunately, existing languages and tools do not support programmers in en-
suring substitutability for concurrently used classes. Figure 3.2 shows a substitutabil-
ity problem in PropertyMap from JBoss. The class extends Properties, a thread-
safe class from the Java standard library, and therefore, should also support concur-
rent usage. However, PropertyMap causes an exception in a concurrent usage that

2We use the syntax new A() OR new B() to say that either of the constructors can be executed.
3See issue 394 in the Commons Collections bug tracker. The class will be removed in the next version of

the library.

CHAPTER 3. UNSAFE SUBSTITUTES 42

succeeds with the superclass. We reported this problem to the developers, who fixed
the bug.4

3.2 Overview of the Approach

How can developers find unsafe substitutes, such as Figures 3.1 and 3.2? In the fol-
lowing, we present an automatic and precise analysis to reveal subclasses that are
unsafe substitutes. The input to our analysis are a subclass Sub and a superclass
Super, possibly accompanied by classes that the other classes depend on. The output
of the analysis are warnings that show with concrete test cases how using a subclass
instance through the superclass type leads to visible behavior that is impossible with
a superclass instance. The analysis checks substitutability for sequentially and con-
currently used classes and, among many others, finds the bugs in Figures 3.1 and 3.2.

Our approach to reveal unsafe substitutes combines two techniques (Figure 3.3).
First, a generator of generic tests creates tests that exercise sequential and concurrent
behavior (Section 3.3). The generated tests are generic in the sense that they can test
the behavior of Sub as well as the behavior of Super. Generic tests simulate how
clients of Sub and Super use these classes. The test generator considers only public
methods, fields, and constructors because these are accessible to clients.

Second, an analysis called the superclass oracle checks for each test whether the
test exposes behavior that occurs when using Sub but that cannot occur when using
Super (Section 3.4). If the superclass oracle detects such behavior, it reports a warn-
ing to the developer. By construction, each warning comes with a concrete test case
showing how the subclass behavior diverges from the superclass behavior.

Before explaining the details of the approach, we define when a subclass is a safe
substitute for a superclass and describe two ways in which a subclass can be an un-
safe substitute. When saying subclass, we mean a direct or indirect subclass relation-
ship. The definitions build upon the notion of a usage, which describes how a class

4See issue 126 in the JBoss Common bug repository.

Generate
generic tests

Superclass oracle

Subclass, superclass, auxiliary classes

Warning about unsafe substitute, or nothing

Generic, sequential and concurrent tests

Figure 3.3: Overview of the approach.

CHAPTER 3. UNSAFE SUBSTITUTES 43

is used in a client program. We refer to usages that apply to both a superclass and a
subclass as generic usages.

Definition 5 (Generic usage). A generic usage with respect to classes Super and Sub is a
partial order of constructor calls, method calls, and field accesses that use an object of runtime
type Super or Sub through the interface offered by Super. The object is called the object
under test (OUT).

For a generic usage u, we write uSuper if the OUT has runtime type Super and
uSub if the OUT has runtime type Sub.

A generic usage can describe both sequential and concurrent usages of objects.
For a sequential usage, the partial order of calls and field accesses is a total order. For
a concurrent usage, the partial order reflects multiple concurrent threads.

Definition 6 (Safe substitute). A subclass Sub is a safe substitute for a superclass Super if
and only if for each generic usage u, the visible behavior of uSuper is equivalent to the visible
behavior of uSub.

By visible behavior we mean application-level behavior, such as return values of
method calls, text written to the console, network packets sent to other machines, and
exceptions thrown. We ignore machine-level behavior, such as memory accesses and
CPU usage. In the following, we define two kinds of unsafe substitutes, which differ
in the way the visible behavior of the subclass diverges from the visible behavior of
the superclass.

Definition 7 (Output-diverging (unsafe) substitute). A subclass Sub is an output-
diverging substitute for a superclass Super if and only if there exists a generic usage u so
that there exists an output of uSub that is not an output of uSuper .

By output we mean the sequence of return values of method calls on the OUT.
For sequential and deterministic usages, there exists exactly one output per usage.
If the subclass output is different from the superclass output, then the subclass is an
output-diverging substitute. For concurrent usages, there can be multiple outputs
for a single usage, for example, due to scheduling non-determinism. If the set of
subclass outputs contains an output that is not in the set of superclass outputs, then
the subclass is an output-diverging substitute.

Definition 8 (Crashing (unsafe) substitute). A subclass Sub is a crashing substitute for
a superclass Super if and only if there exists a generic usage u so that uSub can lead to an
uncaught exception or to a deadlock that cannot occur with uSuper .

Of the unsafe substitutes considered here, crashing substitutes are the more severe
kind of unsafe substitutes because they lead to certainly undesired behavior in clients
using a Sub instance through type Super. Output-diverging substitutes may or may
not be a problem in practice (discussed in detail in Section 3.6).

3.3 Generating Generic Tests

In the following, we present our approach for generating generic tests for sequen-
tially and concurrently used classes. The test generator builds upon the test gen-
erator described in Chapter 2, which creates concurrent tests. To search for unsafe
substitutes, we adapt the test generator to generate generic tests and to generate both

CHAPTER 3. UNSAFE SUBSTITUTES 44

sequential and concurrent tests. The description in this section is self-contained and
sufficiently detailed to understand our analysis for finding unsafe substitutes. Some
technical details elaborated on in Chapter 2 are omitted here.

To compare Super and Sub, we require tests that can check the behavior of OUTs
of both runtime types Sub and Super. We call such a test a generic test. In a generic
test, the static type of the variable vOUT , which represents the OUT, is Super. The dy-
namic type of vOUT can be either Super or Sub. Using the static type Super for the
OUT ensures that each call involving the OUT is type-compatible with both Super
and Sub. A generic test has two parts. One part creates the OUT and therefore de-
cides on the OUT’s runtime type. This part has two variants, one that instantiates
Super and one that instantiates Sub. The other part uses the OUT and is indepen-
dent of the OUT’s runtime type.

3.3.1 Constructor Mappings

Because we compare the behavior of Super and Sub instances, it is crucial that the
constructors used for creating these instances are semantically equivalent. Finding
pairs of Super and Sub constructors that create semantically equivalent objects is
non-trivial in Java and cannot be fully automated for two reasons. First, constructors
are not inherited [62]. For example, Sub may have a single constructor expecting
an int parameter, while Super offers only the parameterless default constructor.
Second, calling a Sub constructor that leads to the same inherited state as calling
a Super constructor does not guarantee that the resulting objects are semantically
equivalent. For example, a superclass may use a field to store a length in meters,
whereas the subclass uses the same field to store the length in yards.

To address the problem of finding equivalent constructors, we use constructor map-
pings that specify how calling a constructor of Sub can be transformed into a seman-
tically equivalent call to a constructor of Super. We provide a heuristic that auto-
matically generates constructor mappings under the assumption that Super and Sub
constructors that expect the same types of arguments are semantically equivalent.
Alternatively, a user of our approach can specify constructor mappings explicitly. In
our evaluation, we use automatically generated constructor mappings.

For example, consider the following constructor mappings:

Sub(Foo,Bar)→ Super(1, 2)

Sub(int, boolean)→ Super(2)

The first mapping specifies that calling new Sub(someFoo, someBar) is se-
mantically equivalent to calling new Super(someFoo, someBar). In practice,
most constructor mappings are similar to the first example, which is why our heuris-
tic generates this mapping automatically. The second mapping specifies that we
can replace a call to new Sub(someInt, someBoolean) with a call to new Su-
per(someBoolean), that is, we pass the second argument of Sub’s constructor as
the only argument to Super’s constructor and omit the int parameter, which is not
required by Super. If necessary, a user can specify the second mapping in addition
to or instead of generated constructor mappings.

CHAPTER 3. UNSAFE SUBSTITUTES 45

3.3.2 Generating Sequential and Concurrent Tests

The test generator can be configured to produce either sequential tests, concurrent
tests, or both kinds of tests, depending on the kind of usage the tested class is in-
tended for. A sequential test is a sequence of calls executed in a single thread. A
concurrent test is a partially ordered set of calls that are executed in multiple concur-
rent threads. We focus on concurrent tests that consist of a sequential prefix followed
by two parallel suffixes, where the prefix is a call sequence executed in a single thread,
and where each suffix contains a single method call executed in a separate thread
that runs concurrently with the other suffix thread. The rationale for this choice is
twofold. First, a recent study of real-world concurrency bugs has shown that most
bugs (96%) can be reproduced with two threads [100]. Second, the execution of con-
current suffixes with a single method call can be efficiently explored and still reveals
many real-world bugs [113].

To create a generic test, the first step is to generate calls that create the OUT. The
generator selects a constructor mapping and generates two call sequences with calls
to instantiate Super and Sub, respectively. These two sequences give two variants of
the test, which allows us to test both Super and Sub. The second step is to generate
the part of the test that uses the OUT. For a sequential test, the generator repeat-
edly appends calls to the OUT. For a concurrent test, the generator appends calls to
the OUT to obtain the prefix of the test, and then creates suffixes by spawning two
threads and by adding a call to each of them.

Calling methods often requires method arguments. The test generator randomly
chooses arguments, for example, by calling a method that returns an object of the re-
quired type. Calls made to obtain arguments for calls in the suffix of a concurrent test
are added to the prefix instead of the suffix. For example, to call a method m(A a)
in the suffix, the test generator adds calls to the prefix to obtain an instance of A. The
rationale for pushing calls back to the prefix is to keep the suffix as short as possible,
which in turn, reduces the time for exploring the interleavings of a concurrent test.

Most decisions of the test generator on how to explore the space of possible tests
are taken randomly and based on feedback from executions of partial tests [117]. For
example, when choosing which constructor or method to call, or how to obtain an
argument, the test generator randomly selects from all available options. Whenever
a call is added to a partial test, the test generator executes the extended test and
checks whether adding the call leads to an exception or to a deadlock. If adding a
call leads to a failure, the call is discarded and another call is added instead. For
executing tests during test generation, we use the variant of the test that exercises a
Sub instance. The reason is that partial tests that fail with Sub can be passed to the
crash oracle (Section 3.4.2), which will check whether the test also fails with Super.

Figures 3.1 and 3.2 are examples of generic tests for sequentially and concurrently
used classes, respectively. The new A() OR new B() syntax expresses the two
variants of the tests. Depending on which of the two constructors is used, the tests
exercise either a superclass instance or a subclass instance.

3.4 The Superclass Oracle

Given a generic test for two classes Super and Sub, the superclass oracle checks
whether the test exposes that Sub is an unsafe substitute for Super. The oracle uses
Super as an executable specification of the correct behavior of Sub and compares the

CHAPTER 3. UNSAFE SUBSTITUTES 46

Algorithm 3 Output oracle. Checks whether Sub is an output-diverging substitute
for Super.

Input: Generic test t for classes Super and Sub
Output: Warning about an unsafe substitute, or nothing

1: OSuper ← execute(tSuper)
2: OSub ← execute(tSub)
3: OSubOnly ← OSub −OSuper

4: if OSubOnly 6= ∅ then
5: reportWarning(t,OSubOnly)

visible behavior of both classes. The visible behavior of a subclass can diverge in
different ways from the visible behavior of a superclass. In the following, we present
two variants of the superclass oracle, the output oracle and the crash oracle, which fo-
cus on revealing output-diverging substitutes and crashing substitutes, respectively.
The input to both oracles is a generic test t. Similar to generic usages, we refer to a
test that exercises an OUT of runtime type Super as tSuper and likewise for Sub.

3.4.1 The Output Oracle

The output oracle checks whether a generic test exposes that Sub is an output-
diverging substitute for Super. Algorithm 3 summarizes the approach. The oracle
executes both tSuper and tSub and stores the sequences of return values in the out-
put sets OSuper and OSub. Assuming deterministic execution, sequential tests have
exactly one output sequence. In contrast, concurrent tests can have multiple output
sequences due to scheduling non-determinism. If there exists a sequence of return
values that occurs only with Sub, the oracle reports a warning because Sub is an
output-diverging substitute for Super. The analysis explores all possible interleav-
ings of concurrent tests to avoid missing an output sequence (Section 3.4.4).

To compare output sequences of test executions, the oracle transforms the return
values into an execution-independent format. For primitive values and Strings, the
output sequence contains the actual return value. For reference values, the oracle
stores whether the value is null or not. For example, the output sequence of exe-
cuting the sequential test in Figure 3.1 with an instance of TreeMap is the following
(values are separated with “—”):

null — non-null ref. value — int:0

Executing the concurrent test in Figure 3.2 with an instance of Properties gives
two output sequences:

null — String:”b”

null — null

Alternatively to this encoding of return values, the output oracle could compare
reference values with their equals() method, compare the String representations
obtained via toString(), or compare the hash codes. Unfortunately, with these
approaches objects often appear to be different even though they are semantically the
same. The reason is that the default implementations of equals(), toString(),

CHAPTER 3. UNSAFE SUBSTITUTES 47

Algorithm 4 Crash oracle. Checks whether Sub is a crashing substitute for Super.

Input: Generic test t for classes Super and Sub
Output: Warning about an unsafe substitute, or nothing

1: FSub ← execute′(tSub)
2: if FSub 6= ∅ then
3: FSuper ← execute′(tSuper)
4: if FSuper = ∅ then
5: reportWarning(t,FSub)

and hashCode() refer to object identity. As a result, many of the warnings reported
by the output oracle would be spurious because the difference in output is not a bug.

To avoid false warnings caused by calls to equals(), toString(), and hash-
Code() in the generated tests, the oracle ignores return values of those methods.
With this refinement, the output sequence for Figure 3.1 with an instance of TreeMap
is not the output sequence above but the following:

null — non-null ref. value — ignored

The output oracle compares the visible behavior of Super and Sub in a strict way.
In practice, subclasses often change the return value of methods in ways that are con-
sidered to be in line with substitutability (we give examples in Section 3.6.4). Our ex-
periments show that many of the warnings produced by the output oracle are benign
differences that do not correspond to bugs in the analyzed classes (Section 3.6.2). In
the following, we address this imprecision of the output oracle and present a precise
oracle that reports only severe differences between a subclass and a superclass.

3.4.2 The Crash Oracle

The crash oracle checks whether a test exposes a subclass to be a crashing substitute
for a superclass. Each warning reported by the crash oracle shows how a usage of the
subclass can lead to an uncaught exception or a deadlock in a situation where using
the superclass works fine. Since program crashes are certainly undesired behavior,
each of the reported warnings points to a severe substitutability problem.

Algorithm 4 summarizes the crash oracle. Given a generic test t, the crash ora-
cle first executes it with Sub’s constructor. The execute′() function returns the set of
failures observed while executing the test. A failure is either an exception or a dead-
lock. If executing the test with Sub’s constructor leads to one or more failures, Sub
may be implemented incorrectly or the generated test may use the class incorrectly.
For example, a generated test may pass an argument that causes an IllegalArgu-
mentException. To check whether the observed failures are part of the expected
behavior of Sub, the oracle executes the test with Super’s constructor. If Super also
causes a failure, the oracle does not report a warning because the behavior of the
subclass does not diverge from the behavior of the superclass. If, however, the set of
failures from Super is empty, then the oracle reports a warning because Sub leads to
a crash that is not possible with Super.

CHAPTER 3. UNSAFE SUBSTITUTES 48

3.4.3 Distinguishing Concurrent from Sequential Problems

We refine both Algorithms 3 and 4 to distinguish problems that occur only in concur-
rent tests from problems that also appear sequentially. This refinement matters when
our analysis checks for concurrent substitutability problems and when it should not
report sequential problems.

Before reporting a warning for a concurrent test, the output oracle checks whether
the output sequences OSubOnly are also possible when linearizing the test into a sin-
gle thread. A linearization of a concurrent test is a sequence of calls that contains all
calls from the test while preserving the partial order of calls from the test. Since we
generate concurrent tests with two suffixes that each contain a single call, there are
exactly two linearizations for each concurrent test: One where the call from thread 1
comes first and one where the call from thread 2 comes first. If all output sequences in
OSubOnly also occur with linearizations of the concurrent test, then the substitutabil-
ity problem is sequential and not specific to concurrently using Sub and Super.

The crash oracle executes the linearizations of a concurrent test before executing
tSub. If the execution of at least one linearization fails, then the oracle does not explore
the concurrent execution of the test and instead treats the failing linearization like a
sequential test obtained from the test generator.

3.4.4 Exploring Executions

The execute() function in Algorithm 3 and the execute′() function in Algorithm 4
explore all possible executions of a test. execute() returns the set of output sequences
produced by these executions, and execute′() returns the set of failures observed dur-
ing the executions. For a sequential test, the execution functions simply run the test
in a single thread of execution. We assume sequential executions to be deterministic.
Sequential tests that do not behave deterministically, for example, because their be-
havior depends on the current system time, can be made deterministic by controlling
the execution environment [122].

For concurrent tests, the execution functions use the stateful software model
checker Java PathFinder (JPF) [158]. JPF systematically explores all possible inter-
leavings of the concurrent suffixes of the test and therefore finds all possible be-
haviors (that is, output sequences or failures) of a concurrent test despite the non-
determinism introduced through scheduling. Exploring all possible executions is
crucial to ensure that each warning reported by the superclass oracle is indeed a
substitutability problem. If the set of behaviors from executing a test with Super’s
constructor were incomplete, the oracle could report a warning even though the be-
havior observed with Sub is possible with Super. To avoid this problem, the oracle
explores all possible executions. Checking all interleavings of concurrent calls faces
the problem of combinatorial explosion. By focusing on two concurrent suffixes that
each have a single call, we ensure that the oracle terminates in reasonable time (Sec-
tion 3.6.7).

3.4.5 Examples

Figures 3.1 and 3.2 are two examples of problems detected by the crash oracle. In both
examples, executing the test with the superclass constructor succeeds, while execut-
ing it with the subclass constructor leads to an exception. A client that calls methods
in the same way as in the generated tests will be surprised about a program crash

CHAPTER 3. UNSAFE SUBSTITUTES 49

because the superclass does not show this behavior. Section 3.6.3 reports examples of
warnings from the output oracle.

3.5 Implementation

We implemented the analysis into a fully automatic testing tool for Java classes. The
implementation takes source code or byte code as input and reports unsafe subclasses
as output. We implemented a helper tool to find all superclass-subclass pairs in par-
ticular packages and to generate constructor mappings as described in Section 3.3.
Together with this helper tool, the implementation offers a push button technique to
analyze entire class libraries with little effort.

To implement the superclass oracle we build upon JPF (version r615) for explor-
ing concurrent executions. JPF is a mature and well-tested research tool but has some
limitations, for example, when analyzing native code. Another problem is that even
exploring only two concurrent threads that each have a single method call can take a
significant amount of time. We deal with these problems by filtering the errors raised
by JPF and by canceling JPF after a configurable timeout. If JPF crashes or if it cannot
analyze a concurrent test within the timeout, we consider the test to be inconclusive.
The superclass oracle does not report any warnings for inconclusive tests. That is,
we risk missing some unsafe substitutes but avoid false warnings caused by JPF lim-
itations. For our experiments, we set the timeout to ten seconds per test, which is
sufficient for 96% of all concurrent tests.

The test generator creates tests with a configurable number of calls. For sequential
tests, we set the maximum number of OUT calls to five after instantiating the OUT.
For concurrent tests, the prefix contains at most five calls to the OUT.

3.6 Evaluation

We evaluate our approach with well-tested and widely used Java classes. Our main
results are:

• Many classes are crashing substitutes (43/145=30%). All these unsafeties cor-
respond to bugs that should be fixed because they may cause exceptions and
deadlocks in clients.

• Even more classes are output-diverging substitutes (61/145=42%). We classify
most of them (57/61) as false positives.

• Developers care about crashing substitutes. At least ten bugs found by the
analysis have been fixed by now.

3.6.1 Experimental Setup

We apply the analysis to sequentially and concurrently used classes (Table 3.1). As
sequentially used classes, we consider classes from three popular Java libraries: The
Apache Commons Collections library, the XML processing library dom4j, and the
PDF editing library iText. We select libraries, instead of closed programs, because
every usage simulated by the test generator may happen in some client program. Ta-
ble 3.1 shows the number of analyzed superclass-subclass pairs. We consider all pairs

CHAPTER 3. UNSAFE SUBSTITUTES 50

Table 3.1: Summary of results. False positive are either due to acceptable differences
(AD) or due to incorrect constructor mappings (ICM).

Subject Seq./ Class Crash oracle Output oracle

Conc. pairs Warn. Bugs False pos. Warn. Bugs False pos.

AD ICM AD ICM

Commons Coll. 3.2.1 Seq. 12 5 5 0 0 3 2 0 1
dom4j 2.0.0-alpha-2 Seq. 46 12 12 0 0 26 0 24 2
iText 5.2.0 Seq. 58 21 21 0 0 30 1 9 20
Qualitas 20101126r Conc. 29 5 5 0 0 2 1 1 0

Sum 145 43 43 0 0 61 4 34 23

of public and concrete classes that are in a direct or indirect subclass relationship, ex-
cluding the superclass Object and classes without public constructors—in total, 116
class pairs. As auxiliary classes for generating tests, we pass common classes from
the Java standard library and all classes from the respective library. The test generator
automatically selects those classes that provide required arguments.

As concurrently used classes, we consider subclasses of 30 classes that are known
to be thread-safe and that are part of the Java standard library (Table A.5). We con-
sider all 323,107 classes included in the Qualitas Corpus [150] and select a class if it
extends one of the 30 thread-safe classes, if it is public and concrete, and if it has a
public constructor. This selection yields 29 subclasses of thread-safe classes to ana-
lyze.

We analyze each class pair until a maximum number of tests has been generated:
500 tests for sequentially used classes and 3,000 tests for concurrently used classes.
We set a larger limit for the latter because a single concurrent test checks only two
methods against each other. To reach the maximum number of tests, we run the
analysis with different random seeds, where the number of tests generated per seed
increases with the number of seeds used. All experiments are done on an eight-core
machine with 3GHz Intel Xeon processors and 8GB memory, running 32-bit Ubuntu
Linux and the Java Hotspot VM version 1.6.0 27, giving 2GB memory to the VM.

We manually inspect all warnings reported by the analysis and classify them as
bugs or false positives. A warning is a bug if the subclass behavior should be changed
to avoid unexpected behavior in client programs, and it is a false positive otherwise.
We distinguish between two kinds of false positives:

• Acceptable difference. Differences in behavior that we deem to be acceptable,
for example, methods where clients expect that the outcome depends on the
runtime type of the receiver.

• Incorrect constructor mapping. Generic tests where the superclass and subclass
constructors are not semantically equivalent, that is, the heuristic constructor
mapping (Section 3.3) is incorrect.

CHAPTER 3. UNSAFE SUBSTITUTES 51

ArrayList l = new ArrayList() OR new Chapter();
Set empty = new HashSet();
boolean b = l.addAll(empty);

Result:
b==false if l is ArrayList
b==true if l is Chapter

Figure 3.4: An output-diverging substitute that we classify as a bug.

3.6.2 Overview of Unsafe Substitutes Found

Table 3.1 shows for both the crash oracle and the output oracle how many warnings
the analysis finds and how we classify them. For both oracles, a large percentage of
the analyzed subclasses are unsafe substitutes: 30% are crashing substitutes and 42%
are output-diverging substitutes. For the crash oracle, all reported warnings corre-
spond to bugs, which is not surprising because the crash oracle focuses on certainly
undesired behavior. In contrast, for the output oracle, most reported warnings are
false positives. Two of the four bugs detected by the output oracle are also found by
the crash oracle because the diverging subclass behavior manifests both through dif-
ferent output and through a crash. Table B.1 lists details about all warnings reported
by the crash oracle.

Which oracle should developers use? We recommend the crash oracle as a default
because it finds 96% of all detected bugs and because it does not report false positives.
In contrast, the output oracle has a high false positive rate and finds few additional
bugs. Yet, if developers know that the visible behavior of a particular subclass should
be exactly the same as that of the superclass, then the output oracle can be used to
test this property.

3.6.3 Examples of Unsafe Substitutes

Figures 3.1 and 3.2 are bugs found by the crash oracle. Figure 3.4 shows a bug found
exclusively by the output oracle. Chapter, a subclass of ArrayList, modifies the
meaning of the return value of addAll() in a subtle way: While the superclass re-
turns whether the content of the list has changed, the subclass returns whether the
operation was successful. The difference matters when an empty collection is passed
to addAll(), as illustrated in the figure. We reported this bug and the developers
fixed it.5

Figure 3.5 is a false positive reported by the output oracle. The subclass De-
faultNamespace adds a functionality, support for a parent relationship, to its su-
perclass Namespace. Both classes provide a method supportsParent() to check
in a reflection-like manner whether an object supports this functionality. This be-
havioral difference is documented and should not surprise clients because the only
purpose of the supportsParent() method is to find out whether an object sup-
ports the functionality, which is know to depend on the runtime type of the object.

5See issue 3548434 in the iText bug tracker.

CHAPTER 3. UNSAFE SUBSTITUTES 52

Namespace ns = new Namespace("a", "b") OR new DefaultNamespace("a", "b");
boolean b = ns.supportsParent();

Result:
b==false if ns is Namespace
b==true if ns is DefaultNamespace

Figure 3.5: An output-diverging substitute that we classify as a false positive.

3.6.4 Root Causes for Unsafe Substitutes

The large percentage of unsafe substitutes raises the question why subclasses extend
their superclasses in an unsafe way. For unsafe substitutes that correspond to bugs,
the most common root causes are:

• Stronger precondition for method arguments. An overriding method imposes a
stronger precondition for method arguments than the overridden method. For
example, some overriding methods expect only a subset of all subtypes of the
declared parameter type as actual parameters, and passing arguments of other
compatible types raises a ClassCastException.

• Stronger precondition for method receiver. An overriding method has a stronger
precondition on the state of the receiver object than the overridden method.
For example, some overriding methods access fields that are not used by the
overridden methods.

• Removed methods. A subclass explicitly “invalidates” a method of the superclass
by throwing an UnsupportedOperationException and thereby breaks the
type system’s safety guarantee that each method call is understood.

• Propagated unsafety. A subclass extends a class that itself is an unsafe substitute,
and the unsafety propagates down the inheritance hierarchy. Given a class A
with an unsafe substituteA′, a subclassA′′ ofA′ is also an unsafe substitute for
A, unless A′′ fixes the problem introduced by A′.
For example, some unsafe substitutes in iText are the result of extending
Properties, which is an unsafe substitute for Hashtable. The problem
is that Properties is assumed to map Strings to each other but extends
Hashtable<Object,Object>, from which it inherits methods to put arbi-
trary objects into the table. Some methods of Properties, such as proper-
tyNames(), cast entries to String, which fails if the table contains entries of
other types. Although this problem of Properties is documented, it not only
may surprise clients of Hashtable that refer to a Properties instance, but it
also affects subclasses of Properties.

• Missing synchronization. A subclass of a thread-safe class overrides a method
without providing the synchronization guarantees that the overridden method
provides. For example, some methods override a synchronized method and
remove the synchronized keyword without ensuring synchronization in an-
other way.

CHAPTER 3. UNSAFE SUBSTITUTES 53

Table 3.2: Bugs reported to developers.

Issue Status

Castor 2729 Fixed within a day (reported by others)
Commons Collections 394 Fixed by removing the class
Commons Collections 423 Fixed by removing the class
Commons Collections 424 Acknowledged, working on it
dom4j 3547635 Reported
dom4j 3547784 Reported
iText 3547811 Fixed within a day
iText 3547812 Fixed within a day
iText 3548434 Fixed within a day
JBoss Common 126 Fixed within a week
OpenJPA 2243 Fixed within a day

One subclass, NonSynchronizedVector from Eclipse, obviously removes
synchronization on purpose. While this may increase performance, it poses
a significant risk at clients of Vector because such clients may unconsciously
refer to an instance of NonSynchronizedVector.

For unsafe substitutes that we classify as false positives, the most common root
causes are:

• Ad hoc reflection. A method provides hints about the runtime type of an object
or about the functionalities supported by this type (for example, see Figure 3.5).
These methods are an ad hoc form of reflection, and clients calling them should
be aware that superclass behavior and subclass behavior may differ.

• String representations. A method returns a String representation of the receiver
object and the String contains type-specific information. The output oracle fil-
ters calls to toString() to avoid more false positives of this kind, but it does
not handle application-specific methods that return String representations.

3.6.5 Failures Observed by the Crash Oracle

The crash oracle depends on signs of certainly undesired behavior, such as exceptions
and deadlocks. This dependence may raise the question to what extent our results
depend on a defensive programming style, where illegal state and illegal arguments
are made explicit by throwing exceptions. We categorize the failures that expose
crashing substitutes by whether they are exceptions raised in the analyzed code base
or not. Failures not triggered in the analyzed code base are exceptions raised in the
Java standard library or in the virtual machine, or deadlocks. 84% of the failures that
expose the crashing substitutes in Table 3.1 are not triggered in the analyzed code
base, that is, independent of a defensive programming style.

3.6.6 Feedback from Developers

Do developers really care about substitutability problems? To answer this question,
we report a subset of the bugs found by the analysis to the developers of the respec-

CHAPTER 3. UNSAFE SUBSTITUTES 54

tive projects (Table 3.2). By the time of this writing, seven of ten reported bugs have
been fixed as a reaction to our reports. Another bug has been reported and fixed
independently of us. Moreover, at least two other bugs found by the analysis (not
listed in Table 3.2) have been fixed in iText 5.3.0 independently of us, but we could
not find a corresponding entry in the project’s bug tracker. Many of the remaining
unreported bugs are in deprecated classes that are likely to be replaced soon. Overall,
the feedback from developers suggests that they care about substitutability problems,
which confirms our expectation that unsafe substitutes that can surprise clients are
not desired and should be fixed.

3.6.7 Performance

To measure performance, we test each class pair until either the maximum number
of tests has been generated or until the subclass has been found to be a crashing sub-
stitute. For sequentially used classes, our prototype implementation takes on aver-
age 41 seconds to find crashing substitutes and 19 seconds to find output-diverging
substitutes. For concurrently used classes, it takes on average 21 minutes to find
crashing substitutes and 108 minutes to find output-diverging substitutes. The rea-
son why concurrent testing takes longer is that the analysis explores all interleavings
of concurrent tests.

3.6.8 Threats to Validity

There a several threats to the validity of this evaluation. First, the set of classes we
analyze may not be representative for any larger set of Java classes. In particular,
we focus the evaluation on libraries and cannot draw conclusions about the effec-
tiveness of the approach for non-library classes. Second, the parameters of the test
generator, such as maxStateChangerTries, may influence the results. We set these pa-
rameters based on our intuition and the results from initial experiments, and there-
fore, we cannot guarantee them to be optimal in any sense. Third, the set of auxiliary
classes provided to the test generator influences the ability of the analysis to find un-
safe substitutes, and we may accidentally have selected auxiliary classes that bias our
results.6 Forth, the selection of problems we report to developers may not be repre-
sentative for all problems that the analysis detects. That is, we cannot conclude which
percentage of all detected problems is considered relevant by developers. Fifth, the
maximum number of generated tests influences the number of reported warnings.
A different stopping criterion may give different results. Finally, the assessment of
whether a warning is a true positive relies on our understanding of substitutability.
Other developers may classify warnings differently.

3.7 Support for the Thesis

The presented analysis supports our thesis that automatic program analysis allows
for precisely detecting programming errors with little effort. We restrict this claim
and the following discussion to the crash oracle, which we recommend to use as the
only oracle by default.

6The second and the third threat to validity is shared with the analysis in Chapter 2 because the test
generation approaches are similar.

CHAPTER 3. UNSAFE SUBSTITUTES 55

3.7.1 Automation

Given a subclass and a superclass, the analysis fully automatically tests whether the
first is a safe substitute for the latter. This degree of automation is enabled by gen-
erating generic tests that exercise these classes, by heuristically creating constructor
mappings, and by leveraging the superclass as an executable specification of correct
subclass behavior.

3.7.2 Precision

During our evaluation with 145 pairs of classes, the analysis detects 43 substitutabil-
ity bugs without reporting a single false positive. In principle, false positives can
occur because the analysis relies on a heuristic mapping from subclass constructors
to superclass constructors. If two constructors map to each other but do not produce
semantically equivalent objects, the warnings of the analysis may be spurious. We
did not encounter this situation with the crash oracle, but give an example of such a
spurious warning from the output oracle in Section 3.6.3.

To guarantee the precision of the analysis, developers can refine the heuristically
generated constructor mappings manually. That is, developers can trade automation
for precision. Based on our experimental results, we recommend to use automatically
generated constructor mappings because they yield high precision in practice.

3.7.3 Effort

The approach requires very low human and acceptably low computational effort to
find bugs. Human effort is low because the analysis requires no input except for
the software to test and—at least in practice—produces no output but true positives.
The computational effort is low for sequentially used classes (41 seconds on average
to find a bug). For concurrently used classes, the analysis takes longer (21 minutes
on average to find a bug) because it explores concurrent executions exhaustively. We
consider the performance for both sequentially and concurrently used classes to be
acceptable for a deployment in practice because the analysis runs without human in-
teraction and because the analysis detects bugs that traditional testing did not reveal.
Parallelizing the analysis, for example, by concurrently generating tests with differ-
ent seeds, is an easy way to further reduce the computational effort of our prototype
implementation.

3.8 Limitations and Future Work

Directions of future work include:

• More precise output oracle. The current output oracle reports mostly false pos-
itives but also reveals some bugs not found by the crash oracle. Improving
the precision of the output oracle seems an interesting challenge for future re-
search. For example, one could filter methods that give the same result for all
instances of a class to avoid false positives due to ad hoc reflection, such as the
warning shown in Figure 3.5.

• Classes of closed programs. The current analysis targets library classes, which can
be used by clients in arbitrary ways. For classes of closed programs, randomly

CHAPTER 3. UNSAFE SUBSTITUTES 56

generated tests may not always represent realistic usages. Future work may
adapt our approach to classes of closed programs, for example, by mining the
usages of a class within a program and by guiding the test generator to create
similar usages.

4API Protocol Violations

Most programs reuse existing software components. Reuse saves development time
because it allows for leveraging well-tested implementations of common functional-
ity with relatively little effort. For example, most non-trivial Java programs use parts
of the Java standard library, such as the collections in java.util or the input/out-
put facilities in java.io. Reusable software components are accessed through appli-
cation programming interfaces (APIs), that is, well-defined ways to access data and
functionality. In Java software, an API consists of a set of classes and interfaces that
provide methods and fields with well-defined signatures.

While reuse reduces development time, it also entails an additional burden for
developers: Many APIs are hard to learn. A study with 83 industrial developers
reveals several obstacles for API learning, including the lack of adequate examples,
problems to understand the API’s structural design, and incomplete documentation
of common APIs usage patterns [136]. A particular obstacle to correctly using an API
is that many APIs have API usage protocols. Such protocols impose constraints on the
order in which API clients are supposed to call API methods. For example, an API
may specify that a method should only be called after calling another method, or
that calling a method is illegal while calling a set of other methods. Such protocols
are common in practice: Beckman et al. show that at least 7.2% of all types in a large
corpus of open source Java programs impose protocols, and that at least 13% of all
classes are clients of types that impose protocols [12].

API protocols are burdensome and cause bugs in real software. A study of de-
veloper forums of two popular APIs shows that developers have various questions
related to protocols and that solving protocol-related problems can take several days
even with expert help [77]. Another study investigates bug fixing patterns and pro-
poses two categories of bug fixes that are strongly related to protocols: “addition of
operations in an operation sequence of method calls to an object” and “removal of
operations from an operation sequence of method calls to an object” [119]. Together,
these two categories contain thousands of bug fixes in the analyzed projects and ac-
count for 6.7% of all classified bug fixes. These number suggests that protocol bugs
are common and that developers care enough about them to fix them.

Unfortunately, finding bugs due to violations of API protocols is hard. Existing
tools used by practitioners, such as FindBugs [75] and PMD [2], address some proto-
col bugs. However, these bugs are only a small subset of all possible protocol bugs
because the respective tools must contain a hand-crafted checking rule for each kind

57

CHAPTER 4. API PROTOCOL VIOLATIONS 58

of bug. The main reason why finding protocol bugs is hard is that most protocols
are not formally specified. Instead, protocols are documented informally in Javadoc
comments or even not documented at all. This lack of specification not only makes
understanding and respecting protocols difficult for developers, but it also poses a
problem at program analyses that aim at checking whether a program violates pro-
tocols.

Can automatic and precise bug detection help developers to find protocol bugs?
This chapter presents a positive answer to this question. We present a fully automatic,
dynamic analysis that searches for violations of API protocols. To find protocol vio-
lations despite the lack of formal protocol specifications, the analysis infers protocols
from usages of the API and then checks a program against the inferred protocols. To
achieve full automation, the analysis leverages generated tests as a driver for dynami-
cally inferring and checking protocols. We implement and evaluate the approach and
show that automatic and precise bug detection helps in finding protocol bugs with
little effort.

The following section defines API usage protocols and illustrates them with an
example. Sections 4.3 to 4.6 and Section 4.7 present the approach and a heuristic op-
timization of it, respectively. Section 4.8 evaluates the approach. Finally, Sections 4.9
and 4.10 discuss how the approach fits the thesis of this work and outline directions
of future work.

4.1 API Usage Protocols

Before presenting the approach, we give a definition of protocols and illustrate it with
examples.

Definition 9 (API usage protocol). An API usage protocol P = (M,P) consists of a
deterministic finite state machine M and a finite set P of typed protocol parameters. M is
a tuple (S,Σ, δ, s0,Sf) of states S, the alphabet Σ, transitions δ, the initial state s0 ∈ S,
and final states Sf ⊆ S. A transition is a triple from S × Σ × S, which defines the source
state, the label, and the destination state of the transition. The alphabet Σ consists of method
signatures that are annotated with protocol parameters naming the receiver, and optionally,
the method parameters and the return value.

For example, Figure 4.1 is a protocol for using a Stack. After instantiating the
stack, a client pushes an element onto it and reaches state 3. At this state, a client can
push or pop elements an arbitrary number of times until the client calls remove-

PS with P = {Stack s}:

1 2 3
s = new Stack()

s.push()
s.push()
s.pop()
s.peek()

s.removeAllElements()

Figure 4.1: Inferred protocol for java.util.Stack. A label p = m() means that the
object returned by m() is bound to protocol parameter p.

CHAPTER 4. API PROTOCOL VIOLATIONS 59

PCI with P = {Collection c, Iterator i}:

1 2 3

4

5

c = new
Collection()

c.update()

c.update()

c.update()

c.update()i =
c.iterator()

i.hasNext()

i.hasNext()

i.next()

Figure 4.2: API usage protocol describing how to use a collection and an iterator.
The call c.update() summarizes calls that may change the collection’s content, for
example, c.add() or c.remove().

AllElements(), which brings the protocol back to state 2. The protocol is a regular
language approximation of the full stack specification, which requires balancing calls
to push() and pop(). Despite this approximation, the protocol can reveal illegal
usages of stacks. For example, a client that calls pop() on an empty stack violates
the protocol.

As a second example, Figure 4.2 shows a protocol that involves two objects. The
protocol describes how to use a collection (java.util.Collection) together with
an iterator (java.util.Iterator). The states in the protocol represent the com-
bined states of the involved objects, that is, the combined state of a collection c and
an iterator i. Transitions correspond to method calls, where one of the involved ob-
jects is the receiver. The protocol specifies several constraints on using collections
and iterators:

• At first, a client creates a collection and then the iterator. That is, it is not possi-
ble to create an iterator first and to assign it to a collection afterwards.

• There are three main phases of using a collection and an iterator: First, the
collection is created and updated an arbitrary number of times, for example, by
adding and removing elements (states 1 and 2). Second, the iterator is created
and used to iterate through the collection elements (states 3 and 4). Finally, the
collection may be updated again, which invalidates the iterator. That is, once
the protocol reaches state 5, the iterator cannot be used anymore.

• The usage can be stopped at any time after creating the iterator, as indicated by
states 3 to 5 being final states. Of course, it is also possible to use a collection
without any iterator. This collection-only usage can be specified in a protocol
involving only a collection and no iterator.
Other protocols may require an API client to call particular methods to finalize
a usage, for example, to release resources to the operating system.

CHAPTER 4. API PROTOCOL VIOLATIONS 60

• Each call to the iterator’s next() method must be preceded by a call to
hasNext() to check whether there is a further element.

Violations of the protocol can lead to unexpected behavior and even program
crashes:

• Using an iterator that is invalid because the underlying collection has been up-
dated may raise a ConcurrentModificationException or lead to unde-
fined behavior.

• Calling next() on an iterator that has no further elements raises an Illegal-
StateException.

4.2 Overview of the Approach

APIs have usage protocols and, as the examples in Figures 4.1 and 4.2 show, violating
these protocols leads to undesired behavior. Which part of a program is responsible
for respecting an API usage protocol and how can an automatic and precise bug de-
tection approach help avoiding violations of protocols? In this section, we outline our
answers to these questions. The remaining sections fill in the details of the approach
and evaluate its effectiveness.

4.2.1 Problem Definition

To understand the problem we address, consider a part of a program as shown in
Figure 4.3. A class, called X, uses an API class (or a set of related API classes) that
impose(s) an API usage protocol. X itself is used by another class in the program,
called the client C. The fact that X uses the API is an implementation detail of X, and
C may not know about it. Therefore, class X is responsible for following the API
protocol. In particular, X must protect C from unintentionally violating the protocol.

Many APIs throw exceptions when a protocol is violated. Often, these exceptions
are declared by the methods that may throw them. For example, Stack.pop() de-
clares in its Javadoc to throw an EmptyStackException when the method is called
on an empty stack. Making explicit that violating a protocol leads to an exception
helps users of an API to avoid protocol violations.

Protocol

Client C Class X APIuses uses

Figure 4.3: For safe API usage, Xmust ensure to follow the API protocol. In particular,
no exception caused by an unexpected protocol violation should leave the dashed
box.

CHAPTER 4. API PROTOCOL VIOLATIONS 61

1 class X {
2 private Stack s = new Stack();
3 public String report() {
4 return get().toString();
5 }
6 private Object get() {
7 s.peek();
8 }
9 public void fill() {

10 s.push(..);
11 }
12 }

Figure 4.4: Unsafe API usage that can violate the Stack protocol and an execution
trace exposing a protocol violation.

What does a declared exception mean for the situation in Figure 4.3? Class X
has three options to use the API in way that protects the client C from API protocol
violations:

• X follows the API protocol and does not trigger exceptions due to protocol vio-
lations.

• Xmay violate the protocol but catches the resulting exceptions to avoid surpris-
ing C.

• Xmay violate the protocol and explicitly propagates the resulting exceptions by
declaring them in its Javadoc or its method signature. In this case, X itself has
a protocol and makes it as explicit to C as the underlying API usage protocol is
to X.

We call a usage of an API that matches one of the three options a safe API usage,
and we call it an unsafe API usage otherwise. Programmers of a class X should avoid
unsafe API usages to avoid surprising client classes, such as C. Since the usage of an
API is an implementation detail of X, C cannot foresee exceptions caused by protocol
violations in X.

As a motivating example, consider a simplified version of a problem our analysis
found in Xalan, a program shipped with the DaCapo 2006-10-MR2 benchmarks (Fig-
ure 4.4). A class X1 offers a public method report(). Calling report() on a fresh
instance of X gives an EmptyStackException, which is not declared in the public
interface of report(). The problem is that X uses the Stack API in an unsafe way
that exposes users of X to exceptions caused by violations of Stack’s API protocol.
A user of X cannot foresee that X may crash the program, unless the user inspects
X’s implementation, which however, contradicts the idea of modular, object-oriented
programming.

1The original class in Xalan is called StylesheetHandler. We edited it for conciseness.

CHAPTER 4. API PROTOCOL VIOLATIONS 62

(1)
Method
Priori-

tization

(2)
Random

Test
Gener-
ation

(3)
Protocol
Mining

(4)
Protocol
Check-

ing

Program
& API

Priorities

Passing
tests

Failing
tests

Protocols

Unsafe
API

usages

Figure 4.5: Overview of the approach.

4.2.2 Our Approach

Developers can find unsafe API usages with an automatic and precise bug detection
approach. The approach builds upon three existing techniques that—on their own—
do not fully address the problem of revealing violations of API usage protocols. First,
we build upon automatic test generation [36, 117, 30]. Even though state of the art test
generators achieve good coverage, their usefulness is bounded by the test oracle that
decides when to report a warning to developers. For example, the Randoop test
generator [117] comes with a small set of manually specified, generic test oracles that
do not detect all bugs triggered by the generated tests.

Second, we build upon dynamic protocol mining, which infers API usage protocols
from execution traces of a program that uses an API. The usefulness of a dynamic
protocol miner is bounded by the executions it analyzes. A protocol miner can infer
a protocol only if there is input that exercises paths of an API client that expose the
protocol.

Third, we build upon dynamic protocol checking [6, 105, 27], which verifies whether
a program execution violates a given protocol. Similar to a dynamic protocol miner,
the usefulness of a dynamic protocol checker is bounded by the executions it ana-
lyzes. The checker can report a protocol violation only if some input triggers the
illegal behavior. Furthermore, protocol checking requires specifications of the proto-
cols to check.

Can test generation, protocol mining, and protocol checking help finding the prob-
lem in Figure 4.4? A test generator can produce tests that cover many paths through
C, including a path that triggers the EmptyStackException. Unfortunately, an
exception alone is an unreliable indicator for a bug: Generated tests produce many
exceptions due to illegal usage, for example, by passing illegal method arguments. A
protocol miner can infer the protocol for using Stacks but requires input that drives
clients of the Stack class. Finally, a runtime protocol checker can detect that C vi-
olates the Stack protocol but requires the protocol and input that drives C into the
protocol violation.

Our approach reveals the unsafe API usages by combining test generation, pro-
tocol mining, and protocol checking as illustrated in Figure 4.5. Given a program

CHAPTER 4. API PROTOCOL VIOLATIONS 63

and an API as input, we use a random test generator (2) to generate tests for the
program. The generated tests can be classified into two groups: failing tests that
lead the program to an exception, and passing tests that execute without any obvi-
ous error. We analyze executions of passing tests with a dynamic protocol miner (3),
which produces protocols describing likely specifications of how to use API classes
(Section 4.4). Then, we analyze executions of failing tests with a dynamic protocol
checker (4) (Section 4.5). This last step filters the various failing tests by selecting
those that fail because the program violates a protocol, removing all tests that fail
for other reasons, such as illegal, generated input (Section 4.6). Finally, the protocol
violations are reported to the developer as warnings about unsafe API usages.

Figure 4.5 also shows method prioritization (1), a static analysis that heuristically
computes how relevant each of the program’s methods is for triggering calls into the
API. Method prioritization is an optional optimization and can be ignored for the
description of our general approach. Section 4.7 explains how method prioritization
makes our technique even more useful in practice.

4.3 Random Test Generation

There are various approaches to automatically generate tests (see Section 7.5 for a
detailed discussion). Our approach for finding protocol bugs builds upon feedback-
directed, random test generation, implemented in Randoop [117]. We use Randoop
because it requires no input except the program under test, scales well to large pro-
grams, and generates tests with high coverage.

Randoop randomly selects methods and chains them into call sequences. If ex-
ecuting a call sequence succeeds (defined below), the sequence is used to construct
further call sequences until a maximum sequence length is reached. To report warn-
ings to developers, Randoop checks generated call sequences against a built-in set
of generic test oracles (called “contracts” in [117]). For example, Randoop reports
a warning if o.equals(o) returns false or if a method throws a NullPointer-
Exception even though all input arguments are non-null. A sequence is said to fail
if it raises an exception or if it violates any of the built-in checks, and the sequence is
said to succeed otherwise.

In a typical Randoop usage scenario, a user is mostly interested in failures of the
built-in checks. Instead, we use Randoop by considering both failing and succeed-
ing sequences. We configure Randoop to report succeeding sequences as succeeding
tests and failing sequence as failing tests. Unless mentioned otherwise, we leave all
Randoop parameters at their default values, that is, as described in [117].

4.4 Protocol Mining

To obtain specifications of how to use an API, we use a dynamic protocol miner. The
miner analyses a running program and produces API usage protocols that summa-
rize the API usages observed during the program’s execution. In this section, we
present the protocol miner and how we fit it into an automatic and precise bug de-
tection approach. Evaluating the mining approach is an interesting topic on its own.
We address this topic with an evaluation framework for protocol miners [124], which
however, is beyond the scope of this thesis. The protocol miner has applications be-
yond what we present here. For example, the protocols that it infers can be fed into a

CHAPTER 4. API PROTOCOL VIOLATIONS 64

1 class Bar {
2 void m(List<Foo> list, Reader r) {
3 Iterator<Foo> iter = list.iterator();
4 while (iter.hasNext()) {
5 Foo foo = iter.next();
6 ...
7 }
8

9 BufferedReader br = new BufferedReader(r);
10 String line = br.readLine();
11 while (line != null) {
12 list.add(toFoo(line));
13 line = br.readLine();
14 }
15 br.close();
16 }
17

18 private Foo toFoo(String s) { ... }
19 }

Figure 4.6: Method m() iterates over a List, reads lines via a BufferedReader and
adds them to the list.

static program checker [131]. However, applications of the protocol miner other than
the one reported in this chapter are also beyond the scope of this thesis.

The protocol mining divides the task of mining protocols into three subtasks. First,
we instrument a program so that it writes an execution trace into a file (Section 4.4.1).
Second, the protocol miner splits the execution trace into subtraces that each contain
a sequence of related calls (Section 4.4.2). Third, the protocol miner groups similar
subtrace together and generates an FSM for each group of subtraces (Section 4.4.3).

4.4.1 Gathering Execution Traces

The first step of mining protocols from program executions is to log runtime events
into an execution trace.

Definition 10 (Execution trace). An execution trace is a sequence of method calls
caller → callee and method returns caller ← callee that have been observed during the
execution of a program. For each caller and callee, the trace contains the following informa-
tion:

• Signature of the called method.

• Runtime type and identifier of the receiver.

For each method call, the trace contains the runtime type and identifier of the arguments. For
each method return, the trace contains the runtime type and identifier of the return value (if
any).

CHAPTER 4. API PROTOCOL VIOLATIONS 65

... --> Bar{bar}.m()
Bar{bar}.m() --> LinkedList{list}.iterator()
Bar{bar}.m() <-- LinkedList{list}.iterator(): ListItr{iter}
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean1}
Bar{bar}.m() --> ListItr{iter}.next()
Bar{bar}.m() <-- ListItr{iter}.next(): Foo{foo1}
...
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean2}
Bar{bar}.m() --> BufferedReader(Reader{r})
Bar{bar}.m() <-- BufferedReader(Reader{r}): BufferedReader{br}
Bar{bar}.m() --> BufferedReader{br}.readLine()
Bar{bar}.m() <-- BufferedReader{br}.readLine(): String{line1}
Bar{bar}.m() --> Bar{bar}.toFoo(String{line1})

...
Bar{bar}.m() <-- Bar{bar}.toFoo(String{line1}): Foo{foo2}
Bar{bar}.m() --> LinkedList{list}.add(Foo{foo2})
Bar{bar}.m() <-- LinkedList{list}.add(Foo{foo2}): boolean{boolean3}
Bar{bar}.m() --> BufferedReader{br}.readLine()
Bar{bar}.m() <-- BufferedReader{br}.readLine(): String{line2}
Bar{bar}.m() --> BufferedReader{br}.close()
Bar{bar}.m() <-- BufferedReader{br}.close(): void

... <-- Bar{bar}.m(): void

Figure 4.7: Execution trace from calling method m() in Figure 4.6. The notation
Type{object} identifies an object of a particular type.

As a running example, consider the Java source code in Figure 4.6. Executing
method m() may produce the execution trace in Figure 4.7.

To gather execution traces, our implementation builds upon aspect-oriented pro-
gramming and the AspectJ compiler [1]. An aspect with two pointcuts adds instruc-
tions before each method call and after each method return. The corresponding ad-
vices pass the runtime information to a logging component, which writes the method
call and return events into log files. For multi-threaded programs, we create a sepa-
rate log file for each thread. We instrument only classes that belong to the analyzed
program and omit libraries and frameworks. In particular, we do not instrument the
Java standard library.

4.4.2 Extracting Subtraces from Large Execution Traces

Given an execution trace, the protocol miner extracts subtraces that each contain a
sequence of related calls. As a motivating example, consider the execution trace in
Figure 4.7. The trace contains API method calls involving API types and calls to other
methods in the program. The goal of extracting subtraces is to unravel these calls so
that each subtrace contains semantically related calls. The main idea for creating
such subtraces is to focus on a particular core object and to include only calls that are
strongly related to this core object.

CHAPTER 4. API PROTOCOL VIOLATIONS 66

Definition 11 (Subtrace). A subtrace for a core object o includes the following calls:

• All calls to o.

• For each parameter p of a call to o:

– The (constructor) call that returned p.
– All calls on p before it is passed to o.

• For each return value r of a call to o:

– All calls on r after its return from o.

Figure 4.8 shows the subtraces that the protocol miner extracts for the running ex-
ample. There are four subtraces, each focusing on a different core object. A single call
in the execution trace can be part of multiple subtrace. For example, the calls to the
ListItr are part of both the LinkedList’s subtrace and the ListItr’s subtrace.

Generic Filters and Transformations

Before the protocol miner further analyzes subtraces, it applies a set of generic filters
and transformations. Each filter and transformation takes one subtrace as its input
and produces a possibly empty set of subtraces. If a filter or transformation produces
multiple subtraces, all subsequent filters and transformations are applied to each of
them. The protocol miner applies the filters and transformations in the order in which
they are described in the following.

Remove Clone Objects Subtraces often contain multiple objects so that on each of
them the same sequence of method calls is invoked. We call such objects cloned ob-
jects. The reason for cloned objects is repeated behavior due to loops in the analyzed
programs. An API usage protocol that contains multiple cloned objects is bloated
with calls and objects that often are not necessary to specify the API usage. There-
fore, the protocol miner removes all but one cloned object from a subtrace as follows.
The protocol miner compares the sets of methods called on each receiver object with
each other. For each set of receiver objects where the same set of methods is called
on it, the analysis randomly selects one of the receiver objects and removes all calls
where any of the other receiver objects is the receiver from the subtrace.

Maximum Number of Objects During our experiments, we found that most sub-
traces with a large number of objects are bloated with objects and calls that do not
relate to each other. Yet, most documented API usage constraints involve a relatively
small number of interacting objects. Therefore, the protocol miner removes all sub-
traces that involve more than a user-specified number of receiver objects. For our
evaluation, we set the maximum number of receiver objects to three.

Generalizing Types Observed runtime behavior can often be generalized with re-
spect to the involved types. As a motivating example, consider object iter from the
running example. Its dynamic type is ListItr, but the methods called on the ob-
ject, hasNext() and next(), are also available in Iterator, which is a supertype
of ListItr. The protocol miner generalizes the behavior observed for the ListItr
to Iterator to infer more general API usage protocols.

CHAPTER 4. API PROTOCOL VIOLATIONS 67

// core object: list
Bar{bar}.m() --> LinkedList{list}.iterator()
Bar{bar}.m() <-- LinkedList{list}.iterator(): ListItr{iter}
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean1}
Bar{bar}.m() --> ListItr{iter}.next()
Bar{bar}.m() <-- ListItr{iter}.next(): Foo{foo1}
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean2}
Bar{bar}.m() --> LinkedList{list}.add(Foo{foo2})
Bar{bar}.m() <-- LinkedList{list}.add(Foo{foo2}): boolean{boolean3}

// core object: iter
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean1}
Bar{bar}.m() --> ListItr{iter}.next()
Bar{bar}.m() <-- ListItr{iter}.next(): Foo{foo1}
Bar{bar}.m() --> ListItr{iter}.hasNext()
Bar{bar}.m() <-- ListItr{iter}.hasNext(): boolean{boolean2}

// core object: br
Bar{bar}.m() --> BufferedReader(Reader{r})
Bar{bar}.m() <-- BufferedReader(Reader{r}): BufferedReader{br}
Bar{bar}.m() --> BufferedReader{br}.readLine()
Bar{bar}.m() <-- BufferedReader{br}.readLine(): String{line1}
Bar{bar}.m() --> BufferedReader{br}.readLine()
Bar{bar}.m() <-- BufferedReader{br}.readLine(): String{line2}
Bar{bar}.m() --> BufferedReader{br}.close()
Bar{bar}.m() <-- BufferedReader{br}.close(): void

// core object: bar
... --> Bar{bar}.m()
Bar{bar}.m() --> Bar{bar}.toFoo(String{line1})
Bar{bar}.m() <-- Bar{bar}.toFoo(String{line1}): Foo{foo2}
... <-- Bar{bar}.m(): void

Figure 4.8: Subtraces for the execution trace in Figure 4.7.

The analysis generalizes a subtrace into a set of subtraces by generalizing the type
of each receiver object in the original trace and by combining generalized types with
each other. Let T be a subtrace and let R(T) denote the set of receiver objects in
the subtrace. At first, the analysis computes for each receiver object the set of types
that provide all methods called on the object, that is, all types that the object could
potentially have. That is, for each r ∈ R, we compute the set G(r) of generalized
types so that for each tg ∈ G:

• tg is equal to or a supertype of the type t of r in T

• tg provides all methods called on r in T

CHAPTER 4. API PROTOCOL VIOLATIONS 68

Then, the analysis creates a new subtrace for each combination of generalized
types of the original subtrace’s receiver objects. That is, given a subtrace with n
receiver objects r1, . . . , rn, the analysis creates |G(r1)| × · · · × |G(rn)| subtraces. De-
spite this combinatorial approach, the number of resulting subtraces is manageable in
practice because we bound the number of receiver objects in a subtrace and because
the number of generalized types is typically small.

Focus on API Methods The execution trace contains all calls issued during the
execution of a program, but not all of these calls are related to the analyzed API.
For example, a subtraces of our running example contains calls to Bar.m() and
Bar.toFoo(), which are not related to the API of the Java standard library. To
focus on a particular API, a user can specify packages to focus on, and the protocol
miner will keep only calls to method defined in these API packages.

It is important to apply this filter after generalizing types because some types may
only appear as API types after generalizing them. For example, a program may have
a class that implements the java.util.Collection interface. After generalizing
types, calls to this class may appear as API calls and are therefore considered for
further analysis.

Remove Calls to Ubiquitous Types Most Java programs intensively use a small set
of types provided by the Java standard library. As these types are ubiquitous, calls
to them are often intermingled with other API usages without being an essential part
of the API usage. To address the problem of such ubiquitous types, the protocol
miner removes calls to a user-specified set of types. As a default, the protocol miner
removes all calls to String, CharSequence, and Object. Other ubiquitous types
can be easily added if necessary.

Require at Least Two Methods After applying the above filters and transforma-
tions, some subtraces may contain calls to less than two methods. The purpose of API
usage protocols is to specify how multiple API methods are used together. Therefore,
the protocol miner removes all subtraces that involve less than two methods.

4.4.3 Generating Finite State Machines

The final step of the protocol miner is to create API usage protocols from subtraces.
At first, the miner groups similar subtraces together. Then, it infers an FSM from
each group of subtraces. To group subtraces, the protocol miner assigns all those
subtraces to the same group that involve the same set of receiver types. For example,
all subtraces involving a Collection and an Iterator belong to the same group.

To create an FSM, we must define how to abstract states and how to connect them
with transitions. As a state abstraction, our protocol miner considers the last k dis-
tinct called methods within a subtrace and the set of bound protocol parameters.
Each distinct pair of a list of k most recently called methods and a set of parameters
has its own state. In the initial state, the list of called methods and the set of bound
parameters are empty. The protocol miner connects states with transitions that indi-
cate that, while being in the source state, a particular call has been observed to lead
to the destination state.

Algorithm 5 summarizes our approach to generate an API usage protocol from
a set T of subtraces. The algorithm iterates over all subtraces and visits each call

CHAPTER 4. API PROTOCOL VIOLATIONS 69

Algorithm 5 Generates an API usage protocol P from a set T of subtraces.

1: S ← ∅; Σ← ∅; δ ← ∅; s0 ← new state; Sf ← ∅
2: for T ∈ T do
3: current← s0
4: lastK ← empty FIFO queue of size k
5: R← receiversToParams(T) B Maps receivers to protocol parameters
6: boundParams← ∅
7: for call ∈ T do
8: if retV al(call) ∈ domain(R) then
9: boundParams← boundParams ∪ {retV al(call)}

10: label← computeLabel(call, R) B Adds new labels to Σ

11: if lastK.last 6= label then
12: lastK.add(label)
13: next← nextState(lastK, boundParams) B Adds new states to S
14: δ ← δ ∪ {(current, label, next)}
15: current← next
16: Sf ← Sf ∪ {current}
17: P ← (range(R), (S,Σ, δ, s0,Sf))

in a subtrace once. The receiversToParams() function (line 5) maps each receiver
object in the subtrace T to a protocol parameter. Since all subtraces in T have the
same multi-set of receiver types, the range of the returned map is the same for all
subtraces in T , that is, all subtraces involve the same protocol parameters. Lines 7
to 15 iterate through all calls in a subtrace. If a call returns an object that corresponds
to a not yet bound protocol parameter, then this call binds the parameter (line 9). The
computeLabel() function computes a transition label for a call. The label contains
the method signature, a protocol parameter denoting the receiver, and possibly also
protocol parameters denoting method arguments and the return value. Arguments
and return values are labeled if and only if they correspond to a protocol parameter,
that is, if they appear as the receiver of a call in the subtrace.

After updating the list of recently called methods, the algorithm computes the
destination state for the current call. The nextState() function maintains a map from
pairs of recently called methods and sets of bound objects to states. If no state for a
given pair (lastK, boundParams) exists, nextState() creates a new state and adds it
to the set S of states. After visiting all calls in a subtrace, the algorithm marks the
current state as final. Once all subtraces have been analyzed, the algorithm returns
an API usage protocol.

Our approach to generate protocols scales well with the size and number of sub-
traces. First, the protocol miner must visit each subtrace only once and requires a
single linear pass through each subtrace. Second, the only data structure to keep in
memory while analyzing a set of subtraces is the currently constructed FSM. Its size
is independent of the size and number of subtraces because the maximum number of
states is a function of the number of distinct API methods called in a set of subtraces,
the number of protocol parameters, and the parameter k.

When applying Algorithm 5, we find small values of k to be the most promising.
All results reported in this thesis are obtained with k = 2.

CHAPTER 4. API PROTOCOL VIOLATIONS 70

Getting back to our running example, consider the subtrace with core object list
in Figure 4.8. The protocol miner groups this subtrace together with other subtraces
that involve a collection and an iterator and infers a protocol, such as Figure 4.2.

4.4.4 Driving Protocol Mining with Passing Tests

Dynamic protocol mining is inherently limited by the execution traces given to the
miner, which in turn is limited by the input used to execute the program. Most pro-
grams come with a finite set of inputs, for example, given as unit tests. Producing
more input requires manual effort, which reduces the overall usefulness of protocol
mining.

We address this limitation by combining protocol mining with test generation.
The idea is to analyze an execution of a generated test in the same way as one would
analyze executions driven by otherwise available input. A benefit of this approach is
that generated tests are a large and diverse source of inputs. Random test generation
provides fresh inputs for different random seeds, which can trigger behavior not yet
triggered with other random seeds [31].

A potential problem of generating tests for protocol mining is that artificial input
may trigger illegal API call sequences that can lead to incorrect protocols. We address
this problem in two ways. First, we feed only execution traces of passing tests into
the protocol miner, not execution traces of failing tests. While a passing test does
not guarantee to use the program in the intended way, we found that in practice,
most illegal inputs are filtered because they would lead to an exception. Second, the
execution trace contains only API calls issued in the program, not calls issued in the
generated tests (a generated test can call API methods, for example, to create an API
object before passing it as a parameter). That is, each API call the miner learns from is
part of the program and not a call that was randomly generated by the test generator.

4.5 Protocol Checking

Given protocols inferred by the protocol miner, our analysis checks the analyzed pro-
gram for violations of these protocols with a dynamic protocol checker. Runtime
checking guarantees soundness and completeness: All reported protocol violations
provably occur in the execution, and all protocol violations in the execution are re-
ported. Unfortunately, a dynamic checker can only reveal a problem if the problem
occurs in the analyzed program execution, that is, if the problem is triggered by the
given input. For example, checking the execution of a manually created unit test suite
against a set of protocols is unlikely to reveal many protocol violations because the
test suite exercises well-tested paths of the program.

We address this limitation by driving the program with generated tests. In con-
trast to the mining step of our approach, we now use generated tests that fail. These
tests are classified as failing because they trigger a problem in the program that leads
to an exception. Many failing tests do not expose any bug but fail because the gen-
erated test uses the program incorrectly. For example, a test may fail with a Null-
PointerException or an IllegalArgumentException because the test passes
null or another illegal value as a method argument. Such tests are not relevant for
programmers, as they do not reveal bugs in the program. To focus on tests that fail
because of a bug in the program, we check whether the program violates a protocol
while executing a failing test. If the program violates a protocol and if this viola-

CHAPTER 4. API PROTOCOL VIOLATIONS 71

1 Iterator someIterator = ... // an iterator for some unrelated collection
2 Collection coll = new HashSet();
3 if (someIterator.hasNext()) someIterator.next();

Figure 4.9: Program to be checked against the protocol in Figure 4.2.

tion raises an exception, then the test exposes an unsafe API usage and therefore is
relevant for programmers. In other words, we use protocol checking as a filter that
identifies relevant warnings among all failing tests.

4.5.1 Naive Approach

An important question for checking programs against protocols is: What is a proto-
col violation? Since protocols are represented as FSMs, the naive answer is to check
whether a sequence of API method calls is accepted by the FSM, that is, whether the
sequence is a sentence in the language described by the FSM. However, this naive ap-
proach produces many more protocol violations than one might expect, in particular
for multi-object protocols.

To understand why the naive approach fails, consider checking the program in
Figure 4.9 against the protocol in Figure 4.2. The someIterator variable refers to
an iterator over some collection not shown in the example. Instantiating the Hash-
Set and assigning it to coll and brings the protocol from its initial state to state 2.
The next call in the program is hasNext(), but state 2 does not have an outgoing
transition labeled with hasNext(). Should the checker report a warning? Obvi-
ously, it should not report a warning because we have not yet created an iterator for
coll and because someIterator is unrelated to coll.

4.5.2 Setup Phase versus Liable Phase

The problem illustrated by the example in Section 4.5.1 is that some states of inferred
protocols do not fully specify which calls are legal. For example, state 2 does not
specify whether it is legal to call hasNext(). We address this problem by distin-
guishing two phases of each protocol. At first, there is a setup phase, in which objects
are bound to protocol parameters. Once all protocol parameters are assigned to an
object, the protocol enters the liable phase. Only in the liable phase the checker should
report warnings when the FSM of the protocol does not accept the observed method
calls.

Distinguishing between a setup phase and a liable phase can be implemented in
different ways. For the protocols produced by our protocol miner, the set of bound
parameters in a particular state is unambiguous because the algorithm to create FSMs
creates a fresh state whenever another protocol parameter is bound (Section 4.4.3).
That is, we can partition the states of a protocol into setup states, where at least one
protocol parameter is unbound, and liable states, where all parameters are assigned to
an object. With this partitioning of states, checking whether a protocol instance is in
the setup phase or in the liable phase reduces to knowing the current state.

Based on a partitioning of states into setup states and liable states, the checker
avoids reporting false warnings reported by the naive checking approach. For the

CHAPTER 4. API PROTOCOL VIOLATIONS 72

protocol in Figure 4.2, states 1 and 2 are setup states, and states 3, 4, and 5 are liable
states. With this state partitioning, the checker does not report a warning for the
hasNext() call in Figure 4.9 because the call occurs in state 2, which is a setup state.

4.5.3 Checking Approach

Conceptually, the checking approach is similar to existing runtime verification ap-
proaches, such as JavaMOP [27]. Our implementation uses the infrastructure built
for mining protocols. At first, the execution trace is split into subtraces in the same
manner as for protocol mining (Section 4.4.2). Then, each subtrace is verified against
all protocols that have protocol parameters with types equal to the receiver types in
the subtrace. The checker assigns each receiver object in the subtrace to a protocol
parameter of matching type. For subtraces with multiple receiver objects of the same
type, the checker creates multiple protocol instances, one for each possible assign-
ment of objects to protocol parameters.

At the beginning of a subtrace, the protocol is in the initial state. The checker goes
through all calls in the subtrace and analyzes all calls that appear in the alphabet of
the protocol. Each such call is matched against the outgoing transitions of the current
state. If a transition matches, the current state is set to the target state of the transition.
If no transition matches and the current state is a liable state, the checker reports a
protocol violation. Non-matching transitions in setup states are ignored.

For example, consider the inferred protocol in Figure 4.1 and the source code in
Figure 4.4. Recall that class C uses a stack in an unsafe way because a client of C
can trigger a violation of the stack protocol via C’s public interface. Our approach
finds this problem because Randoop generates a test that triggers an API protocol
violation by calling C’s methods. The test calls report() without a preceding call
to fill() and therefore triggers a call to peek() while the stack is empty. This call
causes an EmptyStackException and fails the test. Figure 4.10 shows the relevant
subtrace of the test’s execution trace. The subtrace contains all calls to the stack that
were observed during the test execution. The checker finds a violation of the protocol
in Figure 4.1 because the second call in the trace tries to call peek() at state 2, but
peek() is only allowed at state 3.

... --> Stack()

... <-- Stack(): Stack{s}

... --> Stack{s}.peek()
EmptyStackException
at Stack.peek()
at C.get()
at C.report()
...

Figure 4.10: Subtrace from executing a test that triggers the unsafe API usage in Fig-
ure 4.4.

CHAPTER 4. API PROTOCOL VIOLATIONS 73

4.6 Warnings without False Positives

Reporting few (ideally no) false positives is crucial to make a bug finding technique
applicable in practice [13]. By using runtime checking, our approach avoids a prob-
lem typically encountered with static checkers, namely false positives due to approx-
imations of execution paths. Another potential source of false positives are inferred
protocols that disallow legal behavior because this behavior was not observed dur-
ing protocol mining. Our approach eliminates this problem by only reporting those
protocol violations that certainly lead to an exception thrown by the API, that is, to
undesired behavior. For example, the call to peek() in Figure 4.4 violates a protocol
and results in an EmptyStackException, a clear indication that the API is used
incorrectly.

To filter protocol violations that cause an exception, we need several pieces of in-
formation. For each failing test, the analysis logs the reason for the failure, which
consists of two parts: the type Texc of the thrown exception and the stack trace
S = (loc1, loc2, . . . , locn) when throwing it. Each stack trace element loci indicates
a source code location. For each protocol violation, the protocol checker reports
the source code location locviol where the violating API call occurs. Furthermore,
the analysis statically extracts the set DAPI of declared exception types of the API
method that is called at locviol and the set Dprogram of declared exception types of
the method containing locviol. An exception can be declared using the throws key-
word or using the @throws or @exception Javadoc tags.

Our analysis reports a protocol violation to the user only if the following three
conditions are true:

1. Texc ∈ DAPI

2. locviol ∈ S

3. Texc /∈ Dprogram

The first two conditions ensure that the call that violates the protocol is responsible
for failing the test. The third condition avoids warnings for methods that deliberately
pass on exceptions thrown by the API to their own clients. In this case, the protocol-
violating class is implemented safely because it explicitly passes on responsibility for
using the API correctly to its clients. For Figure 4.4, all three conditions hold and our
analysis reports an unsafe API usage, along with a test case that illustrates how to
trigger the problem.

In principle, the approach might report a false warning when two conditions hold.
First, an API method m() must be implemented incorrectly and throw an excep-
tion despite being called legally. Second, a mined protocol must forbid calling m()
at a state where a permissive protocol [72] would allow it. One of the two con-
ditions alone does not lead to false warnings. In particular, incomplete protocols
alone, which may result from dynamic protocol mining, do not cause false positives.
In practice, both conditions together are very unlikely to occur and we did not en-
counter this situation during our experiments.

In practice, the question whether a warning corresponds to a bug that should
be fixed depends on many influences that go beyond what a program analysis can
check. In this work, we assume that classes should use APIs safely, as described in
Section 4.2.1. Based on this assumption, developers can fix a true positive reported
by the analysis in two ways. First, the developers can modify the API usage in such

CHAPTER 4. API PROTOCOL VIOLATIONS 74

a way that the API protocol is always followed, that is, the developers ensure that
no exception of type Texc is propagated to clients. Second, the developers can make
explicit that an exception due to an API protocol violation may be propagated to
clients, that is, the developers extend Dprogram.

4.7 API-Guided Test Generation

The preceding sections describe how randomly generated tests can drive a program
for mining API protocols and for checking the program against inferred protocols.
With a random test generation tool, such as Randoop, many generated tests do not
trigger API calls. The reason is that Randoop chooses which method to call randomly
from all methods in a program, even though only a subset of all methods uses an
API. This section presents a heuristic to optimize our approach by guiding random
test generation towards methods that trigger API calls.

Given infinite time, standard Randoop triggers the same behavior as a guided
approach that focuses on methods relevant for calling the API. In practice, increas-
ing the number and variety of API calls triggered by generated tests within a finite
amount of time is important for two reasons. First, random test generators require
a stopping criterion—typically, wall clock time or the number of generated method
call sequences. Second, random test generators execute arbitrary code, which makes
them susceptible to crashes that are hard to avoid in general [116]. Whatever stops
the test generator, triggering API calls earlier than a purely random approach not
only saves time, but also is likely to trigger more API usage bugs before the test gen-
erator terminates.

To guide Randoop towards methods relevant for triggering API calls, we statically
analyze the program and prioritize its methods. The priorities influence the random
decisions of the test generator in such a way that calling a method with higher pri-
ority is more likely. Methods that do not contribute at all to calling the API get a
priority of zero and are ignored altogether by the test generator.

Computing Method Priorities

We build upon two well-known graph representations of the program under test:
an inverted, context-insensitive call graph and a parameter graph [36]. The inverted
call graph is a directed graph where vertices represent methods and edges represent
a “may be called by” relationship between methods. We extract call graphs with
Soot [157]. The parameter graph is a directed graph where vertices also represent
methods and where edges represent a “can use the result of” relationship between
methods. In the parameter graph, there is an edge from m1 to m2 if m1 requires an
object of type T (as receiver or as argument) and if m2’s return type is equal to T or a
subtype of T .

Test generators call methods for three reasons. First, because a method is among
the methods under test. In our case, these are all methods that call the API. Second,
because the method returns an object that can be passed as an argument to another
method, that is, the method is a parameter provider. Third, because the method may
change the internal state of an object that is used for another call afterwards, that is,
the method is a state changer. Our prioritization technique considers these three rea-
sons and computes for each method three priority values that indicate how relevant

CHAPTER 4. API PROTOCOL VIOLATIONS 75

Algorithm 6 Compute priorities for calling methods during random test generation

Input: Inverted call graph Gc, parameter graph Gp, methods M, API methods
MAPI

Output: Map p : method→ R assigning priorities to methods
1: initialize pmut : method→ R to zero B priorities for methods under test
2: for all m ∈M do
3: for all mAPI ∈MAPI with dc(mAPI ,m) ≤ dmax

c do

4: pmut(m)← pmut(m) +
relevance(mAPI)

dc(mAPI ,m)

5: initialize pparam : method→ R to zero B priorities for parameter providers
6: for all m ∈M with pmut(m) > 0 do
7: for all m′ ∈ reachable(Gp,m) do

8: pparam(m′)← pparam(m′) +
pmut(m)

nbProviders(retType(m′))

9: initialize pstate : method→ R to zero B priorities for state changers
10: for all m ∈M with pmut(m) > 0 do
11: for all t ∈ inputTypes(m) do
12: for all m′ ∈ methods(t) do

13: pstate ← pstate +
pmut(m)

|methods(t)|
14: p← merge(pmut, pparam, pstate)

the method is for each reason. Afterwards, the priorities are combined into a single
priority value per method.

Algorithm 6 describes how we compute the priority of each method. The algo-
rithm takes as input the call graph Gc, the parameter graph Gp, the set M of all
methods, and the setMAPI of API methods. There are four main steps.

Priorities for Methods Under Test At first, we compute how relevant a method
is depending on whether it calls any of the API methods. Methods calling an API
method directly are the most relevant ones. In addition, methods calling API meth-
ods indirectly, that is, via other methods, are given a lower priority. The reason for
considering indirect calls is that some methods should be called at a state built up by
another method. For instance, a methodm1 may create a file and call another method
m2 that writes into the file. By calling m1, the test generator can trigger successful
writes into the file, even thoughm1 calls the file writing API only indirectly. We limit
the level of indirection up to which to consider indirect callers of API methods to
dmax
c , which is set to three in our experiments. The priority gain of a method calling

an API method depends on two factors. First, it increases with the relevance of the
called API method:

relevance(mAPI) =
1

|{m | (mAPI ,m) ∈ Gc}|

Less frequently called methods are more relevant so that all API methods get an
equal chance of being triggered. Second, the priority gain decreases with the minimal

CHAPTER 4. API PROTOCOL VIOLATIONS 76

distance dc(mAPI ,m) in Gc between the API method mAPI and the calling method
m. The rationale for this decrease is that the call graph contains may-call and not
must-call edges; fewer indirections to an API call increase the chance that the API is
actually called during an execution.

Priorities for Parameter Providers We compute how relevant a method is for pro-
viding parameters for calling methods under test. Therefore, we consider all methods
reachable(Gp,m) that are reachable from a method under test m in the parameter
graph. These are all methods that directly or indirectly contribute parameters for
calling the method under test. The gain of priority for such a parameter provider
depends in two factors. First, it increases with the priority of the method it provides
parameters for. Second, the gain of priority decreases with the overall number of
providers for the type required by the method under test. The rationale for this de-
crease is to give higher priority to methods providing an uncommon type than to
methods providing a type returned by many other methods.

Priorities for State Changers The third kind of priority is for methods that change
the internal state of objects used for calling methods under test. The types input-
Types(m) required for calling a method m are the receiver type and all argument
types of m. We consider each method that is provided by an input type for a method
under test as a potentially state-changing method and therefore increase the method’s
priority. The priority gain depends on two factors. First, it increases with the priority
of the method under test that the state changer may influence. Second, the priority
gain decreases with the overall number of methods provided by the input type. The
rationale for this decrease is to give objects of each input type an equal chance of
being changed, independently of the number of methods of the type.

Merging The final step is to normalize the three kinds of priorities and to combine
the three priorities of each method in a weighted sum. The weights indicate how
important calling methods under test, calling parameter providers, and calling state
changers are, respectively. In our experiments, the test generator devotes 20% of all
calls to calling state changers and 40% to each calling methods under test and to
calling parameter providers. These weights are selected based on initial experiments
and may not be optimal.

Example

Figure 4.11 shows an example to illustrate how prioritizing methods guides random
test generation towards calling API methods. The example contains seven methods
and constructors, of which one, doIt(), calls the API. Algorithm 6 finds this method
as the only method under test and assigns a high priority to it. To call doIt(), the
test generator requires an object of type A, which in turn requires objects of types B
and C. Our algorithm finds the constructors of these classes as parameter providers
and gives them a medium priority. The API call in doIt() results in a NullPointer-
Exception unless init() is called beforehand. This method is found to be a state
changer and also gets a non-zero priority. The remaining two methods, B.m() and
D(), do not contribute to calling the API and get a priority of zero. Given the pri-
orities, the random test generator selects only methods that eventually contribute to

CHAPTER 4. API PROTOCOL VIOLATIONS 77

1 class A {
2 API api;
3 A(B b) { .. }
4 void init() { api = APIPool.some; }
5 void doIt() { api.use(); }
6 }
7 class B {
8 B(C c) { .. }
9 void m(D d) { .. }

10 }
11 class C {}
12 class D {}

Method Priority

A.doIt() 107
A() 33
B(C) 27
C() 27

A.init() 7
B.m(D) 0

D() 0

Figure 4.11: Example for prioritizing methods towards using the API.

calling the API and probabilistically leads to more calls to the API than a purely ran-
dom approach. We show this claim to be valid for real-world programs and APIs in
Section 4.8.3.

CHAPTER 4. API PROTOCOL VIOLATIONS 78

4.8 Evaluation

Our evaluation was driven by two main questions:

1. How effective is our approach in finding unsafe API usages? We find 54 unsafe API
usages in ten well-tested Java programs. Manual inspection shows all of them
to be true positives.

2. How much does the testing effort reduce compared to a purely random approach by
guiding test generation towards an API? Our heuristic optimization reveals bugs
with five times fewer generated call sequences than the unguided approach, on
average. This improvement is possible because method prioritization increases
the number of API calls by a factor of 57 and decreases the sequences required
to call a particular API method by a factor of seven.

4.8.1 Setup

We run our analysis on all programs from the DaCapo benchmarks, version 2006-
10-MR2 (Table A.1) [14]. The analysis focuses on API classes of the Java library (Ta-
ble 4.1).

We run the analysis in two modes: unguided and guided towards an API. Unguided
runs use Randoop’s standard test generation technique. Guided runs use method pri-
oritization (Section 4.7). To evaluate guided runs, we run Randoop for each program-
API pair. To evaluate unguided runs, we run Randoop on each program. Since Ran-
doop is based on random decisions, we perform each experiment with ten different
random seeds [117]. Unless otherwise mentioned, the reported results are average
values of all ten runs.

Randoop requires a stopping criterion. We use a maximum number of generated
method call sequences of 10,000. We prefer this criterion over a maximum running
time because it is easily reproducible, whereas Randoop’s execution time depends on
the environment used for the experiments.

4.8.2 Detection of Protocol Violations

The analysis finds a total of 54 protocol violations. Each static source code location
with a protocol violation counts only once, even if it occurs in multiple failing tests.
Table 4.2 shows the number of violations detected for each program-API pair, along
with the total number of violations found over all runs. The table also shows the
number of failing tests among which the protocol checker finds the bugs. On average,

Table 4.1: Analyzed APIs.

API Classes

Coll/Iter All public methods of java.util.Collection,
java.util.Iterator, and their subclasses.

Vector/Enum All public methods of java.util.Vector,
java.util.Enumeration, and their subclasses.

CHAPTER 4. API PROTOCOL VIOLATIONS 79

Table 4.2: Number of failing tests (out of 10,000) and number of detected API usage
bugs.

Program Failing tests Bugs found

(Average per run) Average per run Total

Coll/Iter Vector/Enum Coll/Iter Vector/Enum

ANTLR 1,429 1,695 0 0 0
BLOAT 4,098 4,042 0 0 0
chart 2,336 2,396 1.4 1 4
Eclipse 2,817 3,375 0 0 0
FOP 3,148 2,948 3.2 2.8 9
HSQLDB 2,246 2,264 0 0.1 1
Jython 4,314 5,169 1.4 0 2
Lucene 3,573 3,372 1.9 1.1 5
PMD 2,155 4,158 12.8 5.9 16
Xalan 4,440 4,395 6.6 5.9 17

Sum 3,056 3,381 27.3 16.8 54

3,219 of 10,000 tests fail—too much for a programmer to inspect. The protocol checker
filters these tests and presents only those that expose a protocol bug.

We inspect all protocol violations manually to verify that no false positives are
reported. Indeed, all reported violations show an illegal API usage that can be trig-
gered via the public methods of a class in the program. Furthermore, we manually
check whether the comments of the buggy methods contain any natural language
warnings about the exceptions that may result from these methods. None of the re-
ported methods has such a comment. That is, all reported bugs are real problems,
correctness and documentation issues, in the programs. Table B.2 lists details on all
detected protocol violations.

Figure 4.12 shows a bug found in FOP. The class MIFDocument contains an in-
ner class BookComponent that stores pages in a list, which initially is empty. The
inner class provides a method curPage() that tries to return the last page in the list.
This method is called in the public method setTextRectProp(), which raises an
IndexOutOfBoundsException when the list of pages is empty. This risk is not
apparent to clients of MIFDocument, and hence, the class uses ArrayList in an un-
safe way. Our analysis finds this bug because the mined protocol for ArrayList
disallows get() directly after creating the list.

Figure 4.13 is a bug found in Jython. The class has an Iterator field that is
accessed by multiple public methods. One of them, flushCurrent(), calls re-
move() on the iterator. The iterator protocol allows this call exactly once after each
call to next(). This constraint is not respected in the class, causing a potential Il-
legalStateException when calling flushCurrent(). Similar to the first ex-
ample, the class uses an API in an unsafe way and does not make the potential prob-
lem apparent to its clients. Our analysis infers the iterator protocol and finds this
violation of it.

For the examples in Figures 4.12 and 4.13, one may argue that the API-using
classes MIFDocument and InternalTables2 have protocols on their own. Un-

CHAPTER 4. API PROTOCOL VIOLATIONS 80

1 public class MIFDocument {
2 protected BookComponent bookComponent;
3 public MIFDocument() {
4 bookComponent = new BookComponent();
5 }
6 public void setTextRectProp(int left, int top,
7 int width, int height) {
8 (bookComponent.curPage()).curTextRect()
9 .setTextRectProp(left, top, width, height);

10 }
11 public void createPage() {
12 bookComponent.pages.add(new Page());
13 }
14 class BookComponent {
15 ArrayList pages = new ArrayList();
16 private Page curPage() {
17 return (Page)pages.get(pages.size() - 1);
18 }
19 }
20 }

Figure 4.12: Incorrect usage of ArrayList in FOP.

fortunately, these classes do not make their protocols explicit to clients of the classes.
Instead, these classes propagate API protocol violations to clients, which may not
even know about the API. The safety property that our analysis checks (safe API
usage, see Section 4.2.1) ensures that if API developers deem a protocol violation im-
portant enough to declare a potential exception, then API-using classes should also
do it.

An obvious question about bug reports is how to fix the bugs. During our ex-
periments, we have seen two strategies towards safe API usage. First, an API-using
method m() can ensure to follow the protocols of all API objects that m() uses and
not to propagate any exception from the API to callers of m(). Often, such methods
return a special value, for example null, when they cannot return another value.
Second, an API-using method m() can propagate API exceptions and declare these
exceptions in its signature. This approach indicates to callers of m() that calling the
method at an illegal state or with illegal input may result in an exception, and hence,
m() explicitly passes the responsibility on to its callers.

Interestingly, many of the detected bugs are surrounded by attempts to shield
users of a class from protocol violations. For example in Figure 4.13, the next()
method checks by calling hasNext() whether a call to next() is legal and returns
null otherwise. That is, the programmers protect clients of the class from some
violations of the iterator protocol but, unfortunately, forgot about another violation.

Comparison to Existing Approaches

We directly compare our analysis to OCD [55], a combined dynamic protocol miner
and checker. OCD also searches for protocol violations by mining and checking pro-

CHAPTER 4. API PROTOCOL VIOLATIONS 81

1 public class InternalTables2 {
2 protected Iterator iter;
3 public void _beginCanonical() {
4 iter = ((TableProvid2)classes).values().iterator();
5 }
6 public Object _next() {
7 if (iter.hasNext()) {
8 cur = iter.next();
9 return (PyJavaClass)cur;

10 }
11 return null;
12 }
13 public void _flushCurrent() {
14 iter.remove();
15 classesDec(((PyJavaClass)cur).__name__);
16 }
17 }

Figure 4.13: Incorrect usage of Iterator in Jython.

tocols at runtime. Two main differences are that OCD relies on existing input to
drive the program and that the analysis combines mining and checking into a single
run of the program under test. Gabel and Su used OCD to analyze the usage of the
Java standard library in the DaCapo 2006-10-MR2 programs, which we also analyze
here. Their technique reports three warnings, matching Gabel and Su’s expectation
to find few problems in these well-tested benchmarks. Manual inspection showed
two warnings to be clear false positives and one warning to be a potential problem.

Applied to the same programs, our analysis reports 54 warnings that are all true
positives. What are the reasons for these differences? First, our analysis does not
report false positives by construction, as explained in Section 4.6. Second, OCD is
limited to the program paths triggered by available input (here, DaCapo’s bench-
mark input). In contrast, the generated tests used by our analysis exercise less inten-
sively tested parts of the programs and trigger API usage bugs not exposed with the
benchmark inputs.

We also compare our approach to FindBugs [75] by running it on the DaCapo
2006-10-MR2 programs. Although FindBugs reports various problems, it misses all
bugs found by our analysis. The reason is that the list of bug patterns coming with
FindBugs covers only a small subset of all possible API usage bugs, excluding those
detected in our evaluation. Instead of relying on a pre-defined list of bug patterns,
our approach extracts API protocols automatically, making it easy to apply the ap-
proach to arbitrary APIs.

4.8.3 API-Guided Test Generation

The goal of guiding test generation towards an API is to reduce the overall time
required to reveal API usage bugs. The most important factor for reducing this time
is the number of generated call sequences, which controls the running times of the

CHAPTER 4. API PROTOCOL VIOLATIONS 82

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 2500 5000 7500 10000

A
P

I c
al

ls
 tr

ig
ge

re
d

Generated call sequences

Unguided Guided

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2500 5000 7500 10000

A
P

I m
et

ho
ds

 c
al

le
d

Generated call sequences

(a) Unguided vs. guided test generation for Xalan and Vector/Enum.

x1

x10

x20

x30

 0 10 20 30 40 50 60 70 80 90

Im
pr

ov
em

t.
of

 s
eq

s.
 to

 b
ug

Runs (sorted by improvement)

x74
x109

Average: x5.0
Median: x1.2

(b) Improvement (that is, reduction) of the number of call
sequences required to trigger a bug for guided runs com-
pared to unguided runs.

Figure 4.14: Graphical comparison of guided and unguided test generation.

test generator, the protocol miner, and the protocol checker. Therefore, we use the
number of generated call sequences as a metric for testing effort.

We compare guided runs of our analysis to unguided runs (Table 4.3). Do guided
runs trigger more API calls than unguided runs within a fixed number of generated
call sequences? The first block of columns in Table 4.3 compares the number of API
calls without guidance and with guidance. Each value is the average over ten runs of
Randoop with different random seeds. For all but one program-API pair, guided runs
trigger more API calls. For example, the number of calls to Vector/Enum triggered in
tests for ANTLR increases from 6,146 to 58,438. On average over all programs, APIs,
and runs, guidance improves the number of API calls by 56.7x (median: 5.2x).

Increasing the number of API calls is important to give the miner different exam-
ples to learn from and to increase the chance to hit a bug. In addition to increasing
the number of API calls, it is also important to trigger calls to different API methods
to expose a broad variety of API protocols and their violations. The second block of

CHAPTER 4. API PROTOCOL VIOLATIONS 83

columns in Table 4.3 lists the number of distinct API methods called. In most cases,
there is no significant difference between guided and unguided runs. The reason
is that our stopping criterion lets the test generator run long enough to give even
unguided runs a realistic chance to hit each API method.

How long does it take the test generator to hit an API method? The third block
of columns in Table 4.3 shows after how many generated sequences an API method
is called the first time. For all but one program-API pair, API methods are called
earlier in guided runs than in unguided runs. On average over all programs, APIs,
and runs, the guided approach calls a method 6.9 times faster than the unguided
approach. That is, even though after enough time the same set of API methods is
called, guided runs achieve this goal much faster than unguided runs.

Figure 4.14a illustrates an unguided and a guided run. The graphs show the cu-
mulative number of API calls and the number of distinct called API methods depend-
ing on how many sequences Randoop has generated, respectively. The first graph
shows that the number of API calls increases much faster with guidance than with-
out guidance. The second graph illustrates that the guided run triggers API methods
much faster than the unguided run, even though both arrive roughly at the same
number of API methods after about 4,500 sequences.

Finally, does guided test generation trigger bugs earlier than unguided test gen-
eration? Figure 4.14b shows how the number of generated sequences required to
trigger a bug improves (that is, reduces) through guidance. The figure compares all
runs where a bug was found both with and without guidance. In most of the runs,
bugs are triggered faster with guidance, with up to 109x improvement. For some
runs, our heuristic triggers bugs slower, with a slowdown up to 8x. On average,
guided runs improve upon unguided runs by 5x.

There is one outlier in Table 4.3: For Jython and the Coll/Iter API, guidance de-
creases the number of API calls and increases the sequences needed to trigger an
API method. The reason is that almost all methods (91%) in Jython are relevant for
using the Coll/Iter API, which skews the method priorities. After all, our guidance
technique is a heuristic that, even though successful in most cases, cannot guarantee
improvements for all programs and APIs.

4.8.4 Scalability and Performance

The total execution time of our analysis is the sum of three components: the time for
generating and executing tests, the time for mining protocols from execution traces,
and the time for checking execution traces against protocols. All three components
scale well to large programs. Randoop’s execution time is the product of the number
of sequences to generate and a program-specific factor (because Randoop executes
code from the program). The performance of the protocol miner scales linearly with
the size of the execution traces [125], which is also true for the checker because it
builds upon the same infrastructure. On a standard PC, analyzing a program-API
pair takes between less than a minute and several minutes.

4.8.5 Threats to Validity

We are aware of the following threats to the validity of this evaluation. First, the
selection of programs we analyze may not be representative for all Java programs.
To avoid selection bias, we analyze all programs from a well-known benchmark

CHAPTER 4. API PROTOCOL VIOLATIONS 84

suite [15] and report the results for all of them. Second, we stop the test genera-
tor at a maximum number of generated tests. A different stopping criterion may
give different results. Third, the number of repetitions we use to compensate for the
random nature of the test generator may not be sufficient to accurately characterize
the real distribution of the underlying random process. Finally, the assessment that
all reported warnings are true positives depends on the assumption that developers
require safe API usages. If this safety property is not desired by the developers, for
example, because the project is small enough to support undocumented propagation
of exceptions, then the reported warnings may not be relevant.

CHAPTER 4. API PROTOCOL VIOLATIONS 85

Ta
bl

e
4.

3:
C

om
pa

ri
so

n
of

un
gu

id
ed

an
d

gu
id

ed
te

st
ge

ne
ra

ti
on

.T
he

la
st

ro
w

su
m

m
ar

iz
es

th
e

re
su

lt
s

fr
om

al
lr

un
s.

Pr
og

ra
m

A
PI

ca
lls

C
al

le
d

A
PI

m
et

ho
ds

Se
qu

en
ce

s
to

fir
st

ca
ll

C
ol

l/
It

er
Ve

ct
or

/E
nu

m
C

ol
l/

It
er

Ve
ct

or
/E

nu
m

C
ol

l/
It

er
Ve

ct
or

/E
nu

m
U

ng
..

G
ui

d.
U

ng
..

G
ui

d.
U

ng
..

G
ui

d.
U

ng
..

G
ui

d.
U

ng
..

G
ui

d.
U

ng
..

G
ui

d.

A
N

TL
R

3,
06

8
7,

91
5

6,
14

6
58

,4
38

3
3

11
11

93
0

51
0

65
1

18
8

BL
O

A
T

33
,3

63
47

,2
69

0
0

62
62

0
0

68
6

47
0

0
0

ch
ar

t
1,

56
4,

16
1

2,
35

6,
75

1
27

8
19

,7
61

77
75

5
6

62
4

23
6

5,
47

2
72

0
Ec

lip
se

33
,3

34
16

4,
05

1
29

,2
85

15
2,

10
3

45
40

20
20

50
6

34
8

80
4

51
2

FO
P

12
,2

91
59

,2
20

1,
16

3
22

,0
78

46
46

12
12

1,
01

6
60

1
14

00
26

0
H

SQ
LD

B
1,

54
9

50
,7

30
37

,4
79

65
6,

17
2

12
28

12
14

2,
50

3
27

5
1,

23
8

10
5

Jy
th

on
26

1,
27

6
23

6,
71

8
36

,4
74

12
2,

40
0

10
5

89
18

18
44

4
80

2
1,

41
4

57
5

Lu
ce

ne
70

,8
84

13
6,

49
0

66
,1

69
97

,5
85

38
37

12
12

56
1

53
7

94
2

1,
86

1
PM

D
16

,3
71

13
4,

07
4

2,
93

4
45

0,
22

8
91

93
19

21
1,

26
4

63
8

6,
05

1
2,

16
7

X
al

an
22

,2
89

11
6,

22
5

38
,2

30
10

6,
60

0
9

9
17

18
94

0
45

9
80

2
37

6

A
vg

./
M

ed
.

Im
pr

ov
em

en
t:

x5
6.

7
/x

5.
2

Im
pr

ov
em

en
t:

x1
.0

/x
1.

0
R

ed
uc

ti
on

:x
6.

9
/x

1.
9

CHAPTER 4. API PROTOCOL VIOLATIONS 86

4.9 Support for the Thesis

The presented approach for finding protocol bugs supports our thesis that automatic
program analysis allows for precisely detecting programming errors with little effort.

Automation Our approach achieves a high degree of automation for two reasons:

• Test generation. Dynamic analysis is bound to analyze executions driven by
available input. Traditionally, such input must be written by developers, for
example, unit tests, or must be provided by users, for example, through record
and replay of executions in the field. Instead of relying on human-produced in-
put, we leverage test generation as a driver for dynamic analyses. A key insight
of our approach is to distinguish passing from failing tests, to use the former
to learn about common behavior, and to use the latter to check for violations of
common behavior.

• Protocol mining. Checking a program against a specification requires a specifi-
cation, which—traditionally—must be written by developers in addition to a
program. Instead, our approach leverages protocol mining to obtain specifica-
tions automatically.

Precision Our approach is precise because all warnings that it reports are guaran-
teed to point to unsafe API usages, that is, true positives. Along with each warning,
the analysis reports a concrete test case that shows how using a class leads to a proto-
col violation that surprises clients of the class. The reason why the approach avoids
false positives is that it focuses on exceptions, that is, on certainly undesired behavior.

Effort The approach involves low human and computational effort. Human effort
for using the approach is the sum of the effort to invest for starting the analysis and
the effort to invest for inspecting its warnings. The effort for starting the analysis
is small because of its high degree of automation. The only input required by the
analysis are the classes of the program under test. The effort for inspecting reported
warnings is small because all reported warnings are true positives and because each
warning comes with a concrete test case.

The computational effort of the approach (Section 4.8.4) is low enough for an au-
tomatic program analysis that runs without any human interaction. For large-scale
deployment, parallelizing the analysis is straightforward since each class-API pair
can be analyzed independently from the others.

4.10 Limitations and Future Work

We envision several directions of future work:

• Other kinds of specifications. The current analysis is limited to detecting viola-
tions of API protocols. Future work may apply the approach to other kinds of
dynamically inferred specifications, such as invariants [46, 68].

• Non-exceptional misbehavior. The current analysis focuses on bugs that manifest
through an exception. While this approach guarantees all reported warnings
to correspond to severe bugs, we might miss more subtle problems that lead to

CHAPTER 4. API PROTOCOL VIOLATIONS 87

incorrect but not obviously wrong behavior. Future work may adapt our ap-
proach to search for misbehavior that does not manifest through an exception.

• Application-level feasibility of paths. The current analysis reveals unsafe API us-
ages in classes of a program but does not guarantee that a crash is feasible
when using the program as a whole, for example, via its graphical user inter-
face. Nevertheless, all reported bugs are real problems because a programmer
can trigger them via the public interface of a class. That is, even if a bug is in-
feasible in the current program, changes in using the buggy class can make it
feasible. Programmers can avoid this risk through safe API usage. Future work
may use GUI-level test generation [64] to analyze paths that are feasible when
using the program as whole.

• Unfinished API usages. The current analysis checks for method calls that are
illegal at the current protocol state. In addition, a checker may search for API
usages that do not reach a final protocol state, that is, unfinished API usages. A
challenge for such an approach is to avoid false positives caused by generated
tests that trigger incomplete usages not possible when using the program as a
whole.

5Incorrectly Ordered, Equally
Typed Arguments

In statically typed programming languages, method parameters have types to ensure
that each argument passed to a method has the expected type.1 Unfortunately, type
specifications are insufficient when a method has multiple parameters of the same
type. For example, a method setEndPoints(int high, int low) requires two
int arguments. If a programmer accidentally calls this method with incorrectly or-
dered arguments, the compiler has no means to warn her. Can we support program-
mers in ordering equally typed arguments correctly?

In this chapter, we present an automatic, mostly language-agnostic, static analysis
to detect anomalies in the order of equally typed method arguments. The analysis
takes the source code of a program as its input and reports warnings about poten-
tially erroneous call sites of methods with equally typed arguments. In contrast to
Chapters 2, 3, and 4, the analysis reports programming errors that go beyond cor-
rectness bugs. The analysis also reports warnings that point developers to naming
bugs and other noteworthy anomalies. Warnings that do not directly affect correct-
ness can still be relevant for developers because these warnings point to problems
related to the understandability and maintainability of a program.

In the following section, we motivate the analysis with real-world programming
errors related to equally typed arguments. Sections 5.2 to 5.4 present the analysis
and its implementation for Java and C. In Section 5.5, we evaluate the approach by
applying it to real-world programs. Finally, Sections 5.6 and 5.7 discuss how the
analysis fits the thesis of this work and outlines directions of future work.

5.1 Motivation

There are three kinds of programming errors related to equally typed method argu-
ments, which we illustrate with examples from real-world Java and C programs.

• A programmer can accidentally reverse arguments and pass them in the wrong
order (Figure 5.1a). Such a mistake leads to unexpected program behavior and

1We refer to formal parameters in a method declaration as parameters and to objects passed to methods
at a call site as arguments. When saying method, we mean both functions (as in C) and methods (as in Java).

88

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 89

affects the program’s correctness. To correct this kind of error, the programmer
should reorder the arguments.

• Equally typed method parameters with badly chosen parameter names make
using a method unnecessary difficult (Figure 5.1b). Identifier names play an im-
portant role for program understanding [89] and code quality [24]. Since this
is particularly true for equally typed method parameters, inadequate names
affect the program’s understandability. To correct this kind of error, the pro-
grammer should give the parameters more meaningful names.

• Arguments that are unusually ordered can confuse a reader of the source
code. An unusual argument order can be necessary, for example, because the
program’s semantics require doing the inverse of the expected (Figure 5.1c).
However, an unusual argument order naturally raises the question whether a
method call site is correct. Unless a comment explains the reason for such an
anomaly, it will negatively affect the program’s maintainability. To correct this
kind of error, the programmer should add a comment that explains why an
unusual argument order is correct.

Programming errors related to equally typed arguments are hard to find. The
main reason is that these problems involve the semantics of the program, which are
not explicit in the source code but only exist in the mind of the programmer. Tradi-
tional compilers are oblivious to the order of equally typed arguments: As long as the
types of arguments and parameters match, the program compiles without warnings.
The problem is compounded by the fact that bugs caused by incorrectly ordered ar-
guments may not raise an exception, and therefore remain unnoticed during testing.
For instance, reversing the arguments of a call to setEndPoints(int high, int
low) introduces a subtle semantic error, which can remain unnoticed until late in the
development process.

Call sites of methods with equally typed arguments account for a significant part
of all method call sites. Within a corpus of programs comprising 1.6 million lines of
Java code (DaCapo 9.12, Table A.2), 11% of all method call sites (77,610 out of 683,504)
have two or more equally typed arguments. That is, for 77,610 method call sites the
type system cannot ensure that the arguments passed by the programmer are ordered
correctly. The problem is even more relevant for C programs. In a collection of 620
thousand lines of C code (Spec CPU 2006, Table A.3), 26% of all call sites (25,219 out
of 96,633) have equally typed arguments. On average, these programs contain a call
site with unchecked argument order every 24 lines of code. As evidenced by various
entries in public issue tracking systems and source code repositories2, programmers
are susceptible to problems related to equally typed arguments.

To the best of our knowledge, there is no existing technique to automatically find
anomalies related to equally typed arguments. However, there exist two kinds of
approaches to prevent argument ordering problems. The first approach are conven-
tions. For example, the arguments of a method moving data from a source to a sink
are typically ordered so that the source argument is passed before the sink argu-
ment. Conventions can prevent argument ordering bugs, but require careful and

2For example, see issue 4732 in the Apache Hadoop Common bug tracker, issue 3890 in the Liferay bug
tracker, revisions 58536, 58764, and 60357 of the JBoss SVN repository, or revisions 10263 and 13935 of the
JikesRVM SVN repository.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 90

disciplined programming. Also, there are cases where no obvious ordering of argu-
ments exists, and hence, conventions are hard to apply in practice. The second ap-
proach to prevent argument ordering problems is better support by the programming
language. Some languages, such as Smalltalk and Scala, allow for named arguments,
where callers of a method explicitly assign arguments to method parameters. For
example, one can call setEndPoints(high=myHigh, low=myLow). However,
named arguments are not available in all languages, and also introduce additional
boilerplate code, which may not be accepted by programmers.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 91

(a
)

(b
)

(c
)

Pr
og

ra
m

Ec
lip

se
3.

5.
1

Jy
th

on
2.

5.
1

gc
c

3.
2

M
et

ho
d

ca
ll

cr
ea
te
Al
ig
nm
en
t(
n
a
m
e,

m
o
d
e,

Al
ig
nm
en
t.
R_
IN
NE
RM
OS
T,

co
un
t,

so
ur
ce
Re
st
ar
t,

ad
ju
st
)
;

_p
ow
(c
oe
rc
e(
le
ft
),

va
lu
e,

nu
ll
)

ge
ne
ra
te
Op
ti
mi
ze
dB
oo
le
an
(

cu
rr
en
tS
co
pe
,
co
de
St
re
am
,

fa
ls
eL
ab
el
,
tr
ue
La
be
l,

va
lu
eR
eq
ui
re
d)

C
al

le
d

m
et

ho
d

Al
ig
nm
en
t
cr
ea
te
Al
ig
nm
en
t(

St
ri
ng

n
a
m
e,

in
t
m
o
d
e,

in
t
co
un
t,

in
t
so
ur
ce
Re
st
ar
t,

in
t
co
nt
in
ua
ti
on
In
de
nt
,

bo
ol
ea
n
ad
ju
st
)

Py
Fl
oa
t
_p
ow
(

do
ub
le

va
lu
e,

do
ub
le

i
w,

Py
Ob
je
ct

mo
du
lo
)

vo
id

ge
ne
ra
te
Op
ti
mi
ze
dB
oo
le
an
(

Bl
oc
kS
co
pe

cu
rr
en
tS
co
pe
,

Co
de
St
re
am

co
de
St
re
am
,

La
be
l
tr
ue
La
be
l,

La
be
l
fa
ls
eL
ab
el
,

bo
ol
ea
n
va
lu
eR
eq
ui
re
d)

C
om

m
en

t
Bu

g
ca

us
ed

by
in

co
rr

ec
ta

rg
um

en
t

or
de

ri
ng

:
Th

e
hi

gh
lig

ht
ed

ar
gu

-
m

en
ts

ar
e

no
t

at
th

e
ex

pe
ct

ed
po

-
si

ti
on

.
Tr

ig
ge

re
d

by
ou

r
bu

g
re

-
po

rt
,

th
e

pr
ob

le
m

ha
s

be
en

fix
ed

fo
r

Ec
lip

se
3.

7.

Ba
dl

y
ch

os
en

pa
ra

m
et

er
na

m
es

:
Th

e
m

et
ho

d
pe

rf
or

m
s

ex
po

ne
n-

ti
at

io
n

of
tw

o
d
o
u
b
l
e

pa
ra

m
e-

te
rs

.
R

en
am

in
g

th
e

fir
st

tw
o

pa
-

ra
m

et
er

s
to

b
a
s
e

an
d
e
x
p
o
n
e
n
t

w
ou

ld
cl

ar
if

y
th

ei
r

se
m

an
ti

cs
.

N
ot

ew
or

th
y

an
om

al
y:

i
f
t
r
u
e
l
a
b
e
l

an
d

i
f
f
a
l
s
e
l
a
b
e
l

ar
e

pa
ss

ed
in

th
e

in
ve

rs
e

or
de

r
of

th
e

m
et

ho
d

de
cl

ar
at

io
n.

A
co

m
m

en
t

ex
pl

ai
ni

ng
th

is
an

om
al

y
m

ak
es

m
ai

nt
ai

ni
ng

th
e

co
de

ea
si

er
.

Fi
gu

re
5.

1:
Ex

am
pl

es
of

pr
ob

le
m

s
re

la
te

d
to

eq
ua

lly
ty

pe
d

m
et

ho
d

ar
gu

m
en

ts
fo

un
d

in
Ja

va
an

d
C

pr
og

ra
m

s.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 92

5.2 Overview of the Approach

We present a static program analysis to detect anomalies in the order of equally typed
method arguments. The presented analysis is fully automatic and requires no input
except for the source code of the program to analyze. Instead of relying on addi-
tional information, such as formal specifications, our technique infers knowledge
about equally typed arguments from the source code. The output of the analysis
is precise: Most of the reported anomalies are indeed programming errors. In exper-
iments with well-tested Java and C programs, the analysis reports 66 warnings, out
of which 54 (82%) point to problems that developers should address.

The key observation that enables our approach is that programmer-given identi-
fier names convey implicit semantic knowledge about arguments. Our analysis lever-
ages this knowledge by searching for inconsistencies in the names given to method
arguments and method parameters. The analysis extracts identifier names from the
source code of a program and compares the names used at different call sites of a
method with each other using string similarity metrics. If reordering equally typed
arguments at a particular call site fits the names used at other call sites of this method
significantly better, our system reports an anomaly and proposes to reorder the argu-
ments.

The analysis detects the three kinds of programming errors described in Sec-
tion 5.1. The analysis finds correctness bugs caused by accidentally reversed argu-
ments, such as Figure 5.1a, because the names of these arguments often deviate from
the names of correctly ordered arguments. The analysis also reveals badly chosen pa-
rameter names (or naming bugs), such as Figure 5.1b, as these names often do not al-
low for inferring the correct argument order. Finally, the analysis detects noteworthy
anomalies, such as Figure 5.1c, where reordering the arguments seems more in line
with other call sites of the method than the current argument order. The analysis cur-
rently cannot distinguish whether a noteworthy anomaly is already commented or
not. If there is no comment to explain the anomaly, the warning points to a program-
ming error because the developers should add a comment. Suppressing warnings
for noteworthy anomalies that have already a comment is left as future work.

Our approach consists of two steps (Figure 5.2). The first step, name extraction,
gathers identifier names that programmers have given to method arguments and

Program
Argument
Naming

Examples
Anomalies

(1) Name
Extraction

(2) Anomaly
Detection

void m(int a,
int b) {..}

m(a, b);
m(b, a);

(a,b)
(a,b)
(b,a)

m(b, a);

Reverse?

Figure 5.2: Overview and a simple example.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 93

method parameters. The output of this step is a list of argument naming examples for
each method with equally typed arguments. These naming examples provide in-
sights into the semantics of arguments and can be used to determine the order in
which arguments should be passed. The second step of the analysis is anomaly detec-
tion. It searches for anomalies in the naming examples by computing the similarities
between names used at different positions. An anomaly occurs if the names of argu-
ments deviate from typically used names and if a different argument order than the
order in the source code seems appropriate. The output of the second step is a list
of anomalies, each coming with a proposal how to reorder arguments to avoid the
anomaly.

The two steps of the analysis can be viewed as a front end and a back end.
While the front end, which extracts naming examples from source code, is language-
dependent, the back end, which searches for anomalies, is language-independent. A
benefit of this separation is that one can easily adapt our approach to different pro-
gramming languages. We present front ends for Java and for C.

We envision two usage scenarios for our approach. During the development of
a program, the analysis provides an inexpensive, automatic technique to find prob-
lems related to equally typed arguments in an early stage of development. For exam-
ple, if a programmer accidentally reverses two arguments, our analysis can spot this
anomaly and report a warning even before testing the source code. Another usage
scenario is maintenance of mature and well-tested programs. While in this scenario,
we expect few bugs to be found, anomalies are nevertheless of interest, for exam-
ple, to add a comment explaining why an unusual order of arguments is correct in a
particular context.

5.3 Name Extraction

The goal of the name extraction step of our analysis is to gather as many examples as
possible that show how programmers name the arguments passed to a method. We
extract these examples from source code by analyzing method call sites and method
declarations. As this work focuses on problems related to equally typed arguments,
only methods with multiple parameters of the same type are considered.

The analysis traverses the abstract syntax tree and extracts from each method call
site two kinds of information: the signature of the called method and the names of the
arguments passed to the method. The part of the analysis that extracts names from
arguments is language-specific. In each language, different kinds of expressions can
be passed as arguments. In the following, we present name extraction techniques for
Java and C. We begin with kinds of argument expressions supported by both Java
and C, and afterwards discuss more specific argument expressions.

5.3.1 Java and C Language

The analysis extracts names from the following expressions:

• Identifiers (for example, local variables): The name of an identifier is simply
the identifier itself.

• Array accesses: The name of an array access is the name of the array expression,
that is, ignoring the index expression.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 94

• Casts: The name of a cast expression is the name of the casted expression, ig-
noring the type to which it is cast.

5.3.2 Java Language

Our analysis extracts names from the following Java-specific argument expressions:

• Field accesses: The name of a field access is the name of the accessed field, ig-
noring the underlying expression on which the field is accessed. This includes
fields of this and super fields.

• Method call sites (with return value passed as an argument): The name of a
method call site is the name of the called method, ignoring the underlying ex-
pression that yields the method receiver. In Java, getter methods are a common
naming practice. As the get prefix does not convey any semantics relevant for
our approach, we remove this prefix from all method names starting with get.

For instance, the following Java method call sites provide three naming examples:

setEndPoints(x.highEP[i], lowEP);
// (highEP,lowEP)
setEndPoints(obj.h, getLow()); // (h,Low)
setEndPoints(getHighs()[5], (int) low) // (Highs,low)

5.3.3 C Language

For C programs, the analysis extracts the following names in the addition to those
described in Section 5.3.1:

• Access to members of structs and unions: The name of a member access is the
name of the accessed member, ignoring the underlying expression on which
the member is accessed.

• Address-of operators: The name of an expression of the form &x is the name of
x.

• Dereference operators: The name of an expression of the form *x is the name
of x.

• Method call sites (with return value passed as an argument): The name of a
method call site is the name of the called method, ignoring the underlying ex-
pression that yields the receiver.

For example, consider the following C method call sites and the extracted naming
examples:

setEndPoints(h, low[3]); // (h,low)
setEndPoints(foo->high, &low); // (high,low)
setEndPoints(*highPtr, f().low()); // (highPtr,low)

Some argument expressions, such as literals and arithmetic expressions, are not
analyzed because the analysis cannot extract unambiguous names from them. If at
least one argument of a method call has no unambiguous identifier name, the analy-
sis ignores the method call.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 95

Besides call sites of methods, there is another source of information about the
names of method arguments: formal parameters. Formal parameter names given in
the declaration of a method are often similar to the names used at call sites. Therefore,
we analyze all method declarations in a program and use formal parameter names
as an additional example of how arguments are named. For example, the following
method declaration gives a naming example:

void setEndPoints(int high, int low) {..} // (high, low)

The analysis groups naming examples so that all examples for the same method
signature and for the same argument type are in one group. Grouping by method
signature is useful because the argument names of one method are independent of
the argument names of other methods. Overloaded methods are treated as different
methods because one cannot easily map their parameters to each other. For instance,
the following two variants of m() are treated as two methods, as we do not know
how to map a and b to x, y, and z:

void m(int a, int b) {..}
void m(int x, int y, int z) {..}

Grouping by argument type is required because some methods expect equally
typed parameters of multiple types. For instance, the following method expects two
int parameters and two String parameters:

void m(int length, int offset, String name, String msg) {..}

In this case, we analyze naming examples for m()’s int arguments separately
from naming examples for m()’s String arguments.

In summary, the naming examples extracted by the first step of our analysis are
defined as follows:

Definition 12 (Argument naming examples). The argument naming examples of a
method m() and a type T consist of the set {Nc1 , .., Nck , Ndecl}, where

• Nc1 , .., Nck are the tuples of names given to the arguments of type T at call sites c1 to
ck of m(), and

• Ndecl is the tuple of names given to the formal parameters of type T in m()’s declara-
tion.

5.4 Anomaly Detection

The anomaly detection leverages the extracted argument naming examples to search
for anomalies in the order in which arguments are passed to a method. An anomaly
is a call site of a method where arguments of the same type are named in a way that
suggests a different order than the order in the source code. For instance, Figure 5.3a
shows a list of naming examples for setEndPoints()’s int arguments. We refer
to naming examples with N1, N2 etc. Example N5 is an anomaly, because the first ar-
gument name, low, is similar to names used at the second position, while the second
argument name, high, is similar to names used at the first position. Our analysis
detects such anomalies and proposes a way to avoid them (here, by reversing the
arguments of example N5).

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 96

To avoid overwhelming a user of our analysis with irrelevant reports, it is impor-
tant to not report every unusual argument name as an anomaly. Our analysis reports
an anomaly only if changing the order of arguments makes the arguments signifi-
cantly more similar to other arguments used in their respective position then using
the current order. For instance, example N2 is not an anomaly, although the name
of the first argument is dissimilar to the other names of arguments used at the first
position. The reason is that the second argument name of example N2 is similar to
other names at the second position; therefore, changing the argument order would
not increase the overall fit of N2 to the other naming examples.

The key idea of our analysis is that argument names used at different call sites
of a method are often similar to each other. We exploit this observation to detect
anomalies by comparing argument names using a string similarity metric. Such a
metric returns for each pair of strings a value in the range between zero (dissimilar)
and one (very similar or equal). For each argument naming example, we compute
the similarity of a name used at a particular position with other names used at this
position and with other names used at other positions. If a permutation of the current
argument order makes the names of an example significantly more similar to the
other examples than the current order, then the analysis reports an anomaly.

An alternative to using string similarity is to check whether names are equal.
However, slight variations of an argument name, such as high and highEP, would
make two arguments seem different although they clearly mean the same. A string
similarity metric allows for quantifying the similarity of names, and thus, to also
consider variations of names.

5.4.1 Algorithm

Algorithm 7 outlines our approach for detecting anomalies. The algorithm takes
a list of argument naming examples as input and outputs a set of permutations that
each resolve an anomaly. The algorithm iterates over all examples, and for each ex-
ample, goes through all possible permutations of the example’s names. The core of
the algorithm are lines 6 to 15. Here, it computes a score, permScorenorm, that in-
dicates how “normal” the argument names are with a permutation P . That is, the
score expresses how similar the reordered names are to other names found at their
respective positions. If a permutation of the current argument order has a score that is
significantly higher than the score currentScore of the current argument order, then
the analysis reports an anomaly and proposes to reorder the arguments according to
the permutation.

Permutations

We represent a permutation as a set of assignments of argument names to a position:

P ⊆ N × {1, . . . , |N |}
= {(n, i) | P assigns name n to position i}

For example, the naming example N5 as shown in Figure 5.3a is represented as:

{low 7→ 1, high 7→ 2}

Inverting the two arguments is represented as:

{low 7→ 2, high 7→ 1}

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 97

Algorithm 7 Anomaly detection based on string distance between argument names.

Input: Argument naming examplesN
Output: WarningsW , each being a pair of a permutation that resolves an anomaly

and a confidence value
1: for all N ∈ N do
2: currentScore← 0.0
3: bestScore← 0.0
4: Pbest ← current permutation
5: for all P ∈ permutations(N) do
6: permScore← 0
7: for all n ∈ N do
8: posScore← 0
9: for all i ∈ {1, . . . , |N |} do

10: if (n, i) ∈ P then
11: posScore← posScore+ scoreassign(n, i)
12: else
13: posScore← posScore− scoreassign(n, i)
14: posScorenorm ← (posScore+ |N | − 1)/|N |
15: permScore← permScore+ posScorenorm

16: permScorenorm ← permScore/|N |
17: if isCurrent(P) then
18: currentScore← permScorenorm

19: if permScorenorm > bestScore then
20: bestScore← permScorenorm

21: Pbest = P
22: conf ← bestScore− currentScore
23: if conf > t then
24: W ←W ∪ {(Pbest, conf)}

Permutation Score

We compute a score permScore for each permutation. This score is the sum of scores
for each position of an argument. For example, the score for a permutation of two ar-
guments is the sum of a score for the first position and a score for the second position.
Since the permutation score depends on the number of equally typed arguments, we
normalize it into the range [0, 1] (line 16).

Position Score

The score posScore for a position depends on a score scoreassign(n, i) that indicates
how well a name n fits position i. The posScore for a position i is the score for assign-
ing the name to the position proposed by the permutation minus the sum of scores
for all assignments of this name to other positions. That is, the assignments of a per-
mutation influence its score positively (line 11), while all other possible assignments
influence its score negatively (line 13).

Including positive and negative scores for assignments into the overall score of a
position makes the algorithm more robust to cases where an argument seems to fit

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 98

multiple positions. In this case, our algorithm cannot choose a single position as the
most suitable, and computing a high score for any position would be misleading. If a
permutation includes highly ranked assignments but also rejects other highly ranked
assignments, the overall score includes high positive and high negative assignment
scores that compensate for each other. Thus, the overall score expresses the uncer-
tainty resulting from multiple apparently suitable permutations.

Similar to the permutation score, the position score depends on the number of
equally typed arguments and therefore is normalized into the range [0, 1] (line 14).

Assignment Score

The score scoreassign(n, i) for assigning an argument name n to a position i indicates
how well a name n fits position i. To compute scoreassign, we combine the string
similarity between n and all other names in the naming examples of the method. At
first, we compute the average similarity similni of n to the arguments used elsewhere
at position i:

similni = Avg({simil(n, n′) |
n′ is argument at position i in others examples})

Then, we compute the average similarity similnothers of n to arguments used in
other examples at positions other than i:

similnothers = Avg({simil(n, n′) |
n′ is argument at position j 6= i in other examples})

Finally, we combine both intermediate values into the result:

scoreassign(n, i) = max(0, similni − similnothers)

Subtracting similnothers from similni is important to adjust the result of similni to
the degree to which all arguments passed to the method resemble each other. The
argument names of some methods vary a lot and one cannot infer any useful infor-
mation from them. To deal with such cases, we subtract similnothers, which can be
thought of as a measure for noise, from similni . As a result, the score for assigning n
to i is normalized to the amount of knowledge we can infer from the given names,
and thus, is higher if we have more confidence in the result.

Best versus Current Permutation

The last step of Algorithm 7 is to select permutations for which we know with confi-
dence that they make the order of arguments more “normal” than the current order.
While computing scores for permutations of a naming example, the algorithm stores
the score of the current permutation into currentScore and the maximum score over
all permutation into bestScore. If the best score is at least t larger than the current
score, then the algorithm adds the permutation Pbest, which has the best score, to the
setW of reported warnings. We discuss how to set the threshold t in Section 5.5.3.

The output of the algorithm a set of warnings. Each warning consists of a permu-
tations that avoids an anomaly and a confidence value that indicates how confident
the analysis is that the warning should be reported.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 99

Ex. Pos. 1 Pos. 2

N1 high low
N2 h Low
N3 high low
N4 highEP lowEP
N5 low high

(a) Arguments.

hi
gh

hi
gh

EP

h lo
w

lo
w

EP

Lo
w

high 1 0.71 0 0 0 0
highEP 0.71 1 0 0 0.60 0
h 0 0 1 0 0 0
low 0 0 0 1 0.53 1
lowEP 0 0.60 0 0.53 1 0.53
Low 0 0 0 1 0.53 1

(b) String similarities.

scoreassign(low, 1) = max(0, 0− 0.85) = 0

scoreassign(low, 2) = max(0, 0.85− 0) = 0.85

scoreassign(high, 1) = max(0, 0.62− 0) = 0.62

scoreassign(high, 2) = max(0, 0− 0.62) = 0

permScorenorm of {high 7→ 1, low 7→ 2}

=
0.85−0+2−1

2
+ 0.62−0+2−1

2

2
= 0.87

permScorenorm of {low 7→ 1, high 7→ 2}

=
0−0.85+2−1

2
+ 0−0.62+2−1

2

2
= 0.13

conf of {high 7→ 1, low 7→ 2} = 0.87− 0.13 = 0.74

(c) Score computation for example N5.

Figure 5.3: Examples of anomaly detection.

5.4.2 Example

Figure 5.3 illustrates the anomaly detection technique with an example. Figure 5.3a
shows five naming examples for the method setEndPoints(). Suppose that N1

has been extracted from the declaration of setEndPoints() and that N2, . . . , N5

are gathered from call sites of the method. The algorithm traverses these naming
examples and analyzes each permutation of the given argument names, that is, five
permutations that each reverse the first and second argument of an example.

We compute the string similarities between all involved argument names (Fig-
ure 5.3b). Different string similarity metrics provide different results here. The shown
numbers are computed with the TFIDF metric. We discuss and compare several met-
rics in Section 5.5.3.

The argument names of example N5 deviate from the other naming examples.
Their names suggest reversing the arguments, that is, to order them according to the

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 100

permutation {(high, 1), (low, 2)}. Figure 5.3c illustrates how our algorithm computes
the scores that indicate how “normal” this permutation and the current permutation
are. The computation combines scores for each assignment of the permutation. For
example, assigning low to position 2 has a score of scoreassign(low, 2) = 0.85, be-
cause simillow2 = 0.85 and simillowothers = 0. The overall score for the permutation is
0.87, whereas the score for the current permutation is 0.13. That is, the confidence
for inverting the arguments of N5 is 0.74. Because the confidence is greater than
our default threshold t = 0.4, the analysis reports a warning about N5 and suggests
inverting the two arguments.

5.4.3 Refinements

The anomaly detection presented in Algorithm 7 can be used as described so far and
we show in previous work that it can effectively detect anomalies that point to real
problems [126]. In the following, we describe several refinements of the approach
that allow for detecting more anomalies while reporting less false positives. Some
of the refinements depend on configurable parameters; we evaluate the sensitivity of
the analysis to these parameters in Section 5.5.3.

Example Families

The anomaly detection described so far analyses all naming examples of a method
together. Often, there are multiple common naming schemes for arguments of a
method and analyzing them separately exposes more about the semantics of argu-
ments than analyzing all together. For example, Figure 5.4a lists naming examples
for String.substring(int,int). Obviously (for a human), the last example is
an anomaly that the analysis should report. However, some naming examples use a
“start”-“end” naming scheme, whereas others use a “first”-“last” naming scheme.
If the anomaly detection analyzes all naming examples together, it may miss the
anomaly because permuting end and start does not have enough confidence.

We refine the approach presented so far by applying the anomaly detection to
subsets of all naming examples. The subsets are chosen in such a way that they
contain examples with similar names, that is, examples that are likely to use the same
naming scheme. We call such subsets of naming examples example families.

Our algorithm for creating example families depends on a similarity measure for
naming examples. Naming examples are similar to each other if their sets of ar-
gument names are similar. To compute the similarity of naming examples, we ex-
tend the string similarity measure to sets of strings as follows. Given two sets of
strings S1 and S2, we find the pairwise mapping between strings from S1 and S2
where the average similarity between pairs is maximal and then report this simi-
larity. For example, given S1 = {start, end} and S2 = {startPos, endPos}, we
find that start 7→ startPos and end 7→ endPos gives a similarity of 48%, whereas
start 7→ endPos and end 7→ startPos gives a similarity of 0%. Thus, the similarity
of S1 and S2 is 48%.

Based on the similarity measure for naming examples, we compute example fam-
ilies for each naming example observed for a method. For a particular naming ex-
ample N , we perform two steps. At first, we compute the similarity of N to the
other naming examples of the method. Then, we create example families that con-
tain N and that fulfill two conditions. First, all naming examples in a family must
have a similarity to N below some coherence value. Our implementation considers

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 101

All examples

Position 1 Position 2

start end
startIndex endIndex
first last
start end
startPos lastPos
start end
first last
first last
end start

(a) Naming examples.

Coherence: 100%

Position 1 Position 2

start end
start end
start end
end start

Coherence: 40%

Position 1 Position 2

start end
startIndex endIndex
start end
start end
end start

Coherence: 20%

Position 1 Position 2

start end
startIndex endIndex
start end
startPos lastPos
start end
end start

Coherence: 0%

Position 1 Position 2

start end
startIndex endIndex
first last
start end
startPos lastPos
start end
first last
first last
end start

(b) Example families for the naming examples.

Figure 5.4: Example families.

ten coherence levels (10%, 20%, . . . , 100%), that is, we try to create families with 10%
coherence, 20% coherence, etc. The rationale for trying different coherence levels is
that there is no level that is works best for all programs. Second, the number of nam-
ing examples in the family must be above a configurable threshold, which we discuss
in Section 5.5.3.

For the naming examples in Table 5.4a, the algorithm creates four families for the
last call site in the table. These families are listed in Figure 5.4b. The first family
contains only naming examples with exactly the same argument names as the last
call site. The other families gradually add more and more call sites and the fourth
family contains all naming examples.

The refined anomaly detection checks whether a naming example is an anomaly
by analyzing each example family separately. If the analysis finds an anomaly for
any of the families, then the anomaly is reported. This refined approach increases
the recall of our approach compared to the approach described in [126] because the
anomaly detection now detects anomalies that are obvious when analyzing a sub-
set of naming examples but that previously have been hidden among other naming
examples.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 102

Subsets of All Parameters

The approach described so far considers all parameters of equal type at once. For
methods with many equally typed parameters, this approach leads to two problems.
First, an anomaly that involves only a subset of all parameters may be hidden within
the other parameters. For example, consider a method with seven equally typed
parameters and a call site of the method from which we extract the naming exam-
ple a,b,c,d,f,e,g, where f and e should be inverted. If the anomaly detection
considers all seven parameters, the anomaly may remain unnoticed because the dif-
ference between the scores for a,b,c,d,f,e,g and a,b,c,d,e,f,g is below the
threshold. In contrast, analyzing only f,e and e,f may reveal the anomaly. Second,
analyzing all permutations of naming examples of methods with many parameters is
a scalability problem because each naming example of a method with k parameters
has k! permutations.

To address these two problems, we refine our approach by considering subsets
of all equally typed parameters of a method. Instead of analyzing all parameters at
once, the refined analysis considers all subsets with at least two parameters and at
most four parameters. For each such subset, we run the anomaly detection sepa-
rately. If for any of the subsets the analysis detects an anomaly for a call site, then
this anomaly is reported to the user. If the analysis finds multiple anomalies for the
same call site and argument type, then only the anomaly with the highest confidence
is reported.

Considering subsets of all parameters addresses the problems describes above.
First, the refined analysis discovers anomalies that otherwise would be hidden
among other parameters. For the example above, the refined analysis may report that
f and e should be inverted because it analyzes these two arguments without consid-
ering the other parameters of the method. Second, the refined analysis improves the
scalability of the approach for methods with many equally typed parameters. Instead
of considering k! permutations, it considers only 2! ·

(
k
2

)
+ 3! ·

(
k
3

)
+ 4! ·

(
k
4

)
permuta-

tions. For example, for k = 10, the refinement reduces the number of permutations
to consider from 3,628,800 to 5,850.

Higher Weight for Parameter Names

Parameter names should guide a developer that calls a method in assigning argu-
ments to the correct position. To achieve this goal, parameter names often have de-
scriptive names that convey valuable information about the semantics of the expected
arguments. We found that parameter names often have more meaningful names than
argument names and therefore give naming examples extracted from parameters a
higher weight than naming examples extracted from arguments.

Method Filtering

The approach presented so far considers all methods with equally typed arguments.
However, some methods implement commutative operations, that is, any order of ar-
guments gives the same results. Reporting an anomaly for such a method is certainly
a false positive and the analysis should not consider such methods. We observed that
many methods that implement commutative operations have generic or single char-
acter parameters names, such as op0,op1,op2 or a,b. The refined analysis checks
for methods with such parameter names and excludes them from the analysis.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 103

Filtering Contradicting Warnings

Some of the warnings found by Algorithm 7 may contradict each other. For example,
consider two call sites m(a,b) and m(b,a) that refer to the same method m. When
inspecting m(a,b) the analysis finds that changing the arguments to m(b,a) makes
the call site more similar to all other call sites (only one in this example), and the
other way around for m(b,a). In general, if the analysis reports a warning for both
call sites, where each warning proposes to invert the arguments, then at least one
of the warnings is a false positive. We call such warnings contradicting warnings and
remove them from the list of reported warnings. The revised analysis removes two
warnings if there is a naming example N1 with a warning that proposes P1 and a
naming example N2 with a warning that proposes P2, where P1 gives N2 and P2

gives N1.

5.5 Evaluation

The following section reports the results of evaluating our anomaly detection tech-
nique with real-world Java and C programs. We address the following main ques-
tions:

• How effective is our technique in finding programming errors? The analysis finds 31
anomalies in the Java programs, out of which 26 (84%) are relevant problems.
For the C programs, the analysis find 35 anomalies, out of which 28 (80%) are
relevant. To measure recall, we automatically seed bugs and our analysis finds
74% of them.

• Which anomalies exist in mature and well-tested programs? Eleven anomalies are
correctness problems, that is, arguments that are accidentally passed in an in-
correct order. Eleven other anomalies are due to badly chosen parameter names
that affect the program’s understandability. Finally, 32 anomalies are notewor-
thy because the argument order seems to be wrong but turns out to be correct.

• How sensitive are the results on parameters of our analysis, such as the threshold for
reporting anomalies? We perform a sensitivity analysis of four parameters and
discuss our default configuration.

• Does the analysis scale to large programs? Analyzing 2.2 millions of lines of Java
and C code takes about seven minutes on a standard PC. The time required for
a program correlates strongly with the number of method calls in the program.

We use the Java and C programs provided by the DaCapo 9.12 benchmark suite
(Table A.2) and by the SPEC CPU 2006 benchmark suite (Table A.3). Table 5.1 lists for
each program the total number of calls, the number of calls with equally typed argu-
ments (ETA), and the number of calls with named, equally typed arguments (NETA).
In total, 102,829 calls have equally typed arguments. Our analysis can extract names
from 42,015 of these calls.

We use two separate techniques in this evaluation. On the one hand, we assess
the effectiveness of our approach in finding real programming errors (Section 5.5.1).
On the other hand, we automatically seed anomalies to assess how many of them the
analysis finds (Sections 5.5.2).

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 104

Table 5.1: Programs used for the evaluation and results from the anomaly de-
tection (ETA=equally typed arguments; NETA=named, equally typed arguments;
W=warnings; CB=correctness bugs; NB=Naming bugs; NA=noteworthy anomalies).

Program LOC Call sites Anomaly Detection

Total ETA NETA W CB NB NA Prec. Rec.
(%) (%)

Java Avrora 69,393 20,276 3,179 878 0 0 0 0 - 73
Batik 186,460 47,655 6,127 2,694 7 0 2 5 100 73
DayTrader 12,325 4,613 311 103 0 0 0 0 - 81
Eclipse 289,641 280,289 26,097 13,595 12 1 1 9 100 74
FOP 102,909 32,806 2,796 1,266 0 0 0 0 - 76
H2 120,821 53,221 5,210 1,607 0 0 0 0 - 72
Jython 245,016 85,729 15,785 2,480 11 1 4 3 73 70
Lucene 124,105 41,092 5,667 1,422 1 0 0 0 0 61
PMD 60,062 21,394 2,601 507 0 0 0 0 - 54
Sunflow 21,970 8,139 1,200 537 0 0 0 0 - 69
Tomcat 161,131 54,462 4,974 1,482 0 0 0 0 - 82
Xalan 172,300 33,828 3,663 1,650 0 0 0 0 - 76

All 1,566,133 683,504 77,610 28,221 31 2 7 17 84 72

C bzip2 5,731 762 110 52 0 0 0 0 - 86
gcc 235,884 54,343 14,027 9,988 16 0 0 10 63 64
gobmk 157,649 10,146 4,551 1,505 17 8 4 5 100 80
h264ref 36,098 3,815 791 319 0 0 0 0 - 81
hmmer 20,658 4,154 758 299 0 0 0 0 - 70
lbm 904 78 9 2 0 0 0 0 - 100
libquantum 2,606 557 176 78 0 0 0 0 - 63
mcf 1,574 80 20 11 0 0 0 0 - 85
milc 9,575 1,589 524 271 0 0 0 0 - 77
perlbench 126,266 16,791 2,672 1,027 1 0 0 0 0 59
sjeng 10,544 1,366 374 77 0 0 0 0 - 77
sphinx3 13,128 2,952 1,207 169 1 1 0 0 - 79

All 620,617 96,633 25,219 13,794 35 9 4 15 81 77

5.5.1 Anomalies in Mature Programs

We apply the anomaly detection to the programs listed in Table 5.1. As these pro-
grams are mature and well-tested, we do not expect to find any serious errors re-
lated to equally typed arguments. Such errors are likely to change the behavior of a
program, and therefore, are typically found at some point while using the program.
Nevertheless, our analysis can detect relevant anomalies that are worth the attention
of programmers or maintainers, for example, to add a comment explaining an un-
usual piece of source code. Table 5.1 summarizes the results; Tables B.3 and B.4 give
details about all reported warnings.

For the Java programs, our analysis reports 31 anomalies. We manually inspect
these anomalies and classify them as follows:

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 105

• Contrary to our expectations, two anomalies are bugs affecting the program’s
correctness. Figure 5.1a shows the relevant source code fragments of one bug.
The buggy class contains a set of public, overloaded methods that call each
other and that pass multiple int arguments. There is an anomaly because
the programmer passes the arguments in the wrong order at one call site. We
were surprised to find such a bug and reported it to the Eclipse developers,
who fixed it immediately (see bug 333487 in the Eclipse bug tracking system).
The other bug found by the analysis is in test code of Jython. The program-
mer calls assertEquals(), which takes the actual and the expected result of
some computation, and reports a warning if they are not equal. The program-
mer accidentally passes the expected result first, which will lead to an incorrect
output if the test fails.

• Seven anomalies can be classified as naming bugs [74]. In these cases, the pro-
grammers chose parameter names that do not clarify the expected order of
arguments. As identifier names are crucial for equally typed arguments, fix-
ing these naming bugs would improve the understandability of the program.
Figure 5.1b shows an example of a naming bug in a method computing expo-
nentiation. The names of the two double parameters, value and iw, do not
reveal which of the parameters refers to the base and which to the exponent. Of
course, deciding about the quality of an identifier name is difficult and to some
extent a matter of taste. We therefore classify only anomalies with obviously
misleading names as naming bugs and count debatable cases as false positives.

• 17 anomalies can be classified as noteworthy and should be considered by the
developers to improve the program’s maintainability. These anomalies show
unusual argument orders that seem incorrect but are intended in their spe-
cific context. For example, Eclipse has a method resetTo(int begin, int
end) with a call site that passes arguments called end and length, which
raises the question whether the arguments are ordered correctly. A closer look
at the code reveals that the argument order is correct at this particular call site
because the variable end is the index to start with. One can improve the main-
tainability of such source code by adding a comment explaining why a seem-
ingly incorrect argument order is required in a particular situation.

• Finally, five anomalies are false positives. They provide no insight to a devel-
oper and, ideally, would not be reported. Most of the false positives are due
to names that are similar to each other, such as two arguments called first-
Name, name where the parameter names are name, outerFullName. Since
the analysis is based on heuristics and programmer-given identifier names, we
cannot avoid false positives entirely.

For the C programs, the analysis reports 35 anomalies, which we classify as fol-
lows:

• Contrary to our expectations, nine of the anomalies are correctness bugs. Sev-
eral of them involve a method gnugo estimate score(float *upper,
float *lower) from gobmk. For example, one call site for which the anal-
ysis reports a warning is gnugo estimate score(&lower bound, &up-
per bound). This code is wrong and has been fixed in a later version of
the analyzed program. Another correctness bug is for method lm read ctl

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 106

in sphinx3. The method takes nine parameters and three of them have type
float64. Two of the float64 parameters are called wip (“word insertion
penalty”) and uw (“unigram weight”). The method has exactly one call site,
where the arguments for these two parameters are called uw and inspen, that
is, they are clearly passed in the incorrect order. This bug has been fixed in a
more recent of sphinx3.

• Four anomalies are naming bugs. For example, the add attack move()
method of gobmk expects two int parameters that both represent positions.
Unfortunately, the parameters are called ww and pos, making it difficult for a
programmer that calls this method to distinguish the two kinds of positions.

• 15 anomalies are noteworthy. For example, Figure 5.1c is a noteworthy
anomaly from gcc, where two local variables, called if false label and
if true label, are passed as arguments. The arguments are ordered in such
a way that if false label is bound to the parameter if true label, while
if true label is bound to the formal parameter if false label. Doc-
umenting this anomaly would improve the maintainability of the code, be-
cause the natural question whether the arguments are ordered correctly does
not arise.

• Seven warnings turn out to be false positives. Similar to the false positives
found in the Java programs, most of them are caused by argument names that
are similar to each other.

In summary, 54 of 66 reported anomalies (82%) point to problems that affect the
program’s correctness, understandability, or maintainability. Given that the analy-
sis requires no input except for source code, this rate is quite satisfactory. Existing
anomaly detection techniques, which search for other kinds of anomalies, often ob-
tain lower true positive rates, for example, 29% [161], 37.5% [112], 38% [153], and
70% [74]. For a fair comparison, we use the same procedure to obtain these num-
bers for each work: at first, accumulate results from all programs analyzed in the
respective work, and then, compute the overall true positive rate.

5.5.2 Recall

Seeding Anomalies

Measuring the recall of the anomaly detection is challenging because the set of all
relevant anomalies in real-world programs is unknown. To estimate the recall, we
seed anomalies in programs that are assumed to be free of problems related to equally
typed arguments. By seeding anomalies, we know by construction where relevant
anomalies reside, so that the evaluation is not biased by a human deciding whether
a reported anomaly is relevant. This automated technique allows us to evaluate our
analysis on a large scale and in an objective way.

To seed an anomaly, we take a method call site with equally typed arguments
and change the order of these arguments. We then assess whether the analysis de-
tects the seeded anomaly. We seed one anomaly after the other and run the analysis
each time on the entire program. That is, we analyze a program having a single rele-
vant anomaly and assess whether our analysis finds it. The recall for a single seeded
anomaly is:

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 107

recall =

{
1 if the seeded anomaly is found
0 otherwise

The overall recall for the program is the mean value over all seeded anomalies. A
similar evaluation technique has been used by others [109].

To make the results of the automated evaluation technique more meaningful and
to ensure the technique’s feasibility, we refine the described approach. First, we adapt
the assumption that all analyzed programs are free of relevant anomalies by taking
into account the known true positives described in Section 5.5.1. Since we know
that these call sites expose relevant anomalies, we ignore them during the automated
evaluation. Second, we ignore call sites of methods with five or more equally typed
arguments for performance reasons. For a method with n equally typed arguments,
we run the analysis n! − 1 times; thus, call sites with many arguments impose a sig-
nificant performance problem. However, only around 1% of all call sites with equally
typed arguments have five or more arguments, so this restriction does not affect the
generality of the evaluation. Third, we apply the automated evaluation only to call
sites with named arguments. For other call sites, our technique does not apply and
we know without experimenting that the analysis does not report any anomalies.
With these refinements, we seed 48,543 anomalies in the Java programs and 24,989
anomalies in the C programs, and run the analysis for each seeded anomaly.

Recall

Table 5.1 shows the recall of the analysis for each program. For example, the analysis
finds 74.2% of all anomalies that we seed in Eclipse. On average, the analysis reveals
72% and 77% of all anomalies for Java and C, respectively. Although automatically
seeded anomalies may not be representative for real-world anomalies, these results
give us some confidence that the analysis finds most real anomalies. The refinements
described in Section 5.4.3 significantly improve recall compared to our previously
presented approach, which has only 38% recall.

5.5.3 Parameter Calibration

The presented analysis involves certain choices and parameters that have a strong
influence on the overall results. We evaluate different configurations by measuring
recall with seeded anomalies (Section 5.5.2) and by estimating precision. To precisely
measure precision we would have to inspect for each configuration all warnings that
the analysis reports. Instead, we compute a lower bound of the real precision by
considering warnings to be false positives unless we know them to be true positives.
In the following, we discuss the parameters and analyze the sensitivity of the analysis
to each of them. We report results from varying each parameter individually while
using default values for the others.

Threshold for Anomalies

The threshold for anomalies determines how deviant from other examples a call site
must be to be considered an anomaly. In Algorithm 7, we call this threshold t. We ex-
periment with values in the range between 0.1 (little deviance from other examples)
and 0.9 (large deviance from other examples).

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 108

0%
20%
40%
60%
80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Threshold for anomalies

Java programs:

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10

(c) Minimum number of examples

Precision
Recall

F-Measure

0%

20%

40%

60%

80%

100%

1 2 3 4 5 10 20 30

(e) Parameter weight

0%

20%

40%

60%

80%

100%

2 5 10 25 50

(g) Minimum family size

0%
20%
40%
60%
80%

100%

JaroWinkler

Levenshtein

MongeElkan

SoftTFIDF

TFIDF

(i) String similarity metric

0%
20%
40%
60%
80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Threshold for anomalies

C programs:

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8 9 10

(d) Minimum number of examples

0%

20%

40%

60%

80%

100%

1 2 3 4 5 10 20 30

(f) Parameter weight

0%

20%

40%

60%

80%

100%

2 5 10 25 50

(h) Minimum family size

0%
20%
40%
60%
80%

100%

JaroWinkler

Levenshtein

MongeElkan

SoftTFIDF

TFIDF

(j) String similarity metric

Figure 5.5: Parameters of the anomaly detection and their influence on precision and
recall. The vertical lines indicate the default configuration we use for the evaluation.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 109

Figures 5.5a and 5.5b show precision and recall with different thresholds for Java
and C programs, respectively. The results illustrate the typical tradeoff between op-
timizing an analysis for precision and for recall. A higher threshold leads to less re-
ported anomalies, and hence, increases precision while decreasing recall. In contrast,
one can obtain a higher recall with a lower threshold for the price of losing precision.
We choose a threshold of 0.4 as the default configuration, because it provides the best
F-measure for Java and a close to best F-measure for C.

Minimum Number of Examples

The minimum number of examples determines how many naming examples for a
method we require to draw any conclusions about the method at all. If we have
fewer examples than this minimum number, our analysis ignores all call sites of the
method. Note that the names of formal parameters serve as an additional naming
example. We experiment with values in the range between 2 and 10.

Figures 5.5c and 5.5d show the influence of this parameter. Similarly to the thresh-
old for anomalies, one must choose it considering the tradeoff between precision and
recall. The default configuration is to require at least two naming examples. This
value allows for analyzing methods with a single call site because the call site and
the formal parameter names are give two naming examples.

Parameter Weight

The parameter weight determines how influential parameter names are compared to
argument names. If the parameter weight is one, naming examples from parameters
are considered equally important as all other naming examples. We experiments with
values in the range between one and 30.

Figure 5.5e and 5.5f show how the parameter weight influences precision and re-
call (note the non-linear x-axis). Giving parameter weights a higher weight than ar-
gument names improves precision, which is not surprising because parameter names
should guide callers of method in assigning arguments to positions. Large parame-
ter weights decrease precision and recall, showing that considering only parameter
names (and ignoring argument names altogether) does not work well. Our default
configuration is a parameter weight of five, which gives the best F-measure for both
Java and C.

Minimum Family Size

The minimum family size determines how many naming examples with similar
names we need at least to analyze them for anomalies. We experiment with values in
the range between two and 50.

Figure 5.5g and 5.5h show the results (again, note the non-linear x-axis). Com-
pared to the other parameters, the minimum family size has a small influence on the
overall results. Increasing the parameter slightly increases precision and decreases
recall.

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 110

String Similarity Metric

There are various metrics to measure the similarity or distance of two strings. We
experiment with five metrics, which have been found to be useful for comparing
names [33].

Figures 5.5i and 5.5j compare the results obtained with the five metrics. Interest-
ingly, choosing the string similarity metric significantly influences the overall results.
Two metrics, TFIDF and SoftTFIDF, that tokenize strings before comparing them give
the best F-measure. The classical Levenshtein distance, which is the minimum num-
ber of edits needed to transform a string into another, leads to a higher precision but
a lower recall. Our default is to use TFIDF.

5.5.4 Performance and Scalability

On a standard PC (3.16 GHz Intel Core 2 Duo with 2 GB RAM for the Java virtual
machine), our prototype implementation requires seven minutes to run the anomaly
detection for all programs in Table 5.1. Most of the time is spent parsing source code.
The largest Java program, Eclipse, requires 39 seconds. The largest C programs, gcc,
requires 51 seconds. The running time strongly correlates with the number of call
sites in a program (Pearson correlation coefficient: 93% for Java and 90% for C).

5.5.5 Threats to Validity

There a several threats to the validity of our results. First, the selection of programs
we analyze may not be representative for a larger set of Java and C programs. We
try to avoid selection bias by analyzing programs from two well-known benchmark
suites [15, 71]. Second, the classification of anomalies into correctness bugs, naming
bugs, noteworthy anomalies, and false positives may not reflect the classification that
the developers of the respective programs would have done. To avoid biasing our
results, we only classify an anomaly as a correctness bug if we are sure that it can
lead to unexpected behavior. Furthermore, we validate our classification for a subset
of anomalies by reporting them to the respective developers. However, assessing
whether an anomaly is a naming bug or a noteworthy anomaly is subjective, and
other developers may have other opinions. Third, the anomalies we seed to assess
the recall of the analysis may not be representative for real-world anomalies. Forth,
we focus the evaluation of recall on anomalies supported by the static analysis that
extracts argument naming examples. For example, we do not seed anomalies that
involve complex expressions as arguments.

5.6 Support for the Thesis

The analysis presented in this chapter supports the thesis that automatic program
analysis allows for precisely detecting programming errors with little effort.

5.6.1 Automation

The analysis is fully automatic and requires only the program to analyze as its input.
The key insight that enables this high degree of automation is to leverage implicit
knowledge conveyed via identifier names. The best existing approach that addresses

CHAPTER 5. INCORRECTLY ORDERED, EQUALLY TYPED ARGUMENTS 111

the problem of equally typed arguments are named arguments, which require pro-
grammers to explicitly specify argument-parameter mappings at each call site. In
contrast to named arguments, our approach can analyze existing programs as they
are, that is, without such specifications.

5.6.2 Precision

The warnings reported by the analysis have an acceptably high precision (82% with
the default configuration). Although the analysis does not guarantee that each re-
ported warning corresponds to a programming error, we consider the analysis to be
precise enough for a deployment in practice. The analysis has several knobs, such as
the threshold for anomalies, to control the precision of the reported warnings. These
knobs allow developers to adapt the precision of the analysis to their needs.

5.6.3 Effort

The human effort for launching the analysis is minimal because it runs fully auto-
matically on arbitrary programs. The human effort for inspecting the output of the
analysis is low even though the analysis produces some false positives. Each warning
affects two easy to inspect source code locations: a call site and a method definition.
Inspecting these source code locations requires little effort, which is why we consider
some false positives to be tolerable.

As we show in Section 5.5.4, the computational effort of the analysis is also very
low. Furthermore, the analysis scales well to large programs because each method
(and its call sites) is analyzed separately from other methods.

5.7 Limitations and Future Work

Future work may consider the following ideas:

• The recall of the analysis is bounded by the explanatory power of argument
names. Short and meaningless names, such as i or j, not only confuse pro-
grammers, but also prevent our analysis from inferring the semantics of ar-
guments. Future work may preprocess naming examples before searching for
anomalies, for example, by expanding abbreviations or by mapping synonyms
to a unified vocabulary [88].

• We apply the analysis to one program at a time. Many programs share APIs and
the analysis may learn from one program’s API usage about another program’s
API usage. Future work may extend our approach into a multi-project analysis.

• The analysis does not consider relations between multiple argument names at a
single call site. For example, a method that transforms values into a new format
may have arguments named X and newX, where X differs from call site to call
site, but where the second argument name always prepends new to the first.
Future work may extend our analysis to consider relations between names.

• Each analysis that produces false positives raises the question how developers
react in the reported warnings. To answer this question, one may conduct a
user study, for example, to assess how long developers take to decide whether
a warning is relevant and how many of the warnings lead to a fix.

6Brittle Parameter Types

In statically typed programming languages, the type system ensures that method ar-
guments have a type expected by the callee. This check is done under the assumption
that all subtypes of the declared parameter type are legal argument types [94]. Unfor-
tunately, method parameters may have subtypes that are not expected by the callee.
We call this situation brittle parameter typing (or simply a brittle parameter) because the
safety guaranteed by the type system is easily breakable. A type system may find ar-
guments given to brittle parameters to be legal, but in fact they are incorrect because
the callee does not expect them.

This chapter presents a static analysis to find brittle parameters and to warn de-
velopers about unexpected arguments passed to methods with such parameters. The
analysis is fully automatic because its only input is the source code or byte code of
API clients. In particular, the analysis does not rely on specifications of expected ar-
gument types. The warnings reported by the analysis have a precision of 47% (in
our default configuration). Since inspecting a warning involves only a single call
site, we consider this precision to be acceptable in practice. Similar to the analysis
from Chapter 5, the analysis presented here reports programming errors that affect
the correctness, performance, and maintainability of a program.

The following section motivates the problem of brittle parameters with a real-
world example. Sections 6.2 to 6.4 present our analysis and Section 6.5 reports the
results from evaluating it. Finally, Sections 6.6 and 6.7 discuss how the analysis sup-
ports the thesis of this work and outlines directions of future work.

6.1 Motivation

As an example to motivate the problem of brittle parameters, consider the method
JMenu.add(Component) from the Java Swing API (Figure 6.1). The declared pa-
rameter type Component has various subtypes, all of which are valid argument types
according to the method declaration of add(). However, the API documentation
states that a menu can only contain JMenuItems and JSeparators, that is, a subset
of all compatible argument types. Adding a Component with another compatible
type, such as CheckBox, is incorrect and causes undefined behavior.

Figure 6.2 illustrates a bug caused by passing an unexpected argument to the brit-
tle parameter of JMenu.add(Component). We found this problem in a real-world

112

CHAPTER 6. BRITTLE PARAMETER TYPES 113

Component

JComponent CheckBox

JTextFieldAbstractButton JCheckBox JSeparator

JMenuItem

JCheckBoxMenuItem JMenu JRadioButtonMenuItem

Figure 6.1: Excerpt of Swing’s type hierarchy showing that
JMenu.add(Component) has a brittle parameter. The declared parameter
type has a gray background. Only the bold types should be passed as arguments.
Dotted types are compatible but lead to incorrect behavior. Arguments of the
remaining types may be correct or incorrect.

Figure 6.2: Demonstration of a real-world bug resulting from passing an unexpected
argument to a brittle parameter.

program (nTorrent, a graphical user interface for a BitTorrent client1) and the devel-
opers confirmed it as a bug after receiving our report. The correct menu entry is of
type JCheckBoxMenuItem. An item of this type is highlighted when hovering over
it, and clicking it will close the menu. However, the programmer accidentally passes
a JCheckBox to JMenu.add(Component). In contrast to the correct menu item,
the wrong item does not react on hovering, and clicking it does not give the expected
behavior.

How can developers find errors caused by compatible but unexpected argument
types? Finding errors related to brittle parameters is hard. First of all, traditional
compilers and type systems are oblivious to the problem because the argument type

1http://code.google.com/p/ntorrent/

http://code.google.com/p/ntorrent/

CHAPTER 6. BRITTLE PARAMETER TYPES 114

will type check given the declared parameter type. Furthermore, unexpected argu-
ments may slip through traditional testing if they do not manifest through an excep-
tion. For example, the bug in Figure 6.2 does not raise an exception or any other
obvious error. Instead, it leads to non-functional GUI elements as illustrated in Fig-
ure 6.2. Finally, programmers with little experience in programming against a par-
ticular API are prone to pass unexpected arguments because the knowledge about
expected argument types is often scarcely or not at all documented. For the above
example, the expected types are listed in JMenu’s class documentation but not in the
method documentation of add().

There are several reasons for brittle parameter typing in API methods. One reason
is that the API designers had more functionality in mind when publishing the API
and wanted to leave an easy way to later add this functionality without changing the
method signature. Changing a parameter type to a more specific type after releasing
an API is difficult, as it may break existing client code.

Brittle parameter typing also occurs when it is impossible to create a common
supertype that precisely describes all expected types. If no such supertype exists, it
may be possible to let all expected types implement a marker interface [16] and to use
this interface as the parameter type. Unfortunately, this approach is infeasible if one
or more of the expected types are declared outside of the API and therefore cannot
be changed, for example, if String is among the expected argument types.

6.2 Overview

We present a fully automatic, static analysis to (i) find brittle parameters and (ii)
reveal unexpected arguments passed to methods with such parameters. The key idea
is a simple one: We leverage existing API clients to infer the argument types that an
API method expects and warn developers about apparently unexpected arguments.
For this purpose, the approach analyzes call sites of API methods in API clients.
Figure 6.3 provides an overview of the analysis, which consists of two main steps.
As input, the analysis requires the source code or byte code of API clients. The first
step is a static analysis that inspects all call sites of API methods in the clients to
extract information about the type of arguments passed to API methods. We call this
information argument type observations. The second step is to search for anomalies in
the argument type observations, that is, to search for argument types that are unusual
with respect the other arguments passed to the parameter. Based on the assumption
that most of the observations correspond to correct API usages [68, 44, 112, 161], this
step identifies call sites where the observed argument type suggests an incorrect API
usage. An anomaly occurs when (i) the API method has a brittle parameter, and (ii)
the client passes an argument of an unexpected type.

Static
analysis

Anomaly
detection

API
clients

Argument
type ob-

servations Warnings

Figure 6.3: Overview of the approach.

CHAPTER 6. BRITTLE PARAMETER TYPES 115

Despite being simple, the approach is easy to apply and effective in practice. It is
easy to apply because it does not require any formal specification of expected argu-
ment types. Instead, all required information is automatically extracted from existing
client code. As the analysis is independent of the API implementation, it is applica-
ble to arbitrary third-party APIs. The approach is effective because it reveals real
programming errors. The price for being simple and effective is that the analysis is
neither sound nor complete, that is, it might report spurious warnings and miss real
errors. However, our results show both problems to be manageable in practice.

6.3 Argument Type Observations

The goal of the first analysis step is to extract information about the types of argu-
ments that clients pass to API methods. We represent this information as argument
type observations.

Definition 13 (Argument type observation). An argument type observation is a tuple
(mclient, line,mAPI , pos, type), where:

• mclient is the signature of the client method that calls the API method,

• line is the source code line of the call site of the API method,

• mAPI is the signature of the called API method,

• pos ∈ N is the position of the argument in the list of arguments passed to mAPI

(starting at 1), and

• type is a type that the argument at position pos may have.

6.3.1 Points-to Analysis

To extract precise argument type observations, our analysis leverages points-to infor-
mation obtained from a state of the art points-to analysis [91]. The points-to analysis
statically reasons about the objects that may occur at runtime of a program and about
the references that may point to each object. Potential runtime objects are represented
by abstract objects. We access the results of the points-to analysis with a function P2A
that, given a reference r, returns the set P2A(r) of abstract objects to which r may
point. Each abstract object has an associated type. Unless specified otherwise, we
use a context-insensitive points-to analysis with on the fly call graph construction.
While context-sensitive analysis could provide even more precise argument type ob-
servations, we build upon a context-insensitive analysis to ensure that the approach
scales to large programs.

Using a points-to analysis increases the precision of the extracted argument type
observations, and therefore, the overall precision of our approach. However, the
main idea of this work is independent of points-to analysis, and it can be pursued
without any points-to information. In Section 6.5.7, we compare the results of our
approach with and without points-to information.

6.3.2 Extraction Algorithm

Algorithm 8 summarizes how the analysis extracts argument type observations
from a program. The analysis visits each method call site in the program. If the callee

CHAPTER 6. BRITTLE PARAMETER TYPES 116

Algorithm 8 Extract argument type observations from an API client.

Input: Program P that uses API A
Output: Set of argument type observations O

1: O ← ∅
2: for all c ∈ allCalls(P) do
3: if caller(c) ∈ P ∧ callee(c) ∈ A then
4: G← arguments(c)
5: for pos← 1, |G| do
6: r ← reference(G(pos))
7: if P2A(r) 6= ∅ then
8: for all o ∈ P2A(r) do
9: obs← (caller(c), line(c), callee(c), pos,

type(o), 1
|P2A(r)|)

10: O ← O ∪ {obs}
11: else
12: obs← (caller(c), line(c), callee(c), pos,

type(r), 1)
13: O ← O ∪ {obs}

of a call is an API method, it will be further analyzed (line 3). Call sites of methods
defined by client types that inherit from API types are analyzed if the declaring type
of the callee is an API type.

For a call site of an API method, the algorithm analyzes each of its arguments.
An argument is represented by a reference (line 6), which, for example, corresponds
to a local variable or a field. The analysis is performed on an intermediate program
representation that has an explicit reference for each argument, even if there is no
such reference in the source code. For example, the statement m2(m1()), which
passes the return value of a call to m1() as an argument to m2(), is represented
by storing the result of m1() into a fresh local variable, and afterwards passing this
variable to m2().

For each argument reference r, the analysis checks whether the points-to analysis
knows any abstract objects that r may point to (line 7). If so, then the analysis creates
an argument type observation for each abstract object o that r may point to. The
observation states that the argument passed to the API method can have the type
type(o), that is, the most specific type that the points-to analysis knows for o. If r
may point to multiple abstract objects, the analysis creates a separate observation for
each abstract object. Doing so naively can lead to many observations for a single call
site, giving this call site a higher weight than other call sites. Since we want to give
each call site the same weight when analyzing the API usage of a client, we extend
the definition of argument type observations by adding a confidence value:

Definition 14 (Argument type observation, extended). An argument type observation
is a tuple (mclient, line,mAPI , pos, type, conf), where:

• mclient is the signature of the client method that calls the API method,

• line is the source code line of the call site of the API method,

• mAPI is the signature of the called API method,

CHAPTER 6. BRITTLE PARAMETER TYPES 117

1 class API {
2 void m(Object o, Component c) { .. }
3 }
4

5 class Client {
6 API api;
7 void n() {
8 Foo f = new Foo();
9 Component c;

10 if (..) c = new JLabel();
11 else c = new Button();
12 api.m(f, c); // call to API method
13 }
14 }

Figure 6.4: Example of extracting argument type observations.

• pos ∈ N is the position of the argument in the list of arguments passed to mAPI

(starting at 1),

• type is a type that the argument at position pos may have, and

• conf ∈ [0, 1] indicates the confidence that the argument has this type.

When creating multiple observations for a single argument reference r that may
point to different abstract objects, the analysis sets the confidence of each such ob-
servation to 1

|P2A(r)| . That is, the more types the analysis observes for a single call
site, the less confidence it has into each individual observation. By dividing the con-
fidence, the analysis gives the same weight to all call sites in the program.

The points-to analysis may not know any abstract object for an argument refer-
ence r (line 11). For example, this happens if r is a parameter obtained by the caller
method caller(c) and if there is no known call site where caller(c) is called. However,
caller(c) may nevertheless be called, for example, in source code that is not part of
the analyzed code base, such as sub-projects of a project or external plug-ins. There-
fore, we also analyze call sites where no abstract objects are known for the arguments.
In this case, the analysis considers the declared type of the argument and creates an
observation for this type (line 12). This observation has confidence one because the
analysis makes a single observation for the call site.

6.3.3 Example

We illustrate extracting argument type observations with the simple example in Fig-
ure 6.4. Class Client calls an API method and passes two arguments (line 12). The
analysis extracts three observations from this call site:

• (Client.n(), 12, API.m(Object, Component), 1, Foo, 1)
This observation describes that the first argument for the API method has been
observed to be of type Foo. Since this is the only possible type for this argu-
ment, the observation has confidence one.

CHAPTER 6. BRITTLE PARAMETER TYPES 118

• (Client.n(), 12, API.m(Object, Component), 2, JLabel, 0.5)
This observation describes that the second argument passed to the API method
has been observed to be of type JLabel. The local variable c may point to two
abstract objects, which have type JLabel and Button, respectively. Therefore,
the analysis splits the confidence and assigns confidence 0.5 to this observation.

• (Client.n(), 12, API.m(Object, Component), 2, Button, 0.5)
This observation is similar to the previous observation, but for the argument
type Button.

For the last two observations, the analysis relies on points-to information. With-
out it, the observed argument type for reference c is Component and the last two
observations would be merged into a single observation with confidence one.

6.4 Detecting Anomalies

The second step of the approach, anomaly detection, has two goals. First, we want to
infer from argument type observations whether a method has brittle parameters. Sec-
ond, we want to reveal call sites of methods with a brittle parameter where the caller
passes an argument of an unexpected type. As input, the anomaly detection takes
sets of argument type observations, each obtained from a different API client. As
output, it produces a set of warnings about observations of unexpected arguments.
Algorithm 9 summarizes the anomaly detection.

Algorithm 9 Find anomalies in argument type observations.

Input: Sets of argument type observations O1, . . . ,On

Output: Set of warningsW
1: Oraw ← merge(O1, . . . ,On)
2: O ← preprocessObs(Oraw)
3: Mraw ← param2Obs(O)
4: M ← preprocessParams(Mraw)
5: W ← ∅
6: for all (p,Op) ∈M do
7: T ← histogram(Op)
8: if |Op| ≥ θobs ∧ |dom(T)| ≤ θtypes then
9: Tdeviant ← ∅

10: for all t ∈ dom(T) do
11: confincl ← |Op|

|dom(T)|

12: confexcl ← |Op|−T (t)

|dom(T)|−1

13: if confexcl − confincl ≥ θconf then
14: Tdeviant ← Tdeviant ∪ {t}
15: if

∑
t∈Tdeviant

T (t)∑
t∈dom(T) T (t)

≤ θdeviant then
16: W ←W ∪Op

CHAPTER 6. BRITTLE PARAMETER TYPES 119

1 interface APIItf1 { .. }
2 interface APIItf2 { .. }
3 interface APIItf3 { .. }
4 class API {
5 void m(APIItf1 i1) { .. }
6 }
7

8 class ClientType implements APIItf2, APIItf3 { .. }
9 class Client {

10 API api;
11 void n() {
12 api.m(new ClientType()); // call to API method
13 }
14 }

Figure 6.5: Example of generalizing observations by replacing client-specific types
with their API supertypes.

6.4.1 Preprocessing Argument Type Observations

As a first step, the analysis merges the argument type observations from different
API clients (line 1 of Algorithm 9). The merge() function generalizes argument type
observations to make them more comparable and then computes the union of the
sets of observations. We generalize observations referring to client-specific types that
are subtypes of API types. The analysis checks for each observed, client-specific ar-
gument type targ whether it has a supertype tAPI that is defined in the API and that
is compatible with the type declared by the callee. If such a supertype exists, the
analysis adapts the observation by replacing targ with the supertype tAPI . If targ has
multiple most specific API supertypes, the analysis replaces the observation with a
set of observations, one for each most specific API supertype. In this case, the con-
fidence of the new observations is the confidence of the old observation divided by
the number of new observations.

For example, consider Figure 6.5. The analysis extracts the following observation:

(Client.n(), 12, API.m(APIItf1), 1, ClientType, 1)

From this observation, the analysis cannot draw any conclusions about other clients
because the argument type ClientType is client-specific. However, ClientType
implements the API interfaces APIItf2 and APIItf3, which both are compatible
with the declared parameter type APIItf1. In this case, the analysis splits the ob-
servation into two new observations:

(Client.n(), 12, API.m(APIItf1), 1, APIItf2, 0.5)

(Client.n(), 12, API.m(APIItf1), 1, APIItf3, 0.5)

These generalized observations are useful for analyzing other API clients because
they refer to API types.

After merging observations from different API clients, the analysis removes ob-
servations from which we cannot infer any information (line 2 of Algorithm 9). The

CHAPTER 6. BRITTLE PARAMETER TYPES 120

preprocessObs() function removes all observations where the declared parameter
type is a primitive type because primitive types have no subtypes in Java.

Next, the analysis groups observations by the declared parameter to which they
refer (line 3). A declared parameter is defined by a callee and a position in the list of
parameters of this callee. The map Mraw assigns to each parameter the set of obser-
vations made for the parameter. While considering each pair of callee and argument
position as a parameter works reasonably well, we refine the notion of a parameter to
consider overloaded API methods that allow clients to pass arguments of unexpected
types. For example, consider the following API class:

class API {
void m(Object o) { .. }
void m(Foo o) { .. }

}

The overloaded method m() allows clients to pass any argument with a type be-
ing a subtype of Object. That is, from the client’s perspective both methods can
be considered a single method m(Object). The analysis considers such cases by
merging all parameters at a particular position of overloaded methods into a single
parameter, if the overloaded methods have the same number of parameters. In the
example, observations for both m(Object) and m(Foo) end up in a single group
that refers to a parameter of type Object.

After grouping observations by the parameter they refer to, the analysis removes
parameters where only a single argument type is observed. For such parameters, the
analysis cannot reveal any unexpected arguments because either all observed argu-
ments are expected or all observed arguments are unexpected. If all arguments are
unexpected, the analysis cannot find the problem because there are no observations
to learn from.

6.4.2 Type Histograms

The main part of the anomaly detection iterates over all parameters and their respec-
tive observations (line 6). For each parameter, the analysis builds a type histogram T
showing how often each argument type is observed. T maps a type t to the summed
up confidence values of all observations with argument type t.

Figure 6.6 shows four examples of type histograms extracted during the evalua-
tion of this work. The examples illustrate kinds of histograms that occur again and
again, allowing us to discuss how the anomaly detection should behave for each of
them.

Figure 6.6a shows two frequently occurring types, String and GridBagCon-
straints, that are given to the second parameter of Container.add(Component,
Object). This parameter allows for specifying layout constraints for the compo-
nent that is added to a container via the first argument. The expected type of the
second argument depends on the layout the container uses. The layouts defined in
Swing either expect a String describing constraints, or an instance of GridBag-
Constraints, that is, exactly the types prevalent in the histogram. The anomaly
detection should not report any warnings for this histogram because all observed
argument types are expected by the callee.

Figure 6.6b is the histogram for JMenu.add(Component), which is discussed
in Section 6.1. The declared parameter type has many subtypes, but only a small
number of argument types is observed. These observed argument types correspond

CHAPTER 6. BRITTLE PARAMETER TYPES 121

to the expected types specified in the API documentation (Figure 6.1). In addition to
the expected types, two argument types, JCheckBox and JTextField are observed
a single time each. These argument types correspond to bugs. The anomaly detection
should identify these anomalies and report warnings for them.

Figure 6.6c is an example for a “long-tail” histogram, where many different types
occur as arguments. The parameter type has various subtypes, and they are all ex-
pected by the method. That is, the parameter is not brittle, and therefore the analysis
should not report any warnings. It is a challenge to distinguish this kind of histogram
from histograms such as Figure 6.6b.

Figure 6.6d illustrates a parameter with relatively few observations. In this case,
the analysis should not draw any conclusions and should report no warnings.

6.4.3 Identifying Anomalies

Given type histograms such as those in Figure 6.6, how can an analysis find unex-
pected arguments given to brittle parameters while reporting as few false warnings
as possible?

The analysis starts with the assumption that each observation is a potential
anomaly and applies four filters to remove observations that would be false warn-
ings. An observation that passes all filters results in a warning reported to the devel-
oper. In the following, we explain the four filters. Each filter has a threshold deciding
which observations to filter. In Section 6.5.6, we discuss and compare values for these
thresholds.

Minimum Number of Observations The analysis ignores all parameters with a
number of observations smaller than a threshold θobs (line 8 of Algorithm 9). This
filter avoids drawing conclusions from a small number of observations, such as the
histogram in Figure 6.6d. Setting θobs too high removes valid warnings for parame-
ters with a fair number of observations, while choosing a value θobs that is too low
leads to false warnings.

Maximum Number of Types The analysis ignores all parameters for which the
number of observed argument types exceeds a threshold θtypes (line 8). The rationale
behind this filter is that parameters for which a large number of types is observed
often are not brittle, and that instead all subtypes of the declared parameter type are
expected. In particular, this filter removes long-tail histograms, such as Figure 6.6c.
Setting θtypes too low removes valid warnings, while setting it too high introduces
false warnings.

Minimum Confidence Drop The analysis computes a confidence value indicating
how confident it is that a given type histogram describes a brittle parameter. This
confidence is the summed up confidence of all observations in the histogram divided
by the number of observed argument types. If the confidence drops when adding a
particular argument type to a histogram, then this argument type deviates from an
otherwise accepted rule. The analysis compares the confidence with and without a
type t for each type t in a histogram and ignores all types where the confidence drop
is below a threshold θconf (line 13). Setting θconf too high removes valid warnings,
while setting it too low leads to false positives.

CHAPTER 6. BRITTLE PARAMETER TYPES 122

Maximum Percentage of Anomalies The analysis removes all warnings for a pa-
rameter if the percentage of supposedly noteworthy observations for this parameter
exceeds a threshold θdeviant (line 15). The rationale for this filter is to assume that
most observations correspond to correct API usage. Setting θdeviant too high removes
valid warnings, while setting it too low leads to false warnings.

6.4.4 Clustering Warnings

The final step of the analysis is to cluster the warnings produced by Algorithm 9 to
ease their manual inspection. A cluster of warnings contains all warnings for a partic-
ular parameter. We present warnings to developers in an interactive way, where the
list of warnings to inspect depends on the developer’s decisions on previous warn-
ings. Confronted with a warning, the developer can indicate whether the parameter
is brittle. If so, then all calls that pass arguments to this parameter are at risk to pass
an unexpected argument without a notice from the type system. In this case, the
analysis presents all warnings in the cluster because they may correspond to bugs.
Otherwise, the analysis knows that the cluster contains nothing but false warnings
and therefore omits further warnings from the cluster.

CHAPTER 6. BRITTLE PARAMETER TYPES 123

 0

 50

 100

 150

 200

String
GridBagConstraints

Fr
eq

ue
nc

y

(a) Container.add(Component, Object)

 0

 50

 100

 150

 200

JMenuItem

JMenu

JCheckBoxMenuItem

JSeparator

JRadioButtonMenuItem

JCheckBox

JTextField

Fr
eq

ue
nc

y

(b) JMenu.add(Component)

1x

 0

 5

 10

 15

 20

 25

JPanel

JComponent

JScrollPane

Box
JCheckBox

JComboBox

JLabel

JToolBar

JTable

table.JTableHeader

JTextField

JButton

JList
JPasswordField

Fr
eq

ue
nc

y

(c) JComponent.add(Component, Object)

 0

 5

 10

 15

 20

 25

JList
JPanel

Component

JTextPane

JDesktopPane

JTree

Fr
eq

ue
nc

y

(d) JScrollPane.<init>
(Component, int, int)

Figure 6.6: Four type histograms showing the frequency of argument types observed
for the parameter printed in bold.

CHAPTER 6. BRITTLE PARAMETER TYPES 124

6.5 Evaluation

We evaluate our approach by analyzing 21 programs and their usage of the Java
Swing API. The evaluation focuses on the following questions:

• How effective is the approach in finding arguments of unexpected types?
The analysis reveals 15 previously unknown bugs and code smells. In its de-
fault configuration, 47% of all reported warnings point to programming er-
rors. To measure how many unexpected arguments the analysis misses, we
seed bugs into programs. The analysis detects 83% of them.

• Does the approach scale to real-world programs?
Analyzing all 21 programs (650 KLoC) takes 23 minutes.

• What is the influence of the thresholds used for detecting anomalies?
We run the analysis with different values for each threshold, discuss their trade-
offs, and propose a default configuration.

• What is the influence of the points-to analysis?
Comparing the approach with and without points-to analysis shows that
points-to analysis increases precision, but that it is not crucial for the approach.

6.5.1 Implementation

We implement our approach into a practical tool for analyzing Java programs. The
implementation of the static analysis is based on the Soot framework 2.5.0 [157] and
its implementation of the Paddle points-to analysis [91]. We enable Soot’s option to
consider all methods of program classes to be reachable and exclude classes in third-
party libraries from the analysis.

6.5.2 Experimental Setup and Measurements

Table A.4 lists the programs used in the evaluation. For each program, we give the
number of non-comment, non-blank lines of Java source code, in total 650 KLoC.
Table 6.1 shows an estimate of the number of lines of code related to the Swing API.
We estimate this number by counting the source code lines of all classes that import
from the java.awt or javax.swing packages. The last column of Table 6.1 shows
how many argument type observations the analysis extracts from each program. In
total, the analysis extracts 56,233 observations.

We inspect warnings manually and classify them into three categories [161, 65,
126]. Bugs are problems in the API usage that affect the correctness of the program.
Since we focus on the Swing API, the bugs we find typically lead to visual glitches or
they disable some functionality. Code smells are problems that affect performance or
maintainability of the program but not its correctness. We say true positives to refer to
both bugs and code smells. All other warnings are false positives.

We quantify the effectiveness of the analysis by measuring precision and recall.
Precision means the percentage of true positives among all reported warnings. Recall
is the percentage of true positives that the analysis reports among all true positives in
the program. Since we do not know all true positives in the analyzed programs (if we
had a practical way to find them, our analysis would be obsolete), we only report the

CHAPTER 6. BRITTLE PARAMETER TYPES 125

Table 6.1: Lines of API-related code and number of argument type observations.

Program API-related lines of code Arg. type obs.

ArgoUML 0.34 79,950 7,726
Class Editor 2.23 5,643 1,796
Dublin Core Ousia 11-01-11 3,147 583
Figoo 2.6.0 11,965 5,758
File Renamer 0.1.1 726 236
FormLayoutMaker 8.2.1rc 4,152 814
hirudo 0.7 1,569 518
id3tidy 0.3beta 829 294
jEdit 4.5pre1 67,637 7,441
JFreeChart 1.0.14 66,733 7,039
JFtp 1.53 16,180 2,958
JGraph 1.9.0.2 28,484 2,135
JPropsEdit 1.0.2 3,005 883
myPomodoro 1.0 1,960 506
nTorrent 0.5.1 4,949 901
outliner 1.8.10.6 23,434 3,499
pdfsam 2.2.1 12,197 3,933
Protégé 3.3 29,812 3,146
Scrinch 1.1.1 9,193 3,677
Stringer 1.0beta1 5,438 1,366
uBlogger 20090914 2,922 1,024

Sum 379,925 56,233

recall of seeded bugs, where we know by construction where problems in a program
reside.

The anomaly detection allows for controlling the tradeoff between precision and
recall with threshold parameters. In Section 6.5.6, we evaluate the influence of each
threshold. For evaluating the effectiveness of the approach in finding anomalies, we
use two configurations:

• Default. This configuration is a pragmatic compromise between maximizing
true positives and minimizing false positives. The parameters are (using the
notation from Algorithm 9) θobs = 30, θtypes = 6, θconf = 10, and θdeviant =
0.05.

• Recall-focused. This configuration offers the possibility to reveal more true pos-
itives than the default configuration, but leads to significantly more false posi-
tives. The parameters are θobs = 25, θtypes = 10, θconf = 1, and θdeviant = 0.5.

6.5.3 Anomalies in Real Programs

The analysis finds 15 previously unknown bugs and code smells in the programs
from Table A.4. Some of them have already been fixed as a result of our bug reports.
Table 6.2 shows the number of reported warnings and their classification for both

CHAPTER 6. BRITTLE PARAMETER TYPES 126

Table 6.2: Classification of warnings in real programs.

Configuration Warnings Bugs Smells True pos.

Default 19 5 4 47%
Recall-focused 155 11 4 11%

1 class FilteredListModel extends AbstractListModel {
2 void setFilter(String filter) {
3 Runnable runner = new Runnable() {
4 public void run() {
5 // .. update internal state ..
6

7 // BUG: first argument must be a ListModel
8 fireContentsChanged(this, 0, getSize() - 1);
9 }

10 };
11 SwingUtilities.invokeLater(runner);
12 }
13 }

Figure 6.7: Bug in jEdit.

configurations.2 The default configuration gives a true positive rate of 47%, that is,
about half of the reported warnings are relevant for a developer. The recall-focused
configuration reveals six bugs that are not found in the default configuration. The
price for finding these additional bugs is a lower true positive rate.

Figure 6.7 shows a bug that the analysis finds in jEdit. The first parameter of
fireContentsChanged(), called in line 8, is brittle: The declared parameter type
is Object, but the documentation clearly states that it must be a ListModel. Our
analysis infers this constraint from call sites of this method and reports a warning
because the first argument in Figure 6.7 is of type Object. The problem is that the
programmer passes this, which refers to the Runnable and not to the surrounding
class FilteredListModel. We reported this bug to the developers and they fixed
it within a single day.3

Figure 6.8 is a bug found in JFtp.4 The program wraps a list into a scroll pane
to add scroll bars to it (line 6) and subsequently wraps this scroll pane into another
scroll pane (line 8). The result are scroll bars surrounded by scroll bars—certainly
undesired behavior. The analysis finds this problem because JScrollPane occurs
only once as argument type of JScrollPane’s constructor, while several other types
occur frequently.

2Table B.5 gives details on all reported warnings.
3See issue 3477759 in jEdit’s bug database.
4See issue 3484625 in JFtp’s bug database.

CHAPTER 6. BRITTLE PARAMETER TYPES 127

1 class InsomniacClient {
2 JPanel p = new JPanel();
3 JList list = new JList();
4 InsomniacClient() {
5 // ...
6 JScrollPane pane = new JScrollPane(list);
7 // BUG: Two nested scroll panes
8 p.add(new JScrollPane(pane));
9 }

10 }

Figure 6.8: Bug in JFtp.

The analysis finds a bug in nTorrent, which is illustrated in Figure 6.2. It has
been confirmed as a bug in response to our bug report.5 Five bugs (in Protégé,
jEdit, and ArgoUML) are due to using look and feel-specific color classes, which
lead to visual glitches if the programs run with another look and feel than ex-
pected by the programmers. The analysis finds these bugs because the look and
feel-specific classes appear as argument types instead of the much more common
type Color. Two bugs (in JFreeChart and Scrinch) pass unexpected arguments to
Graphics2D.setClip(Shape). According to the documentation only particular
subtypes of Shape will lead to the expected behavior. Another bug (in jEdit) is a
JTextField added to a JMenu, which is unexpected as shown in Figure 6.1.

The four code smells found by the analysis affect performance and maintainability.
Two warnings (in JPropsEdit) are about passing a newly created JLabel as a mes-
sage to JOptionPane.showMessageDialog(). The API documentation states
that messages are converted to Strings by the API implementation and afterwards
wrapped into a JLabel. A client cloning this behavior creates useless labels. The
analysis warns about Protégé passing a JComponent to a BoxLayout. The under-
lying problem is that a class in Protégé extends JComponent instead of the typically
extended JPanel. Finally, we find a problem in Scrinch, where a StringBuffer is
passed as the message of a dialog. Since the programmer obviously does not want the
API to modify the string, passing a String instead of the mutable StringBuffer
would be safer.

The false positives reported by the analysis have two main reasons. First, we
get false positives because some argument types that occur infrequently are never-
theless correct. For example, the analysis extracts 77 observations for GroupLay-
out.setHorizontalGroup(Group): 76 observations with ParallelGroup as
argument type and a single observation with SequentialGroup as argument type.
The parameter is not brittle, that is, both argument types are expected, but the anal-
ysis cannot distinguish this case from cases like Figure 6.6b. Second, we get false
positives because the static analysis extracts imprecise observations. For example,
the first argument of ActionMap.put(Object,Action) is typically a String,
but the analysis warns about code where an Object is observed. Manual inspection

5See issue 136 in nTorrent’s bug database.

CHAPTER 6. BRITTLE PARAMETER TYPES 128

of the source code shows that the argument will be a String for all possible program
paths, but the static analysis fails to find it.

In summary, we find that errors related to brittle parameters exist in practice and
that the analysis is effective in finding them. Many of the bugs that the analysis
reveals are hard to detect with traditional testing techniques. These bugs do not raise
an exception or trigger any other obvious misbehavior. Instead, many bugs lead to
malfunctions of the user interface or to incorrectly displayed GUI elements.

6.5.4 Automated Evaluation with Seeded Bugs

In addition to evaluating the effectiveness of the analysis in finding real bugs, we seed
bugs into programs. With seeded bugs we know by construction where problems in
a program reside and do not require a human to inspect warnings. Seeding bugs not
only allows us to evaluate the analysis with a large number of anomalies, but also to
measure the recall of the analysis.

To seed bugs related to brittle parameters, we must know about argument types
that are not expected by a callee but nevertheless compatible with the declared pa-
rameter type. To find those types, we manually search the documentation of the
Swing API for descriptions of brittle parameters. The result is a list of 14 API meth-
ods, each declaring a parameter of type T but expecting a proper subset of T ’s sub-
types as argument. Based on the list B of known brittle parameters, we seed bugs
into the programs from Table A.4. For each program P , we repeatedly do the follow-
ing:

1. Randomly select a parameter p from B. The probability to choose parameter p
is proportional to the number of call sites of p’s API method in P .

2. Randomly select an argument type t from all types that are compatible with p
but that are not among the expected types for p. The probability to choose a
type t is proportional to the number of references with type t in P .

3. Add an argument type observation stating that t is passed to p.

4. Run the analysis to check whether it finds the seeded bug.

The seeding technique chooses API methods and argument types according their
frequency in the analyzed program to simulate errors that programmers could make.

For each seeded bug, we run the analysis and measure its precision and recall:

precision =
#true positives

#true positives + #false positives

recall =

{
1 if the seeded bug is found
0 otherwise

The number of true positives is one if the analysis finds the seeded bug and zero
otherwise. Based on the assumption that the programs are correct except for the
seeded bug, all other reported warnings are considered to be false positives. We
make this assumption more realistic by ignoring the 15 known bugs and code smells
described in Section 6.5.3. Yet, the measured precision is an under-approximation
because some of the warnings we count as false positives may in fact be true positives
that we did not inspect manually.

CHAPTER 6. BRITTLE PARAMETER TYPES 129

We seed 100 bugs into each program from Table A.4 and compute the average of
the results from all runs of the analysis. In the default configuration, the analysis has
a precision and a recall of 83%. The recall-focused configuration raises recall to 94%
but reduces precision to 11%. These results show that the analysis reveals most of the
seeded bugs, even in the default configuration.

6.5.5 Performance

On a standard PC (Intel Core 2 Duo with 3.16 GHz, using 2.5 GB of memory), ana-
lyzing all 21 programs takes 23 minutes. Analyzing the largest program, ArgoUML,
takes eight minutes. Most of the time (over 99%) is spent extracting argument type
observations.

6.5.6 Thresholds of Anomaly Detection

Four thresholds control how strict the anomaly detection is when searching anoma-
lies (Section 6.4.3). In the following, we analyze the sensitivity of the analysis to these
thresholds and illustrate the tradeoffs when selecting thresholds. We vary one thresh-
old at a time, while leaving the others at default values. Initially, we varied all four
thresholds and decided on the default configuration given in Section 6.5.2.

Figure 6.9 shows how precision and recall vary depending on each threshold. For
each threshold, we give the results from analyzing the original programs (left) and
from analyzing programs with seeded bugs (right). For seeded bugs, we report the
F-measure, that is, the harmonic mean of precision and recall.

The minimum number of observations (Figure 6.9a) controls how many observa-
tions the analysis requires to give warnings. We experiment with values between two
and 200. A high threshold leads to more warnings, increasing precision but decreas-
ing recall. In contrast, a low threshold gives higher recall but a lower precision. The
figure illustrates the typical tradeoff between avoiding false positives and avoiding
false negatives. Our default configuration is a compromise between both objectives.

The maximum number of types (Figure 6.9b) specifies the maximum number of
different observed argument types for a parameter for which the analysis reports
warnings. We experiment with values between two and 50 (Figure 6.9b shows only
values up to 15 because there are no significant changes between 15 and 50). The
figure shows that starting from a relatively small number (three for real bugs and
four for seeded bugs), the threshold does not significantly influence the results. Our
default configuration is to allow up to six different argument types.

The minimum confidence drop (Figure 6.9c) controls how much the confidence
in the brittleness of a parameter must decrease by adding an argument type to a
histogram for the analysis to report a warning. We experiment with values between
zero and 50. A small threshold leads to more warnings, and hence, higher recall but
lower precision. In contrast, a larger threshold increases precision for the price of
reducing recall. As a default, we select a threshold that maximizes the F-measure for
seeding bugs.

The maximum percentage of anomalies (Figure 6.9d) limits the degree of incor-
rectness that the analysis expects in the programs. We experiment with values be-
tween 0.1% and 100%. For very small thresholds the analysis does not report any
warnings. At some point (3% for real bugs and 0.5% for seeded bugs), the analysis
begins to report warnings with high precision. Further increasing the threshold re-

CHAPTER 6. BRITTLE PARAMETER TYPES 130

duces precision while slightly increasing recall. We choose a default threshold that
gives reasonable precision.

6.5.7 Influence of Points-to Analysis

Using a points-to analysis while extracting argument type observations has a signifi-
cant performance impact. While points-to analysis can have benefits as illustrated by
the example in Figure 6.4, it is unclear how these benefits manifest in practice. There-
fore, we evaluate our approach without points-to analysis and compare the results to
the approach as described in Section 6.3. To disable points-to analysis, the approach
remains as in Section 6.3 except for the P2A function, which always returns an empty
set. That is, we assume that the points-to analysis never knows any abstract object
that a reference points to, and therefore our analysis always considers the statically
declared type of arguments.

The comparison shows that the precision of finding seeded bugs decreases from
83% to 76% when abandoning points-to information. In contrast, the precision of
finding real bugs and the recall of seeded bugs remain the same. We conclude that
points-to analysis influences the analysis, but that it is not crucial for the overall ap-
proach. Since the performance of our approach is reasonable when using a points-to
analysis, we leverage the benefits of this analysis technique.

6.5.8 Threats to Validity

We are aware of several threats to the validity of this evaluation. First, the programs
and APIs we consider may not be representative for a larger set of programs and
other APIs. In particular, we select the Swing API because it is known to be large
and complex; other APIs may be less amenable to the analysis. Yet, we know about
various other APIs with brittle parameter types (see Section 6.7) and are confident
that the analysis is applicable beyond the Swing API. Second, the classification of
warnings into bugs, code smells, and false positives may not reflect the opinion of
other developers. To mitigate this threat, we report a subset of all true positives to
the respective developers. Third, the comparison of the effectiveness of the analysis
with and without points-to analysis is based on one particular points-to analysis.
Other points-to analyses may give other results and we cannot conclude about the
usefulness of points-to analysis in general. Finally, the (number of) bugs we seed to
evaluate recall may not accurately represent any set of real-world bugs.

CHAPTER 6. BRITTLE PARAMETER TYPES 131

0%

20%

40%

60%

80%

100%

 0 50 100
 150

 200

(a) Minimum nb. of observations
Real bugs:

 0 50 100
 150

 200

Seeded bugs:
Precision

Recall
F-Measure

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12 14

(b) Maximum nb. of types
Real bugs:

 0 2 4 6 8 10 12 14

Seeded bugs:

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50

(c) Minimum confidence drop
Real bugs:

 0 10 20 30 40 50

Seeded bugs:

0%

20%

40%

60%

80%

100%

 0.001

 0.01
 0.1

 1

(d) Maximum percentage of anomalies
Real bugs:

 0.001

 0.01
 0.1

 1

Seeded bugs:

Figure 6.9: Influence of thresholds on anomaly detection. The dashed vertical line
indicates the default configuration.

CHAPTER 6. BRITTLE PARAMETER TYPES 132

6.6 Support for the Thesis

The analysis presented in this chapter supports our thesis that automatic program
analysis allows for precisely detecting programming errors with little effort.

6.6.1 Automation

Given a set of API clients, the analysis fully automatically identifies brittle parame-
ters and unexpected arguments given to methods with such parameters. The anal-
ysis is independent of a particular coding style (for example, we do not rely on
APIs that throw IllegalArgumentExceptions when unexpected arguments are
passed) and does not rely on any kind of specification.

6.6.2 Precision

In the default configuration, 47% of the reported warnings correspond to program-
ming errors. This precision is the lowest of the five approaches we present in this
thesis. Nevertheless, we consider the precision to be acceptable for most usage sce-
narios because inspecting a warning takes little effort. With the recall-focuses con-
figuration, precision drops to 11%. While this precision may be acceptable in some
usage scenarios, we do not recommend the recall-focused configuration as a default.

6.6.3 Effort

The human effort for using the analysis is split among the effort to set up the analysis
and the effort for inspecting the reported warnings. To set up the analysis, developers
require a collection of API clients. Since brittle parameters often are the result of
enhancing and revising a complex API over time, there typically are multiple clients
that use an API with brittle parameters. If no client uses an API, then there is no need
to enhance and revise it. To analyze an API client, it suffices to provide its source
code or byte code. Therefore, the human effort for setting up the analysis is low. The
effort for inspecting the warnings reported by the analysis is also low because each
warning affects a single call site of an API method.

The computational effort of the analysis (Section 6.5.5) is low, given that the anal-
ysis runs without human interaction. The part of the analysis that takes most time,
extracting argument type observations, can be easily parallelized by analyzing mul-
tiple programs in parallel.

6.7 Limitations and Future Work

Directions of future work include:

• Analyze other APIs. The problem of brittle parameter typing exists in various
APIs. For example, the Command class in the Eclipse Platform/Core API has
a method compareTo(Object) that expects a Command instance as the pa-
rameter. Another example is the Java XPath API: The XPath class provides a
method evaluate(String, Object) that expects instances of Node as the
second parameter. To adapt our analysis to an arbitrary API, it suffices to pass
the appropriate API packages to Algorithm 8. Future work may apply our ap-
proach to other APIs to compare the results with ours.

CHAPTER 6. BRITTLE PARAMETER TYPES 133

• Knowledge base for an API. To deploy our analysis, one could extract information
on brittle parameters from many API clients and persist it in a knowledge base.
This knowledge base can then be used to quickly check new API clients, which,
once they reach some level of maturity, can contribute to the knowledge base.

• User study. Similar to the analysis presented in Chapter 5, future work could
evaluate through a user study how developers react on the warnings reported
by the analysis. In particular, it would be interesting to study how many false
positives developers are willing to tolerate for finding subtle programming er-
rors.

7Related Work

7.1 Rule-based Static Checkers

Rule-based static checkers are program analyses that compare the source code of a
program against a set of bug patterns. These bug patterns are typically encoded by a
human and delivered with the checker. Lint [81] was one of the first static checkers
and “Lint-like” tool is often used as a synonym for rule-based static checkers.

Checkers by Engler et al. [44] search for violations of system-specific rules by in-
ferring “beliefs” of programmers. For example, their approach checks for potential
null dereferences, usages of a method that may fail without checking if the method
failed, and access to freed memory. Their analyses are based on rule templates that
are instantiated through a mixture of statistical learning from source code and man-
ual fine tuning. For example, the checker for usages of freed memory learns which
method frees memory by checking whether arguments passed to a method are used
afterwards and by limiting the search space to manually specified method names,
such as “free” and “deallocate”.

FindBugs [75] and PMD [2] have popularized rule-based static checking for Java.
These checkers contain various correctness bug patterns, for example, to find assign-
ments of a field to the same field or code that dereferences a null pointer. In addi-
tion to patterns to find correctness bugs, FindBugs and PMD search for instances
of various bad practices, such as using the platform-specific \n instead of %n in
format strings. Some of the bugs that our analyses detect can also be found with
FindBugs or PMD. For instance, FindBugs searches for code that accidentally creates
empty Zip files by calling ZipOutputStream.closeEntry() immediately after
ZipOutputStream.putNextEntry(). This kind of protocol violation can also be
detected with the analysis presented in Chapter 4.

The techniques presented in this thesis advance upon rule-based checkers in two
ways:

• Automation. Our analyses do not rely on manually defined bug patterns.
Instead, we check programs against generic correctness criteria (Chapters 2
and 3), against automatically inferred specifications (Chapter 4), or search
for anomalies under the assumption that most parts of a program are correct
(Chapters 5 and 6).

134

CHAPTER 7. RELATED WORK 135

• Precision. Existing rule-based checkers report false positives. In contrast, three
of the approaches presented in this thesis guarantee to report only true posi-
tives.

Several rule-based static checkers have been successfully deployed in large soft-
ware companies [11, 13], showing that automatic bug detection addresses a real-
world problem.

7.2 Specification Mining and Anomaly Detection

The analyses presented in this thesis do not rely on human-written specifications.
Instead, the analyses in Chapters 4 and 6 infer likely API usage specifications from
existing API clients under the assumption that most parts of these clients use the API
correctly. This approach, coined as specification mining [9], enables specification-
dependent tasks without the need to create specifications manually. One such tasks is
to check programs against specifications. We refer to bug finding techniques based on
inferred specifications as anomaly detection, because inferred specifications describe
how programs usually behave and therefore violations of inferred specifications are
anomalies. In the following, we discuss existing specification mining approaches and
anomaly detection techniques.

7.2.1 Specification Mining

The analysis in Chapter 4 leverages a dynamic protocol miner to reveal API usage
bugs. Various protocol miners have been proposed and many of them can be plugged
into the approach presented in Chapter 4. Comparing protocol miners with each
other is a hard problem, which we address with an evaluation framework [124] that
is beyond the scope of this thesis. The two main features that distinguish our protocol
miner from many others is to consider multi-object protocols and to scale well to large
execution traces [125].

Dynamic Protocol Mining

Ammons et al. pioneered to mine specifications of method ordering constraints from
execution traces using a probabilistic FSM learner [9]. Reiss et al. discuss space-
reducing encodings of runtime data and, as a by-product, propose an algorithm for
inferring FSMs from method call sequences [134]. SMArTIC is a specification min-
ing framework that structures the mining process into trace filtering, trace clustering,
probabilistic FSM learning, and merging of FSMs [97]. Adabu infers protocols by
creating states based on the return values of pure methods [38].

Gabel et al. present Javert, a tool to extract protocols that involve multiple ob-
jects [54]. At first, their analysis mines traces for a set of pre-defined micro-patterns;
then, it merges the micro-patterns into larger protocols. Perracotta is a specification
mining tool that focuses on scalability and possibly imperfect traces [172]. Similar
to [54], the approach is to search method traces for instances of particular templates,
such as two events that may only occur in strictly alternating order. Instead of search-
ing instances of pre-defined templates, our approach can identify arbitrary usage
patterns.

Lorenzoli et al. [98] infer protocols that, in addition to method ordering con-
straints, specify invariants that should hold when taking a transition. Ghezzi et

CHAPTER 7. RELATED WORK 136

al. [58] analyze container-like classes and infer FSMs combined with graph trans-
formation rules. This combination describes the visible state of the specified classes
more fine-grained than plain FSMs. In contrast to our approach, they consider only
single-object usages.

Cook et al. compare different methods for deriving FSMs that describe software
development processes [34]. Despite the differing application domain, their work is
related, since they also infer temporal constraints from sequences of observed events.

Static Protocol Mining

Whaley et al. infer protocols that describe all call sequences to an instance of a class
that do not lead to an exception [166]. The work is based on the assumption that
programmers use a particular field of a class to track the internal state of the class.
The analysis identifies sets of related methods by considering those subsets of a class’
methods that access a common field. Alur et al. present a generalization of that ap-
proach [7]. Their analysis searches the most general temporal interface of a class that
does not lead to an unsafe valuation of the class’ fields. The above analyses are con-
servative, that is, the produced specifications permit more call sequences than those
that are actually legal. In contrast, protocols inferred with our approach summarize
the behavior observed in training programs.

Wasylkowski et al. present a static analyzer that finds temporal properties, such as
that n() can be called after m() [162]. As an intermediate step, their analysis constructs
FSMs that focus on the use of one particular object in a method.

Other Kinds of Specifications

Beyond protocols, one can infer other kinds of specifications. Ernst et al. were among
the first to derive specifications from runtime data [45, 46]. Their analysis, Daikon,
extracts invariants, which possibly involve multiple variables, from program traces.
Existing dynamic specification mining approaches, such as Daikon, can be fully au-
tomated by plugging them into the approach in Chapter 4.

Salah et al. infer different usage scenarios for a single class by grouping simi-
lar method invocation sequences on instances of this class into canonical sets [138].
Acharya et al. derive partial orders of API method calls from C source code [5].
Henkel et al. describe how to infer algebraic specifications for Java container
classes [70]. An algebraic specification consists of axioms that describe equalities
resulting from different sequences of method calls. Their approach generates such
axioms automatically and tests them for validity using generated unit tests.

7.2.2 Bug Finding via Anomaly Detection

Chapters 4, 6, and 5 present bug detection techniques that infer typical usage pat-
terns to warn about unusual parts of a program. Various other anomaly detection
techniques have been proposed. Our work contributes by addressing kinds of bugs
not addressed previously (Chapters 6 and 5) and by avoiding false positives (Chap-
ter 4).

Livshits et al. propose a technique for identifying violations of application-specific
programming rules with the help of software revision repositories [96]. They build
upon the assumption that methods that occur in the same check-in relate to each
other and apply a data mining algorithm to spot frequent method sets. A system

CHAPTER 7. RELATED WORK 137

for detecting code injection attacks by Fetzer et al. includes a component for learn-
ing typical system call sequences from method traces based on data-flow relations
between calls [48].

Hangal and Lam [68] dynamically infer invariants and report violations of these
invariants as potential bugs. Their paper proposes a metric for the confidence that an
invariant holds, which they use to decide whether to warn about a violation of the
invariant. We adapt this metric to the analysis for finding brittle parameters and use
it to filter observations based on a minimum confidence drop (Section 6.4).

PR-Miner statically mines rules saying that calling a set of methods within some
context implies calling another method [92]. Ramanathan et al. propose a static
technique that infers temporal constraints between pairs of methods and that uses
them to find bugs [133]. Chang et al. detect missing condition checks by inferring
graph-based rules from source code [26]. Thummalapenta and Xie [154] target ex-
ception handling rules and how to find their violations automatically. Wasylkowski
et al. [162, 161] present analyses to statically detect missing method calls. Nguyen et
al. [112] and Monperrus et al. [109] learn usage patterns to find code locations where
a particular call seems to be missing.

Weimer et al. present an analysis that identifies potential bugs in error handling
code by searching for unusual pairs of method calls in exceptional control flow
paths [164]. A static analysis by Lu et al. [99] extracts correlations between vari-
able accesses to find unusual pieces of code that can cause inconsistent updates and
concurrency bugs.

APIs with multiple clients allow for cross-project analysis, as we show in Chap-
ter 6. Zhong et al. [178] mine API clients to derive recommendations of code snippets.
In contrast to this approach, the analysis in Chapter 6 detects bugs in the analyzed
client programs. Gruska et al. [65] analyze 6,000 projects with an anomaly detection
technique. Scaling the analysis in Chapter 6 to a comparable number of API clients is
subject to future work.

We present a static bug finding technique based on inferred protocols in [131].
In contrast to the approach presented in Chapter 4, it can analyze those parts of a
program that are not covered by generated tests but reports false positives and does
not address the problem of exercising programs for protocol mining.

Høst and Østvold [74] propose an analysis to detect naming bugs. They combine
two analyses to check whether the implementation of a method is consistent with
its name. Their approach is based on implicit knowledge about method names that
has been extracted from a large corpus of programs. Some of the anomalies detected
by the approach presented in Chapter 5 are also caused by inappropriate identifier
names. However, our analysis addresses argument names and the order in which
arguments are passed, while Høst and Østvold analyze names of methods.

7.3 Finding Bugs Related to Equal Types

Chapter 5 addresses problems related to equally typed method parameters. Several
existing approaches address the inability of type systems to discern different usages
of variables having the same type. In addition to other differences discussed below,
our analysis differs by specifically addressing problems involving equally typed pa-
rameters.

Guo et al. [66] dynamically infer abstract types for variables of primitive types by
analyzing how these variables interact, for example, through an assignment. Simi-

CHAPTER 7. RELATED WORK 138

larly, Hangal and Lam [69] propose a static analysis to infer dimensions that refine
the type information of primitive type and string variables. The analysis in Chap-
ter 5 differs by analyzing programmer-given identifier names instead of the interac-
tions of values or variables. Furthermore, we use the inferred knowledge for finding
anomalies in a program. In [69], dimensions inferred from a program version that is
assumed to contain no errors are used to report inconsistencies introduced by later
revisions of the program. In contrast, our analysis can detect inconsistencies within a
single version of a program. One could combine the techniques in [66, 69] with ours
by using inferred type refinements for finding problems related to equally typed ar-
guments.

Lawall and Lo present an analysis that infers type-like groups for int constants
by analyzing the variables with which these constants are combined [87]. Based on
these groups, the analysis detects anomalies of variable-constant pairs, such as the in-
correct use of a constant. Similar to the analysis in Chapter 5, Lawall and Lo address a
weakness of type checkers by extracting implicit knowledge from source code. How-
ever, instead of analyzing similarities between identifier names, their approach lever-
ages common programming idioms.

There are several approaches to explicitly refine standard types through addi-
tional information. For example, Greenfieldboyce and Foster propose adding type
qualifiers to Java to express atomic properties, such as that a variable is read-only [63].
Their approach requires programmers to annotate variables with additional informa-
tion, and hence, is orthogonal to an automatic analysis like the analysis in Chapter 5.

Erwig et al. define a unit system for spreadsheet languages, which derives type-
like information from headers of spreadsheet tables [47]. Similar to our approach,
their work leverages user-provided natural language terms to search for errors
caused by inconsistencies. While Erwig et al. deal with an otherwise untyped lan-
guage, our approach addresses problems caused by a too coarse-grained existing
type system. Another difference is that our analysis is robust against similar but dif-
ferent names, whereas the analysis in [47] requires header names to match precisely.

7.4 Detecting and Avoiding Concurrency Bugs

Chapter 2 and parts of Chapter 3 present approaches to detect concurrency bugs in
supposedly thread-safe classes. Table 7.1 compares the analysis presented in Chap-
ter 2 with other techniques to find concurrency bugs based on four criteria: whether
static or dynamic analysis is used, the input and output of the analysis, and the cor-
rectness criterion. The unique feature of our work is to require only a program as
input, that is, to work fully automatically.

7.4.1 Data Races

Dynamic data race detectors search for unsynchronized, conflicting accesses to
shared data by analyzing happens-before relations [50, 104], by checking whether
the program follows a locking discipline [139, 160], or by a combination of both tech-
niques [114]. Our approach detects data races, if they manifest through an exception
or a deadlock.

CHAPTER 7. RELATED WORK 139

Table 7.1: Comparison with existing static (S) and dynamic (D) approaches. Input:
program (P), program and tests (PT), or program, tests, and specifications (PTS). Out-
put: bugs (B) or bugs and false positives (BF). Correctness criterion: data race (DR),
atomicity violations (Atom), deadlock (DL), crash, or other.

Approach Dyn./ Input Output Correctness criterion

Stat. P PT PTS B BF DR Atom DL Crash Other

[139, 160, 114, 50, 104] D m l m m l l m m m m

[28] SD m l m m l l m m m m

[141] D m l m l m l m m l m

[10, 49, 101, 67, 121, 146] D m l m m l m l m m m

[51, 142] D m m l l m m l m m m

[120, 86] D m m l l m m l m l m

[111] S m l m m l m m l m m

[83] D m l m l m m m l m m

[82] D m m l m l m m l m m

[175] D m l m l m m m m l m

[43, 56] D m m l l m m m m m l

[102, 79, 18] D m l m m l m m m m l

[52, 21] D m m l m l m m m m l

[174] SD m l m m l m m m m l

Our work (Chapter 2) D l m m l m m m l l m

7.4.2 Atomicity Violations

Analyses for finding atomicity violations rely on specifications of atomic blocks or of
sets of atomic variable accesses, provided manually [51, 142, 120] or inferred heuris-
tically [10, 49, 67]. Inferred atomic blocks causes false positives when a violation
is detected for source code that is not supposed to be atomic. Our analysis detects
atomicity violations, if they lead to an exception or a deadlock.

7.4.3 Deadlocks

Naik et al. [111] search deadlocks statically but require tests. Joshi et al. [82] model
check a reduced program and rely on annotations of condition variables. Both analy-
ses report false positives. Our analysis finds deadlocks triggered by generated tests.

7.4.4 Active Testing

To avoid false positives, active testing validates potential bugs by controlling the
scheduler to provoke an exception or a deadlock. The approach has been applied to
data races [141], atomicity violations [120, 86], deadlocks [83], and memory-related
concurrency bugs [175]. Our approach shares the idea of reporting problems only if
a certainly undesired situation occurs but does not rely on manually written tests.

CHAPTER 7. RELATED WORK 140

7.4.5 Linearizability

Herlihy and Wing introduce linearizability as a correctness criterion for concurrent
objects [73]. Wing and Gong test linearizability by simulating concurrent usages of
an object and by comparing the observable behavior to a sequential implementa-
tion [167]. Their approach assumes to have a sequential and a concurrent implemen-
tation of the same functionality. Line-Up [18] checks the linearizability of calls but
requires manually specified method parameters. Line-Up executes all linearizations
before running a concurrent test, whereas our oracle analyzes linearizations only if
the test fails. Elmas et al. [43] and Fonseca et al. [52] propose linearizability-based
analyses that require specifications to abstract the state of a component.

7.4.6 Other Correctness Criteria

Gao et al. [56] search for typestate errors in multi-threaded programs and rely on
typestate specifications. Joshi et al. [84] filter false warnings from verifying con-
current programs by using a sequential version of a program as an oracle for the
concurrent program. The approach relies on formal specifications and tests. Other
approaches check for violations of inferred invariants [102, 79, 143] or unusual or-
derings [174]. The price they pay for not relying on explicit specifications are false
positives.

7.4.7 Support for Finding Concurrency Bugs

Several techniques control the thread scheduling when running a concurrent pro-
gram repeatedly, for example, based on model checking [110, 35], random schedul-
ing [140, 19], or artificial delays [42]. These techniques reduce the time to trigger a
bug and could enhance the performance of our analysis.

Pugh and Ayewah [132] and Jagannath et al. [76] address the problem of manually
writing concurrent unit tests. Our work is orthogonal to theirs, because we generate
tests automatically.

Joshi et al. [84] propose to filter false warnings of verifiers of concurrent programs
by comparing the verification results of the concurrent program to the verification
results of a non-interleaved version of the program. Their work shares the idea to
leverage a sequentialized version of a concurrent program to avoid false warnings.
In contrast to our approach, their approach requires specifications and a test harness
for the program.

Burnim et al. propose to test for semantic linearizability by checking whether
programmer-given predicates evaluate to the same values in concurrent and lin-
earized executions [22]. Assuming that programmers write such predicates, our ora-
cle could check them in addition to focusing on concurrency-only crashes.

7.5 Test Generation

This thesis presents three dynamic analyses that are automatic because we leverage
generated tests as a driver for exercising the software under test. The analyses con-
tribute by using test generation for protocol mining and checking (Chapter 4), by
generating concurrent tests (Chapter 2), and by generating generic tests that can test
a subclass as well as a superclass (Chapter 3), respectively.

CHAPTER 7. RELATED WORK 141

There are various techniques for generating tests, such as random test genera-
tion [36, 117, 30], techniques based on model checking [159], techniques based on
symbolic execution [59, 169, 25], and techniques based on genetic algorithms [53, 64].
The analysis in Chapter 4 builds upon random test generation in general [36, 30] and
the feedback-directed random test generator Randoop [117] in particular. The bugs
found by our analysis complement the bugs reported by Randoop’s built-in, generic
test oracles. Our approach extends the built-in oracles with inferred protocols that
reveal problems Randoop is oblivious of otherwise.

Jaygarl et al. [78] modify Randoop’s random method selection by creating param-
eters before calling a method and by favoring methods with low coverage in the
existing tests. Zheng et al. [176] propose to select methods that are likely to affect
the method under test, where influence between two methods is estimated based on
whether the methods access a common field. These approaches increase the cover-
age of methods under test, whereas the guidance technique presented in Section 4.7
intensifies the API usage of the tested program. In contrast to [78] and [176], our
guidance technique considers both parameters required to call a method and meth-
ods that may influence the state of objects. A technique for regression testing by Jin
et al. [80] guides Randoop towards methods that have been modified between two
versions. In contrast, we guide test generation by analyzing a single version of a
program.

The concurrent test generator presented in Chapter 2 is inspired by techniques
to generate sequential tests, in particular by [36, 117]. In contrast to them, our test
generator creates concurrent tests that exercise an object from multiple threads. In
contrast to [117], our test generator does not call methods in a random order. Instead,
the test generator selects methods that may provide arguments for future method
calls or that may modify the state if the object under test. Integrating more elaborate
test generation techniques, such as learning from observed call sequences [173], into
our approach could help to detect complex bugs faster.

Ballerina [113], which was developed concurrently with the work presented in
Chapter 2, generates efficient multi-threaded tests, showing that two threads, each
with a single call, can trigger many concurrency bugs. Ballerina checks test execu-
tions for linearizability (similar to [18]) and therefore produces false positives.

Claessen et al. propose to test actor-based Erlang programs by generating concur-
rent test and by checking executions of these tests against the sequential specification
of the program [32]. Their approach and the analysis in Chapter 2 share the idea of
generating concurrent tests, but their test generator relies on a state-based specifica-
tion of the program under test. In contrast, our generator is fully automatic.

Tillmann and Schulte propose parameterized unit tests, where all objects involved
in a test are parameters to the test [156]. Their approach generates concrete tests
from manually written, parameterized tests through symbolic execution. Generic
tests (Section 3.3) and parameterized tests share the idea of applying the same test to
different objects. In contrast to their work, the approach in Chapter 3 generates tests
fully automatically and uses them to check a subclass against its superclass.

Test generation can be enhanced by mining call sequence models [155, 171, 152,
173]. Xie and Notkin [170] propose to combine test generation and specification min-
ing for iteratively enhancing both activities. Dallmeier et al. [37] concretize this idea
by generating tests that explore not yet specified sequences of a protocol and by us-
ing the result of executing these tests to refine the protocol. The main goal of these
approaches is to enhance test generation with specification mining, or vice versa,

CHAPTER 7. RELATED WORK 142

whereas the approach presented in Chapter 4 combines test generation and specifi-
cation mining into an automatic bug finding technique.

7.6 Substitutability

The analyses presented in Chapters 3 and 6 relate to behavioral subtyping [145, 95]
and to the substitution property [94]. Both analyses address the problem that Java-
like languages do not guarantee subtype instances to be semantic substitutes for su-
pertype instances. The analysis in Chapter 3 detects subclasses that fail to ensure
substitutability, whereas the analysis in Chapter 6 reveals incorrect method call sites
that may result from such subclasses.1

There is a large body of work on verifying that a class is a behavioral subtype
of another class [90, 95, 41, 137]. In contrast to the analysis presented in Chapter 3,
these approaches rely on formal specifications of the behavior of subclasses and su-
perclasses, which is not available for most real-world classes.

Offutt et al. propose a model for bugs related to inheritance and polymor-
phism [115]. They describe nine kinds of anomalies, such as a subclass that modifies
state defined by the superclass in a way not expected by the superclass. The analysis
in Chapter 3 automatically detects these kinds of problems.

America proposes an object-oriented language that distinguishes between sub-
classing and subtyping [8]. Most popular languages, including Java, blend these two
concepts into one, giving rise to the problems revealed by the approach in Chapter 3.
Taivalsaari gives a good overview of the various notions of inheritance and their re-
spective benefits [149].

7.7 Other Testing and Debugging Techniques

McKeeman proposes to test supposedly equivalent programs, such as multiple com-
pilers for the same language, by comparing them with each other [108]. This idea,
called differential testing, has also been used to test system programs [25] and refac-
toring engines [40]. Srivastava et al. statically compare multiple API implementations
to find missing security checks [147]. In contrast to these approaches, our analysis in
Chapter 3 analyzes software at a finer level of granularity, namely at the class-level in-
stead of the program-level. As a result, our analysis is more widely applicable: Most
Java classes extend at least one other class (in addition to Object) [151], whereas few
programs have a supposedly equivalent program to compare with. A related idea is
to compare an old and a new version of a program and to warn developers about
regressions [106, 80]. In contrast to these approaches, our analysis reveals problems
within a single version of a program.

Similar to the analysis presented in Chapter 4, two kinds of approaches lever-
age the differences between passing and failing tests. The first group of approaches
compares features of passing and failing tests to identify classes and methods that
are likely to cause a known failure [135, 39, 103]. The second group of approaches
compares passing and failing tests to generate fixes for a known problem [165, 163].
In contrast to both approaches, the analysis in Chapter 4 discovers unknown bugs

1Brittle parameter can also have other reasons, for example, declared parameter types that are too gen-
eral.

CHAPTER 7. RELATED WORK 143

and leverages test generation instead of relying on existing input, such as manually
written tests.

The checking step of the analysis in Chapter 4 is closely related to runtime ver-
ification of protocols [6, 105, 27]. Our checker is conceptually similar to the online
checker JavaMOP [27] but works on execution traces and thus avoids some of the
challenges faced by JavaMOP, for example, because we know which objects interact
during an execution.

7.8 Other Related Work

In Chapter 3, we use Java PathFinder [158], which unsoundly considers concurrent
executions to be sequentially consistent. This limitation could cause the superclass
oracle (Section 3.4) to report a false warning if a subclass crashes with sequentially
consistent execution, while its superclass crashes only with a weak memory model.
We did not encounter this case during our evaluation. An extension of JPF to address
this problem is described in [85].

Identifier names are the subject of several studies, which generally agree on the
importance of well chosen names. A study involving 100 human participants shows
that expressive names are important for program understanding [89]. In particular,
the study shows that single letter names impede program understanding compared
to appropriate full word names. Another study shows that instances of bad nam-
ing practices correlate with poor code quality (measured in terms in FindBugs [75]
warnings) [23]. The analysis presented in Chapter 5 detects poor names of multiple
equally typed method parameters, that is, in a situation where meaningful names are
crucial for programmers.

Related to Chapter 6, a type system to analyze “related types” addresses the prob-
lem of calls that become trivial because the actual argument type is unrelated to the
formal type of the receiver [168]. Their approach requires annotating API methods,
whereas the analysis in Chapter 6 infers expected argument types. Another differ-
ence is that our approach can deal with expected argument types that are scattered
over the type hierarchy, that is, argument types not precisely describable with a single
supertype.

8Conclusions

This thesis set out to explore program analyses that detect programming errors. Our
main hypothesis was that automatic analysis allows for precisely detecting program-
ming errors with little effort. The key result of this work is to validate the hypothesis
by presenting a set of analyses that support the thesis.

Although the analyses presented in this thesis cover different kinds of errors, pro-
grams, and analysis techniques, we are convinced that more analyses to support our
thesis can and will be developed in the future. The “Future Work” sections at the end
of Chapters 2 to 6 outline some directions for future analyses.

During this work, we learned a few lessons. Not all of them are new, but we
believe they are worth writing down for the benefit of future research:

• Programs contain much more information than one might think. Programmers write
programs to obtain a particular execution behavior. Therefore, one might think
that programs contain exactly the information required to describe this behav-
ior. However, our work shows that analyzing programs can reveal other useful
information, such as API protocols, hints on the order of equally typed argu-
ments, and likely specifications of the argument types that a method expects.
Programmers did not intend to provide this information in their programs, but
it nevertheless exists and can be leveraged to enhance the programs.

• A program can serve as its own oracle. Testing requires a test oracle that decides
when to notify developers about a (potential) bug. Traditionally, test oracles are
written by developers who know the requirements for the software under test.
Our work shows that a program can serve as its own oracle: sequentially used
classes serve as an oracle for concurrently used classes, superclasses serve as
an oracle for subclasses, and API usage protocols followed on some execution
paths serve as an oracle for other execution paths. To leverage such implicit
oracles is one of the key ideas that enable our analyses to be fully automatic.

• Many programs know more than one program. Different programs are often as-
sumed to achieve a particular goal, such as using an API, in the same way.
Therefore, analyzing multiple programs together (for example, as described in
Chapter 6) can help to identify properties and problems that may not be obvi-
ous from a single program.

144

CHAPTER 8. CONCLUSIONS 145

• Static analysis can be effective despite being simple. The static analyses in Chap-
ters 5 and 6 are rather simple compared to the state of the art in static analysis.
Nevertheless, they turn out to be effective in finding programming errors.

• Less simple static analysis is also useful. In Chapter 6, we compare a simple vari-
ant of the analysis to a more sophisticated variant that builds upon a points-to
analysis. Our results show that a more precise (and therefore less simple) anal-
ysis improves upon the results obtained with the simple variant.

• It is possible to precisely identify bugs with imprecise (inferred) specifications. Most
approaches to infer specifications produce specifications that are imprecise and
incomplete with respect to a specification that a human would come up with.
One might expect (and initially, we did it) that using such imprecise specifica-
tions to find bugs inevitably leads to imprecise warnings. However, we show
in Chapter 4 that imprecise, inferred protocols can help to precisely identify
bugs when protocol violations are considered together with other signs of mis-
behavior.

• There are kinds of bugs not yet considered by any tools. Even though program anal-
ysis to find bugs is a long-established field of research, there are still kinds of
problems that no existing analysis considers. The analyses presented in Chap-
ters 5 and 6 show examples for this lesson learned, and we are certain that more
kinds of bugs wait to be found by future program analyses.

• Widely accepted principles may also be widely violated. Substitutability is one of the
bedrock principles of object-oriented programming and most developers are
aware of it. Nevertheless, the analysis in Chapter 3 finds a surprisingly large
percentage of classes in real-world software to violate this principle.

• Even well-tested software contains bugs. Although this lesson is certainly not new,
it is worth being mentioned. Even software that is well-tested and widely used
by many people contains bugs and, at some point, these bugs may pop up and
lead to unpleasant surprises.

APrograms Used for Evaluation

This appendix lists programs that we use for evaluating the analyses presented in
this thesis and that are not listed in the preceding chapters.

• Lines of code are counted with sloccount. Classes are counted as the number
of .class files generated by javac.

• The DaCapo benchmarks do not contain source code. Instead, we downloaded
the source code of each benchmark from the respective project web site.

• For the Jython benchmark of DaCapo 2006-10-MR2, the DaCapo Jar file con-
tains some classes that are not part of the Jython source distribution. That is,
the lines of code are an underapproximation.

• For the PMD benchmark of DaCapo 2006-10-MR2, the DaCapo Jar file matches
the source code of PMD 3.7, but [15] refers to PMD 1.8. We count the lines of
code of PMD 3.7.

• For DaCapo 9.12, there are twelve Java programs even though there are 14
benchmarks. The reason is that DayTrader is part of the tradebeans and the
tradesoap benchmarks and that Lucene is part of the luindex and lusearch
benchmarks.

• We omit the SPEC CPU specrand programs because they have only 49 LOC
each.

146

APPENDIX A. PROGRAMS USED FOR EVALUATION 147

Table A.1: Programs in the DaCapo 2006-10-MR2 benchmark suite [15].

Program Classes Lines of code

ANTLR 2.7.2 199 34,606
BLOAT 1.0 331 40,907
chart 1.0.0 481 68,791
Eclipse 3.1.2 384 34,113
FOP 0.20.5 969 43,494
HSQLDB 1.8.04 383 71,191
Jython 2.1 890 48,177
Lucene 1.9.1 316 19,271
PMD 1.8/3.7 524 38,478
Xalan 2.4.1 535 104,627

Sum 5,012 503,655

Table A.2: Programs in the DaCapo 9.12 benchmark suite [15].

Program Classes Lines of code

Avrora cvs-20090612 1,837 69,393
Batik 1.7 2,803 186,460
DayTrader 2.1.4 122 12,325
Eclipse 3.5.1 2,528 289,641
FOP 0.95 1,291 102,909
H2 1.2.121 (with Derby DB 10.5.3.0) 814 120,821
Jython 2.5.1 1,158 245,016
Lucene 2.4.1 1,510 124,105
PMD 4.2.5 914 60,062
Sunflow 0.07.2 244 21,970
Tomcat 6.0.20 1,603 161,131
Xalan 2.7.1 1,237 172,300

Sum 16,061 1,566,133

APPENDIX A. PROGRAMS USED FOR EVALUATION 148

Table A.3: Programs in the SPEC CPU 2006 benchmark suite [71].

Program Lines of code

bzip2 5,731
gcc 235,884
gobmk 157,649
h264ref 36,098
hmmer 20,658
lbm 904
libquantum 2,606
mcf 1,574
milc 9,575
perlbench 126,266
sjeng 10,544
sphinx3 13,128

Sum 620,617

Table A.4: Programs used to evaluate the analysis of brittle parameters (Chapter 6).

Program Classes Lines of code

ArgoUML 0.34 2,278 156,305
Class Editor 2.23 148 10,121
Dublin Core Ousia 11-01-11 78 6,724
Figoo 2.6.0 219 12,911
File Renamer 0.1.1 45 1,328
FormLayoutMaker 8.2.1rc 66 4,239
hirudo 0.7 48 2,642
id3tidy 0.3beta 52 2,097
jEdit 4.5pre1 1,175 103,332
JFreeChart 1.0.14 619 93,460
JFtp 1.53 167 23,511
JGraph 1.9.0.2 415 45,768
JPropsEdit 1.0.2 50 3,374
myPomodoro 1.0 112 2,510
nTorrent 0.5.1 188 36,290
outliner 1.8.10.6 468 35,407
pdfsam 2.2.1 230 15,567
Protégé 3.3 1,188 68,383
Scrinch 1.1.1 287 13,122
Stringer 1.0beta1 154 8,947
uBlogger 20090914 81 3,206

Sum 8,086 649,244

APPENDIX A. PROGRAMS USED FOR EVALUATION 149

Table A.5: Analyzed classes with thread-safe superclasses.

Program Class Superclass

Apache Ant 1.8.1 IdentityStack Stack
Apache Ivy 2.1.0 EncryptedProperties Properties
Apache OpenJPA 0.9.7 FormatPreservingProperties Properties
Apache OpenJPA 0.9.7 TypedProperties Properties
c3p0 0.9.0 AuthMaskingProperties Properties
Castor 1.3.1 SafeStack Stack
Compiere 330 AdvancedRow Vector
Cyber Garage Media Gate 1.0 ListenerList Vector
Eclipse 3.6 IndirectList Vector
Eclipse 3.6 NonSynchronizedVector Vector
EMMA 2.0.5312 XProperties Properties
GeoTools Graph 2.7-M3 IndexedStack Stack
H2 1.1.119 SortedProperties Properties
iText 5.0.3 LangAlt Properties
Java PathFinder 1.0.2 ExtendedProperties Properties
JBoss 5.1.0 PropertyMap Properties
JGroups 2.10.0 BoundedList ConcurrentLinked-

Queue
JNI-InChI 0.5 ResolvingProperties Properties
JSPWiki 2.8.4 CommentedProperties Properties
Netbeans 6.9.1 NbiProperties Properties
Omegahat SJava 0.68 FileLocator Vector
Omegahat SJava 0.68 TrimmedProperties Properties
RAS SDK 11.8.4.1197 Boxes Vector
RAS SDK 11.8.4.1197 GridAreas Vector
RAS SDK 11.8.4.1197 GroupTreeNodes Vector
RAS SDK 11.8.4.1197 ReportPartNodes Vector
SPEC jbb 2005 ReportProps Properties
WebWork Core 2.2.1 LocatableProperties Properties
Weka 3.7.2 ProtectedProperties Properties

Thread-safe superclasses:
java.util: Vector, Stack, Timer, Properties
java.util.logging: Logger, LogManager
java.util.concurrent: ConcurrentHashMap, ArrayBlockingQueue, ConcurrentLinkedQueue,
ConcurrentSkipListMap, ConcurrentSkipListSet, CopyOnWriteArrayList, CopyOnWriteArraySet,
DelayQueue, LinkedBlockingDeque, LinkedBlockingQueue, PriorityBlockingQueue, SynchronousQueue
java.util.concurrent.atomic: AtomicBoolean, AtomicInteger, AtomicIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLongFieldUpdater, AtomicMarkableReference, AtomicReference,
AtomicReferenceArray, AtomicReferenceFieldUpdater, AtomicStampedReference

BWarnings Reported by Bug
Detection Techniques

This appendix lists details about the warnings reported by the analyses presented in
this thesis.

Table B.1: Unsafe substitutes (Chapter 3, crash oracle).

Program Superclass Subclass Failure

Castor Stack SafeStack ArrayIndexOutOf-
BoundsException

Com. Coll. ArrayList FastArrayList StackOverflowError
Com. Coll. CompositeCollection CompositeSet IllegalArgument-

Exception
Com. Coll. HashMap MultiHashMap StackOverflowError
Com. Coll. SequencedHashMap LRUMap StackOverflowError
Com. Coll. TreeMap FastTreeMap ClassCastException
Compiere Vector AdvancedRow ArrayIndexOutOf-

BoundsException
dom4j DefaultDocument-

Type
DOMDocumentType UnsupportedOpera-

tionException
dom4j DefaultElement BeanElement ClassCastException
dom4j DefaultElement IndexedElement NullPointerException
dom4j DefaultElement UserDataElement NullPointerException
dom4j DefaultHandler DOMSAXContent-

Handler
NullPointerException

dom4j DefaultHandler SAXContentHandler NullPointerException
dom4j FlyweightComment DefaultComment InvalidXPathExcep-

tion
dom4j FlyweightEntity DefaultEntity InvalidXPathExcep-

tion
dom4j FlyweightEntity DOMEntityReference XPathException
dom4j LeafTreeNode BranchTreeNode NullPointerException

Continued on next page

150

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 151

Table B.1 – continued from previous page
Program Superclass Subclass Failure

dom4j XMLFilterImpl HTMLWriter NullPointerException
dom4j XMLFilterImpl XMLWriter NullPointerException
Eclipse Vector NonSynchronized-

Vector
IndexOutOfBounds-
Exception

iText Document PdfDocument NullPointerException
iText FilterOutputStream OutputStream NullPointerException
iText Hashtable DublinCoreSchema ClassCastException
iText Hashtable LangAlt ClassCastException
iText Hashtable PdfA1Schema ConcurrentModifica-

tionException
iText Hashtable PdfSchema ClassCastException
iText Hashtable XmpBasicSchema ClassCastException
iText Hashtable XmpMMSchema ClassCastException
iText Paragraph ListItem ClassCastException
iText PdfPageEventHelper FieldPositioningEvents UnsupportedOpera-

tionException
iText Phrase Anchor ClassCastException
iText Phrase ListItem ClassCastException
iText Phrase Paragraph ClassCastException
iText Properties DublinCoreSchema ClassCastException
iText Properties LangAlt ClassCastException
iText Properties PdfA1Schema ConcurrentModifica-

tionException
iText Properties PdfSchema ClassCastException
iText Properties XmpBasicSchema ClassCastException
iText Properties XmpMMSchema ClassCastException
iText Rectangle RectangleReadOnly UnsupportedOpera-

tionException
iText VerticalPositionMark LineSeparator NullPointerException
JBoss Properties PropertyMap StackOverflowError
OpenJPA Properties FormatPreserving-

Properties
Deadlock

Table B.2: Unsafe API usages detected by the analysis in Chapter 4.

Program Source location API method

chart RootHandler.java:124 java.util.Stack.pop()
chart DefaultWindDataset.java:179 java.util.List.get(int)
chart Statistics.java:206 java.util.List.get(int)
chart JFreeChart.java:702 java.util.List.remove(java.lang.Object)
FOP BodyAreaContainer.java:372 java.util.ArrayList.get(int)
FOP MIFDocument.java:962 java.util.ArrayList.get(int)
FOP AWTRenderer.java:371 java.util.Vector.removeElementAt(int)
FOP MIFDocument.java:910 java.util.ArrayList.get(int)

Continued on next page

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 152

Table B.2 – continued from previous page
Program Source location API method

FOP MIFDocument.java:922 java.util.ArrayList.get(int)
FOP PropertyInfo.java:129 java.util.Stack.peek()
FOP PropertyInfo.java:124 java.util.Stack.pop()
FOP AWTRenderer.java:379 java.util.Vector.get(int)
FOP BodyAreaContainer.java:297 java.util.ArrayList.get(int)
HSQLDB ZaurusChoice.java:89 java.util.Vector.elementAt(int)
Jython PySet.java:1189 java.util.Iterator.next()
Jython InternalTables2.java:105 java.util.Iterator.remove()
Lucene Hits.java:141 java.util.Vector.elementAt(int)
Lucene ConjunctionScorer.java:40 java.util.LinkedList.getFirst()
Lucene RAMOutputStream.java:82 java.util.Vector.elementAt(int)
Lucene RAMOutputStream.java:52 java.util.Vector.elementAt(int)
Lucene SegmentMerger.java:77 java.util.Vector.elementAt(int)
PMD CurrentPath.java:38 java.util.LinkedList.getLast()
PMD CurrentPath.java:42 java.util.LinkedList.getLast()
PMD CurrentPath.java:58 java.util.LinkedList.getLast()
PMD CyclomaticComplexity.java:148 java.util.Stack.peek()
PMD CyclomaticComplexity.java:85 java.util.Stack.peek()
PMD CyclomaticComplexity.java:68 java.util.Stack.peek()
PMD DFAPanel.java:203 java.util.List.get(int)
PMD CyclomaticComplexity.java:56 java.util.Stack.peek()
PMD CurrentPath.java:22 java.util.LinkedList.getLast()
PMD CurrentPath.java:46 java.util.LinkedList.getLast()
PMD Structure.java:44 java.util.LinkedList.getLast()
PMD CurrentPath.java:26 java.util.LinkedList.removeLast()
PMD CurrentPath.java:63 java.util.LinkedList.getLast()
PMD CyclomaticComplexity.java:62 java.util.Stack.peek()
PMD CyclomaticComplexity.java:109 java.util.Stack.peek()
PMD Structure.java:48 java.util.LinkedList.getFirst()
Xalan StylesheetHandler.java:1550 java.util.Stack.pop()
Xalan StylesheetHandler.java:1457 java.util.Stack.pop()
Xalan DOMBuilder.java:375 java.util.Stack.pop()
Xalan StylesheetHandler.java:1587 java.util.Stack.peek()
Xalan ExpandedNameTable.java:266 java.util.Vector.elementAt(int)
Xalan StylesheetHandler.java:1397 java.util.Stack.pop()
Xalan StylesheetHandler.java:1298 java.util.Stack.peek()
Xalan ExpandedNameTable.java:246 java.util.Vector.elementAt(int)
Xalan ElemForEach.java:246 java.util.Vector.elementAt(int)
Xalan StylesheetHandler.java:1317 java.util.Stack.pop()
Xalan ExpandedNameTable.java:295 java.util.Vector.elementAt(int)
Xalan Stylesheet.java:1409 java.util.Vector.elementAt(int)
Xalan ExpandedNameTable.java:279 java.util.Vector.elementAt(int)
Xalan ObjectArray.java:106 java.util.Vector.elementAt(int)
Xalan Stylesheet.java:1115 java.util.Vector.elementAt(int)
Xalan StylesheetHandler.java:1576 java.util.Stack.pop()

Continued on next page

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 153

Table B.2 – continued from previous page
Program Source location API method

Xalan ObjectArray.java:77 java.util.Vector.elementAt(int)

Table B.3: Anomalies involving equally typed arguments, detected in Java programs
by the analysis in Chapter 5. Classification: CB=Correctness bug, FP=False positive,
NA=Noteworthy anomaly, NB=Naming bug.

Program Source location Called method Class.

Batik BackgroundRable8Bit.java:140 getViewportBounds(Graphics-
Node, GraphicsNode)

NA

Batik BackgroundRable8Bit.java:207 getBoundsRecursive(Graphics-
Node, GraphicsNode)

NA

Batik BackgroundRable8Bit.java:283 getBackground(GraphicsNode,
GraphicsNode, Rectangle2D)

NA

Batik BridgeEventSupport.java:300 dispatchMouseEvent(String, El-
ement, Element, Point, Graphic-
sNodeMouseEvent, boolean)

NA

Batik IndexImage.java:199 splitChannel(int, int, int) NB
Batik IndexImage.java:203 splitChannel(int, int, int) NB
Batik SVG12BridgeEventSupport-

.java:700
dispatchMouseEvent(String, El-
ement, Element, Point, Graph-
icsNodeMouseEvent, boolean,
int)

NA

Eclipse ASTConverter.java:1893 retrieveEndingSemiColon-
Position(int, int)

NA

Eclipse ASTConverter.java:2311 resetTo(int, int) NA
Eclipse ASTConverter.java:2355 resetTo(int, int) NA
Eclipse ASTConverter.java:734 retrieveEndOfRightParenthesis-

Position(int, int)
FP

Eclipse BinaryExpression.java:1439 generateOptimizedBoolean(
BlockScope, CodeStream, Label,
Label, boolean)

NA

Eclipse BinaryExpression.java:1469 generateOptimizedBoolean(
BlockScope, CodeStream, Label,
Label, boolean)

NA

Eclipse EqualExpression.java:279 generateOptimizedBoolean-
Equal(BlockScope, CodeStream,
Label, Label, boolean)

NA

Eclipse EqualExpression.java:281 generateOptimizedNonBoolean-
Equal(BlockScope, CodeStream,
Label, Label, boolean)

NA

Eclipse HierarchyResolver.java:762 subTypeOfType(Reference-
Binding, ReferenceBinding)

NB

Continued on next page

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 154

Table B.3 – continued from previous page
Program Source location Called method Class.

Eclipse Scribe.java:212 createAlignment(String, int, int,
int, int, boolean)

CB

Eclipse SyncInfoTreeChangeEvent-
.java:46

isParent(IResource, IResource) NA

Eclipse UnaryExpression.java:185 generateOptimizedBoolean(
BlockScope, CodeStream, Label,
Label, boolean)

NA

Jython cPickle.java:802 isSubClass(PyObject, PyObject) NB
Jython imp.java:635 find module(String, String,

PyList)
FP

Jython imp.java:746 import next(PyObject, String-
Builder, String, String, PyOb-
ject)

FP

Jython imp.java:756 import first(String, String-
Builder, String, PyObject)

FP

Jython ModjyTestWSGIStreams-
.java:53

assertEquals(String, int, int) CB

Jython PyException.java:118 isSubClass(PyObject, PyObject) NB
Jython PyFloat.java:520 pow(double, double, PyObject) NB
Jython PyInteger.java:461 pow(int, int, PyObject, PyOb-

ject, PyObject)
NB

Jython TextIOWrapper.java:129 readLoop(byte[], int, char[], int,
int)

NA

Jython UniversalIOWrapper.java:123 readLoop(byte[], int, char[], int,
int)

NA

Jython zxJDBC.java:190 setitem (PyObject, PyObject) NA
Lucene TestSnowball.java:38 assertEquals(String, String) FP

Table B.4: Anomalies involving equally typed arguments, detected in C programs
by the analysis in Chapter 5. Classification: CB=Correctness bug, FP=False positive,
NA=Noteworthy anomaly, NB=Naming bug.

Program Source location Called method Class.

gcc expr.c:9538 do jump by parts equality(tree node *,
rtx def *, rtx def *)

NA

gcc sched-rgn.c:1133 sbitmap copy(simple bitmap def *, sim-
ple bitmap def *)

NA

gcc gcse.c:6500 true dependence(rtx def *, enum ma-
chine mode, rtx def *, int (*)(rtx def *,
int))

FP

gcc expr.c:9575 do jump by parts greater(tree node *, int,
rtx def *, rtx def *)

NA

gcc df.c:2835 df pattern emit before(df *, rtx def *, ba-
sic block def *, rtx def *)

FP

Continued on next page

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 155

Table B.4 – continued from previous page
Program Source location Called method Class.

gcc sched-rgn.c:2342 add dependence(rtx def *, rtx def *, enum
reg note)

NA

gcc c-typeck.c:1564 convert arguments(tree node *, tree node
*, tree node *, tree node *)

FP

gcc stmt.c:5580 case tree2list(case node *, case node *) FP
gcc expr.c:9438 do jump(tree node *, rtx def *, rtx def *) NA
gcc expr.c:9494 do jump(tree node *, rtx def *, rtx def *) NA
gcc expr.c:9603 do compare and jump(tree node *, enum

rtx code, enum rtx code, rtx def *, rtx def
*)

NA

gcc expr.c:9368 do jump(tree node *, rtx def *, rtx def *) NA
gcc expr.c:9162 expand binop(enum machine mode, optab

*, rtx def *, rtx def *, rtx def *, int, enum
optab methods)

FP

gcc splay-tree.c:109 splay tree splay helper(splay tree s *, un-
signed long int, splay tree node s * *,
splay tree node s * *, splay tree node s * *)

FP

gcc sched-rgn.c:2379 add dependence(rtx def *, rtx def *, enum
reg note)

NA

gcc expr.c:9557 do jump by parts greater(tree node *, int,
rtx def *, rtx def *)

NA

perlbench win32.c:3147 rename(const char *, const char *) FP
gobmk sgfdecide.c:345 owl analyze semeai(int, int, int *, int *, int

*, int)
NA

gobmk owl.c:3670 add owl prevent threat move(int, int) CB
gobmk play solo.c:228 gnugo estimate score(float *, float *) CB
gobmk genmove.c:342 estimate score(float *, float *) CB
gobmk sgfdecide.c:391 owl analyze semeai(int, int, int *, int *, int

*, int)
NA

gobmk interface.c:322 estimate score(float *, float *) CB
gobmk patterns.c:11106 defend against(int, int, int) CB
gobmk worm.c:1225 add attack threat move(int, int, int) NB
gobmk worm.c:1233 add defense move(int, int, int) NB
gobmk aftermath.c:808 estimate score(float *, float *) CB
gobmk owl.c:898 do owl analyze semeai(int, int, lo-

cal owl data *, local owl data *, int,
int *, int *, int *, int, int)

NA

gobmk owl.c:844 do owl analyze semeai(int, int, lo-
cal owl data *, local owl data *, int,
int *, int *, int *, int, int)

NA

gobmk reading.c:661 break through helper(int, int, int, int, int,
int, int, int)

NA

gobmk play solo.c:116 gnugo estimate score(float *, float *) CB
gobmk play ascii.c:449 gnugo estimate score(float *, float *) CB
gobmk worm.c:1222 add attack move(int, int, int) NB
gobmk worm.c:1237 add defense threat move(int, int, int) NB

Continued on next page

APPENDIX B. WARNINGS REPORTED BY BUG DETECTION TECHNIQUES 156

Table B.4 – continued from previous page
Program Source location Called method Class.

sphinx3 kbcore.c:163 lm read ctl(char *, dict t *, double, double,
double, char *, int *, int *, int)

CB

Table B.5: Anomalies related to brittle parameters (Chapter 6, default configuration).
The “Pos.” column gives the zero-based position of the unusual argument. Classifi-
cation: B=Bug, CS=Code smell, FP=False positive.

Program Source location Called method Pos. Class.

ArgoUML DnDExplorerTree.java-
:276

GradientPaint(float, float,
Color, float, float, Color)

2 B

ArgoUML FigEdgeModelElement-
.java:352

JMenu.add(Action) 0 FP

ArgoUML JLinkButton.java:138 JButton.addActionListener(
ActionListener)

0 FP

ArgoUML UMLCheckBox2.java:80 JCheckBox.addAction-
Listener(ActionListener)

0 FP

jEdit ActionBar.java:47 BoxLayout(Container, int) 0 FP
jEdit SearchBar.java:48 BoxLayout(Container, int) 0 FP
jEdit TextAreaBorder.java:37 Graphics.setColor(Color) 0 B
jEdit TextAreaBorder.java:40 Graphics.setColor(Color) 0 B
jEdit TextAreaBorder.java:44 Graphics.setColor(Color) 0 B
JFreeChart ChartPanel.java:2776 JOptionPane.showMessage-

Dialog(Component, Object)
1 FP

JPropsEdit JPropsEditOpenAction-
.java:95

JOptionPane.showMessage-
Dialog(Component, Object,
String, int)

1 CS

JPropsEdit JPropsEditSystem-
Properties-
Action.java:76

JOptionPane.showMessage-
Dialog(Component, Object,
String, int)

1 CS

pdfsam JPdfSelectionPanel-
.java:460

ActionMap.put(Object, Ac-
tion)

0 FP

pdfsam MixMainGUI.java:178 GroupLayout.setHorizontal-
Group(Group)

0 FP

pdfsam MixMainGUI.java:184 GroupLayout.setVertical-
Group(Group)

0 FP

Protégé ChangeProjectFormat-
WizardPage.java:53

BoxLayout(Container, int) 0 CS

Protégé ConfigureButtonIcon-
.java:44

Graphics.setColor(Color) 0 B

Scrinch PreferencesDialog.java-
:100

JOptionPane.showConfirm-
Dialog(Component, Object,
String, int)

1 CS

Stringer StatusBar.java:24 JPanel.add(Component, Ob-
ject)

1 FP

Bibliography

[1] AspectJ. http://www.eclipse.org/aspectj.

[2] PMD. http://pmd.sourceforge.net.

[3] IEEE standard glossary of software engineering terminology, 1990.

[4] API documentation of java.lang.StringBuffer (Java platform standard edition 6),
2011.

[5] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders from
source code: From usage scenarios to specifications. In European Software En-
gineering Conference and Symposium on Foundations of Software Engineering (ES-
EC/FSE), pages 25–34. ACM, 2007.

[6] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to AspectJ. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 345–364. ACM, 2005.

[7] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface speci-
fications for Java classes. In Symposium on Principles of Programming Languages
(POPL), pages 98–109. ACM, 2005.

[8] P. America. Designing an object-oriented programming language with be-
havioural subtyping. In REX Workshop, volume 489, pages 60–90. Springer,
1990.

[9] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In Symposium on
Principles of Programming Languages (POPL), pages 4–16. ACM, 2002.

[10] C. Artho, K. Havelund, and A. Biere. High-level data races. Software Testing,
Verification and Reliability, 13(4):207–227, 2003.

[11] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using
static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

[12] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study of object protocols
in the wild. In European Conference on Object-Oriented Programming (ECOOP),
pages 2–26, 2011.

157

http://www.eclipse.org/aspectj
http://pmd.sourceforge.net

BIBLIOGRAPHY 158

[13] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. R. Engler. A few billion lines of code later:
Using static analysis to find bugs in the real world. Communications of the ACM,
53(2):66–75, 2010.

[14] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 169–190. ACM, 2006.

[15] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. L.
Hosking, M. Jump, H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic, T. Van-
Drunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 169–190.
ACM, 2006.

[16] J. Bloch. Effective Java (Second Edition). Addison-Wesley, 2008.

[17] F. P. Brooks. No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, 1987.

[18] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-Up: a complete and
automatic linearizability checker. In Conference on Programming Language Design
and Implementation (PLDI), pages 330–340. ACM, 2010.

[19] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A randomized
scheduler with probabilistic guarantees of finding bugs. In Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 167–178, 2010.

[20] S. Burckhardt and R. Tan. Private communication, August 2011.

[21] J. Burnim, T. Elmas, G. C. Necula, and K. Sen. NDSeq: runtime checking for
nondeterministic sequential specifications of parallel correctness. In Confer-
ence on Programming Language Design and Implementation (PLDI), pages 401–414.
ACM, 2011.

[22] J. Burnim, G. C. Necula, and K. Sen. Specifying and checking semantic atom-
icity for multithreaded programs. In Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 79–90. ACM, 2011.

[23] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Relating identifier naming
flaws and code quality: An empirical study. In Working Conference on Reverse
Engineering (WCRE), pages 31–35. IEEE, 2009.

[24] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Exploring the influence of
identifier names on code quality: An empirical study. In European Conference on
Software Maintenance and Reengineering (CSMR), pages 156–165. IEEE, 2010.

[25] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 209–224. USENIX,
2008.

BIBLIOGRAPHY 159

[26] R.-Y. Chang, A. Podgurski, and J. Yang. Finding what’s not there: a new ap-
proach to revealing neglected conditions in software. In International Sympo-
sium on Software Testing and Analysis (ISSTA), pages 163–173. ACM, 2007.

[27] F. Chen and G. Rosu. MOP: An efficient and generic runtime verification frame-
work. In Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 569–588. ACM, 2007.

[28] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridha-
ran. Efficient and precise datarace detection for multithreaded object-oriented
programs. In Conference on Programming Language Design and Implementation
(PLDI), pages 258–269, 2002.

[29] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical study of
operating system errors. In Symposium on Operating Systems Principles (SOSP),
pages 73–88, 2001.

[30] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: adaptive random testing
for object-oriented software. In International Conference on Software Engineering
(ICSE), pages 71–80. ACM, 2008.

[31] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer. On the predictabil-
ity of random tests for object-oriented software. In International Conference on
Software Testing, Verification, and Validation (ICST), pages 72–81. IEEE Computer
Society, 2008.

[32] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts, and U. T.
Wiger. Finding race conditions in Erlang with QuickCheck and PULSE. In
International Conference on Functional programming (ICFP), pages 149–160. ACM,
2009.

[33] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string dis-
tance metrics for name-matching tasks. In Workshop on Information Integration
on the Web (IIWeb), pages 73–78, 2003.

[34] J. E. Cook and A. L. Wolf. Discovering models of software processes from
event-based data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

[35] K. E. Coons, S. Burckhardt, and M. Musuvathi. GAMBIT: effective unit test-
ing for concurrency libraries. In Symposium on Principles and Practice of Parallel
Programming, (PPOPP), pages 15–24. ACM, 2010.

[36] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for
Java. Software Practice and Experience, 34(11):1025–1050, 2004.

[37] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test
cases for specification mining. In International Symposium on Software Testing
and Analysis (ISSTA), pages 85–96. ACM, 2010.

[38] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object behavior
with ADABU. In Workshop on Dynamic Systems Analysis (WODA), pages 17–24.
ACM, 2006.

BIBLIOGRAPHY 160

[39] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for Java.
In European Conference on Object-Oriented Programming (ECOOP), pages 528–
550, 2005.

[40] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring
engines. In European Software Engineering Conference and International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE), pages 185–194. ACM,
2007.

[41] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through speci-
fication inheritance. In International Conference on Software Engineering (ICSE),
pages 258–267, 1996.

[42] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java pro-
gram test generation. IBM Systems Journal, 41(1):111–125, 2002.

[43] T. Elmas, S. Tasiran, and S. Qadeer. VYRD: verifying concurrent programs by
runtime refinement-violation detection. In Conference on Programming Language
Design and Implementation (PLDI), pages 27–37. ACM, 2005.

[44] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant be-
havior: A general approach to inferring errors in systems code. In Symposium
on Operating Systems Principles (SOSP), pages 57–72. ACM, 2001.

[45] M. D. Ernst. Dynamically discovering likely program invariants. PhD thesis, Uni-
versity of Washington, 2000.

[46] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discover-
ing likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):213–224, 2001.

[47] M. Erwig and M. M. Burnett. Adding apples and oranges. In Symposium on
Practical Aspects of Declarative Languages (PADL), pages 173–191. Springer, 2002.

[48] C. Fetzer and M. Süßkraut. Switchblade: Enforcing dynamic personalized sys-
tem call models. In European Conference on Computer Systems (EuroSys), pages
273–286. ACM, 2008.

[49] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In Symposium on Principles of Programming Languages
(POPL), pages 256–267. ACM, 2004.

[50] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race
detection. In Conference on Programming Language Design and Implementation
(PLDI), pages 121–133. ACM, 2009.

[51] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dy-
namic atomicity checker for multithreaded programs. In Conference on Program-
ming Language Design and Implementation (PLDI), pages 293–303. ACM, 2008.

[52] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency bugs in
large multi-threaded applications. In European Conference on Computer Systems
(EuroSys), pages 215–228. ACM, 2011.

BIBLIOGRAPHY 161

[53] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles. In
International Symposium on Software Testing and Analysis (ISSTA), pages 147–158.
ACM, 2010.

[54] M. Gabel and Z. Su. Javert: Fully automatic mining of general temporal prop-
erties from dynamic traces. In Symposium on Foundations of Software Engineering
(FSE), pages 339–349. ACM, 2008.

[55] M. Gabel and Z. Su. Online inference and enforcement of temporal properties.
In International Conference on Software Engineering (ICSE), pages 15–24, 2010.

[56] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2ndstrike: toward manifest-
ing hidden concurrency typestate bugs. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 239–250, 2011.

[57] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering
(2nd edition). Prentice Hall, 2002.

[58] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior mod-
els by graph transformation. In International Conference on Software Engineering
(ICSE), pages 430–440. IEEE, 2009.

[59] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random test-
ing. In Conference on Programming Language Design and Implementation (PLDI),
pages 213–223. ACM, 2005.

[60] P. Godefroid and N. Nagappan. Concurrency at microsoft - an exploratory
survey. In Workshop on Exploiting Concurrency Efficiently and Correctly (EC2),
2008.

[61] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

[62] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification, 3rd Edi-
tion. Prentice Hall, 2005.

[63] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for Java. In Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 321–336. ACM, 2007.

[64] F. Gross, G. Fraser, and A. Zeller. Search-based system testing: High cover-
age, no false alarms. In International Symposium on Software Testing and Analysis
(ISSTA), pages 67–77, 2012.

[65] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000 projects:
Lightweight cross-project anomaly detection. In International Symposium on
Software Testing and Analysis (ISSTA), pages 119–130. ACM, 2010.

[66] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic inference
of abstract types. In International Symposium on Software Testing and Analysis
(ISSTA), pages 255–265. ACM, 2006.

[67] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of atomic-
set-serializability violations. In International Conference on Software Engineering
(ICSE), pages 231–240. ACM, 2008.

BIBLIOGRAPHY 162

[68] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In International Conference on Software Engineering (ICSE),
pages 291–301. ACM, 2002.

[69] S. Hangal and M. S. Lam. Automatic dimension inference and checking for
object-oriented programs. In International Conference on Software Engineering
(ICSE), pages 155–165. IEEE, 2009.

[70] J. Henkel, C. Reichenbach, and A. Diwan. Discovering documentation for Java
container classes. IEEE Transactions on Software Engineering, 33(8):526–543, 2007.

[71] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[72] T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In Euro-
pean Software Engineering Conference and Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 31–40. ACM, 2005.

[73] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[74] E. W. Høst and B. M. Østvold. Debugging method names. In European Confer-
ence on Object-Oriented Programming (ECOOP), pages 294–317. Springer, 2009.

[75] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Companion to the Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 132–136. ACM, 2004.

[76] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov. Improved
multithreaded unit testing. In European Software Engineering Conference and
Symposium on Foundations of Software Engineering (ESEC/FSE), pages 223–233,
2011.

[77] C. Jaspan and J. Aldrich. Are object protocols burdensome? An empirical study
of developer forums. In Workshop on Evaluation and usability of programming
languages and tools (PLATEAU), pages 51–56. ACM, 2011.

[78] H. Jaygarl, K.-S. Lu, and C. K. Chang. GenRed: A tool for generating and reduc-
ing object-oriented test cases. In Computer Software and Applications Conference
(COMPSAC), pages 127–136. IEEE, 2010.

[79] G. Jin, A. V. Thakur, B. Liblit, and S. Lu. Instrumentation and sampling strate-
gies for cooperative concurrency bug isolation. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 241–255.
ACM, 2010.

[80] W. Jin, A. Orso, and T. Xie. Automated behavioral regression testing. In Inter-
national Conference on Software Testing, Verification and Validation (ICST), pages
137–146. IEEE, 2010.

[81] S. C. Johnson. Lint, a C program checker, 1978.

[82] P. Joshi, M. Naik, K. Sen, and D. Gay. An effective dynamic analysis for detect-
ing generalized deadlocks. In Symposium on Foundations of Software Engineering
(FSE), pages 327–336. ACM, 2010.

BIBLIOGRAPHY 163

[83] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic program
analysis technique for detecting real deadlocks. In Conference on Programming
Language Design and Implementation (PLDI), pages 110–120. ACM, 2009.

[84] S. Joshi, S. K. Lahiri, and A. Lal. Underspecified harnesses and interleaved
bugs. In Principles of Programming Languages (POPL), pages 19–30, 2012.

[85] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders. Precise data race detection in a
relaxed memory model using heuristic-based model checking. In Conference on
Automated Software Engineering (ASE), pages 495–499. IEEE, 2009.

[86] Z. Lai, S.-C. Cheung, and W. K. Chan. Detecting atomic-set serializability vio-
lations in multithreaded programs through active randomized testing. In Inter-
national Conference on Software Engineering (ICSE), pages 235–244. ACM, 2010.

[87] J. L. Lawall and D. Lo. An automated approach for finding variable-constant
pairing bugs. In International Conference on Automated Software Engineering
(ASE), pages 103–112. ACM, 2010.

[88] D. Lawrie, H. Feild, and D. Binkley. Extracting meaning from abbreviated iden-
tifiers. In Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 213–222. IEEE, 2007.

[89] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? A study of
identifiers. In International Conference on Program Comprehension (ICPC), pages
3–12. IEEE, 2006.

[90] G. T. Leavens and W. E. Weihl. Reasoning about object-oriented programs that
use subtypes. In Conference on Object-Oriented Programming Systems, Languages,
and Applications and European Conference on Object-Oriented Programming (OOP-
SLA/ECOOP), pages 212–223, 1990.

[91] O. Lhoták and L. J. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Transactions on
Software Engineering and Methodology, 18(1), 2008.

[92] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming
rules and detecting violations in large software code. In European Software En-
gineering Conference and Symposium on Foundations of Software Engineering (ES-
EC/FSE), pages 306–315. ACM, 2005.

[93] J. L. Lions. ARIANE 5 flight 501 failure. Report by the inquiry board. European
Space Agency, 1996.

[94] B. Liskov. Data abstraction and hierarchy. In Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), pages 17–34, 1987.

[95] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, 1994.

[96] V. B. Livshits and T. Zimmermann. DynaMine: Finding common error patterns
by mining software revision histories. In European Software Engineering Confer-
ence and Symposium on Foundations of Software Engineering (ESEC/FSE), pages
296–305. ACM, 2005.

BIBLIOGRAPHY 164

[97] D. Lo and S.-C. Khoo. SMArTIC: Towards building an accurate, robust and
scalable specification miner. In Symposium on Foundations of Software Engineer-
ing (FSE), pages 265–275. ACM, 2006.

[98] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software
behavioral models. In International Conference on Software Engineering (ICSE),
pages 501–510. ACM, 2008.

[99] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. MUVI: Au-
tomatically inferring multi-variable access correlations and detecting related
semantic and concurrency bugs. In Symposium on Operating Systems Principles
(SOSP), pages 103–116. ACM, 2007.

[100] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. In Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), pages
329–339. ACM, 2008.

[101] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via
access interleaving invariants. In Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 37–48. ACM, 2006.

[102] B. Lucia and L. Ceze. Finding concurrency bugs with context-aware commu-
nication graphs. In Symposium on Microarchitecture (MICRO), pages 553–563.
ACM, 2009.

[103] L. Mariani, F. Pastore, and M. Pezzè. Dynamic analysis for diagnosing integra-
tion faults. IEEE Transactions on Software Engineering, 37(4):486–508, 2011.

[104] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling
for lightweight data-race detection. In Conference on Programming Language De-
sign and Implementation (PLDI), pages 134–143. ACM, 2009.

[105] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding application errors and
security flaws using PQL: A program query language. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
365–383. ACM, 2005.

[106] S. McCamant and M. D. Ernst. Predicting problems caused by component up-
grades. In European Software Engineering Conference and Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 287–296. ACM, 2003.

[107] S. McConnell. Code Complete: A Practical Handbook of Software Construction, Sec-
ond Edition. Microsoft Press, 2004.

[108] W. M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

[109] M. Monperrus, M. Bruch, and M. Mezini. Detecting missing method calls in
object-oriented software. In European Conference on Object-Oriented Programming
(ECOOP), pages 2–25. Springer, 2010.

[110] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Find-
ing and reproducing Heisenbugs in concurrent programs. In Symposium on
Operating Systems Design and Implementation, pages 267–280. USENIX, 2008.

BIBLIOGRAPHY 165

[111] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock detection.
In International Conference on Software Engineering (ICSE), pages 386–396. IEEE,
2009.

[112] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
Graph-based mining of multiple object usage patterns. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 383–392. ACM, 2009.

[113] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov. Ballerina: Automatic
generation and clustering of efficient random unit tests for multithreaded code.
In International Conference on Software Engineering (ICSE), pages 727–737, 2012.

[114] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In Sympo-
sium on Principles and Practice of Parallel Programming (PPOPP), pages 167–178.
ACM, 2003.

[115] J. Offutt, R. T. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson. A fault model for
subtype inheritance and polymorphism. In International Symposium on Software
Reliability Engineering (ISSRE), pages 84–95. IEEE, 2001.

[116] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET with feedback-
directed random testing. In International Symposium on Software Testing and
Analysis (ISSTA), pages 87–96. ACM, 2008.

[117] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random
test generation. In International Conference on Software Engineering (ICSE), pages
75–84. IEEE, 2007.

[118] N. Palix, G. T. 0001, S. Saha, C. Calvès, J. L. Lawall, and G. Muller. Faults in
linux: ten years later. In Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 305–318. ACM, 2011.

[119] K. Pan, S. Kim, and E. J. W. Jr. Toward an understanding of bug fix patterns.
Empirical Software Engineering, 14(3):286–315, 2009.

[120] C.-S. Park and K. Sen. Randomized active atomicity violation detection in con-
current programs. In Symposium on Foundations of Software Engineering (FSE),
pages 135–145. ACM, 2008.

[121] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation bugs from
their hiding places. In Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 25–36. ACM, 2009.

[122] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay: a frame-
work for deterministic replay and reproducible analysis of parallel programs.
In Symposium on Code Generation and Optimization (CGO), pages 2–11. ACM,
2010.

[123] K. Poulsen. Software bug contributed to blackout. SecurityFocus, February
2004.

[124] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation of spec-
ification miners based on finite state machines. In International Conference on
Software Maintenance (ICSM), pages 1–10. IEEE, 2010.

BIBLIOGRAPHY 166

[125] M. Pradel and T. R. Gross. Automatic generation of object usage specifications
from large method traces. In International Conference on Automated Software En-
gineering (ASE), pages 371–382. IEEE, 2009.

[126] M. Pradel and T. R. Gross. Detecting anomalies in the order of equally-typed
method arguments. In International Symposium on Software Testing and Analysis
(ISSTA), pages 232–242. ACM, 2011.

[127] M. Pradel and T. R. Gross. Fully automatic and precise detection of thread
safety violations. In Conference on Programming Language Design and Implemen-
tation (PLDI), pages 521–530, 2012.

[128] M. Pradel and T. R. Gross. Leveraging test generation and specification mining
for automated bug detection without false positives. In International Conference
on Software Engineering (ICSE), pages 288–298, 2012.

[129] M. Pradel and T. R. Gross. Automatic testing of sequential and concurrent
substitutability. In International Conference on Software Engineering (ICSE), 2013.

[130] M. Pradel, S. Heiniger, and T. R. Gross. Static detection of brittle parameter typ-
ing. In International Symposium on Software Testing and Analysis (ISSTA), pages
265–275, 2012.

[131] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically checking API pro-
tocol conformance with mined multi-object specifications. In International Con-
ference on Software Engineering (ICSE), pages 925–935, 2012.

[132] W. Pugh and N. Ayewah. Unit testing concurrent software. In Conference on
Automated Software Engineering (ASE), pages 513–516. ACM, 2007.

[133] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference of
function precedence protocols. In International Conference on Software Engineer-
ing (ICSE), pages 240–250. IEEE, 2007.

[134] S. P. Reiss and M. Renieris. Encoding program executions. In International
Conference on Software Engineering (ICSE), pages 221–230. IEEE, 2001.

[135] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries. In
International Conference on Automated Software Engineering (ASE), pages 30–39.
IEEE, 2003.

[136] M. P. Robillard. What makes APIs hard to learn? Answers from developers.
IEEE Software, 26(6):27–34, 2009.

[137] C. Ruby and G. T. Leavens. Safely creating correct subclasses without seeing su-
perclass code. In Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 208–228, 2000.

[138] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and F. I. Vokolos. Scenar-
iographer: A tool for reverse engineering class usage scenarios from method
invocation sequences. In Conference on Software Maintenance (ICSM), pages 155–
164. IEEE, 2005.

[139] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

BIBLIOGRAPHY 167

[140] K. Sen. Effective random testing of concurrent programs. In Conference on
Automated Software Engineering (ASE), pages 323–332. ACM, 2007.

[141] K. Sen. Race directed random testing of concurrent programs. In Conference
on Programming Language Design and Implementation (PLDI), pages 11–21. ACM,
2008.

[142] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and E. Yahav. Testing
atomicity of composed concurrent operations. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 51–64, 2011.

[143] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng. Do I use the
wrong definition? DefUse: Definition-use invariants for detecting concurrency
and sequential bugs. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 160–174. ACM, 2010.

[144] Y. Smaragdakis and C. Csallner. Combining static and dynamic reasoning for
bug detection. In International Conference on Tests and Proofs (TAP), pages 1–16.
Springer, 2007.

[145] A. Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 38–45, 1986.

[146] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving threads to
expose atomicity violations. In Symposium on Foundations of Software Engineer-
ing (FSE), pages 37–46. ACM, 2010.

[147] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov. A security policy
oracle: detecting security holes using multiple API implementations. In Confer-
ence on Programming Language Design and Implementation (PLDI), pages 343–354.
ACM, 2011.

[148] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 2002.

[149] A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys,
28(3):438–479, 1996.

[150] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. Qualitas Corpus: A curated collection of Java code for empirical stud-
ies. In Asia Pacific Software Engineering Conference (APSEC), 2010.

[151] E. D. Tempero, J. Noble, and H. Melton. How do Java programs use inheri-
tance? An empirical study of inheritance in Java software. In European Confer-
ence on Object-Oriented Programming (ECOOP), pages 667–691. Springer, 2008.

[152] S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth. DyGen:
Automatic generation of high-coverage tests via mining gigabytes of dynamic
traces. In Conference on Tests and Proofs (TAP), pages 77–93. Springer, 2010.

[153] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns for de-
tecting neglected conditions. In International Conference on Automated Software
Engineering (ASE), pages 283–294. IEEE, 2009.

BIBLIOGRAPHY 168

[154] S. Thummalapenta and T. Xie. Mining exception-handling rules as sequence as-
sociation rules. In International Conference on Software Engineering (ICSE), pages
496–506. IEEE, 2009.

[155] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. MSeq-
Gen: Object-oriented unit-test generation via mining source code. In European
Software Engineering Conference and International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 193–202. ACM, 2009.

[156] N. Tillmann and W. Schulte. Parameterized unit tests. In European Software En-
gineering Conference and Symposium on Foundations of Software Engineering (ES-
EC/FSE), pages 253–262. ACM, 2005.

[157] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. Soot -
a Java bytecode optimization framework. In Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON), pages 125–135. IBM, 1999.

[158] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking pro-
grams. Automated Software Engineering, 10(2):203–232, 2003.

[159] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In International Symposium on Software Testing and Analysis (ISSTA),
pages 97–107. ACM, 2004.

[160] C. von Praun and T. R. Gross. Object race detection. In Conference on Object Ori-
ented Programming, Systems, Languages and Applications (OOPSLA), pages 70–82,
2001.

[161] A. Wasylkowski and A. Zeller. Mining temporal specifications from object us-
age. In International Conference on Automated Software Engineering (ASE), pages
295–306. IEEE, 2009.

[162] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies. In
European Software Engineering Conference and Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE), pages 35–44. ACM, 2007.

[163] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. In International Symposium on
Software Testing and Analysis (ISSTA), pages 61–72. ACM, 2010.

[164] W. Weimer and G. C. Necula. Mining temporal specifications for error detec-
tion. In Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 461–476. Springer, 2005.

[165] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding
patches using genetic programming. In International Conference on Software En-
gineering (ICSE), pages 363–374, 2009.

[166] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented
component interfaces. In Symposium on Software Testing and Analysis (ISSTA),
pages 218–228. ACM, 2002.

[167] J. M. Wing and C. Gong. Testing and verifying concurrent objects. Journal of
Parallel and Distributed Computing, 17(1-2):164–182, 1993.

BIBLIOGRAPHY 169

[168] J. Winther and M. I. Schwartzbach. Related types. In European Conference on
Object-Oriented Programming (ECOOP), pages 434–458. Springer, 2011.

[169] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for
generating object-oriented unit tests using symbolic execution. In Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages
365–381. Springer, 2005.

[170] T. Xie and D. Notkin. Mutually enhancing test generation and specification
inference. In Formal Approaches to Software Testing, pages 60–69. Springer, 2003.

[171] T. Xie and D. Notkin. Automatic extraction of object-oriented observer abstrac-
tions from unit-test executions. In International Conference on Formal Engineering
Methods (ICFEM), pages 290–305. Springer, 2004.

[172] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: Mining tem-
poral API rules from imperfect traces. In International Conference on Software
Engineering (ICSE), pages 282–291. ACM, 2006.

[173] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static and dynamic auto-
mated test generation. In International Symposium on Software Testing and Anal-
ysis (ISSTA), pages 353–363, 2011.

[174] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and T. W. Reps.
ConSeq: detecting concurrency bugs through sequential errors. In Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS), pages 251–264, 2011.

[175] W. Zhang, C. Sun, and S. Lu. ConMem: detecting severe concurrency bugs
through an effect-oriented approach. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 179–192. ACM,
2010.

[176] W. Zheng, Q. Zhang, M. R. Lyu, and T. Xie. Random unit-test generation with
MUT-aware sequence recommendation. In Conference on Automated Software
Engineering (ASE), pages 293–296. ACM, 2010.

[177] M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE
Security & Privacy, 7(2):87–90, 2009.

[178] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Mining and recommend-
ing API usage patterns. In European Conference on Object-Oriented Programming
(ECOOP), pages 318–343, 2009.

	Introduction
	Motivation
	Terminology
	Automatic and Precise Bug Detection
	Contents and Contributions
	Potential Impact
	Further Resources

	Thread Safety Violations
	Overview of the Approach
	Detailed Example
	Generating a Concurrent Test
	Executing the Test
	Thread Safety Oracle

	Generating Concurrent Tests
	Tasks
	Test Generation Algorithm

	Thread Safety Oracle
	Thread Safety
	Definitions
	The Test Oracle

	Implementation
	Evaluation
	Experimental Setup
	Bugs Found
	Annotating Classes as Thread-unsafe
	Performance
	Threats to Validity

	Support for the Thesis
	Automation
	Precision
	Effort

	Limitations and Future Work

	Unsafe Substitutes
	Motivation
	Overview of the Approach
	Generating Generic Tests
	Constructor Mappings
	Generating Sequential and Concurrent Tests

	The Superclass Oracle
	The Output Oracle
	The Crash Oracle
	Distinguishing Concurrent from Sequential Problems
	Exploring Executions
	Examples

	Implementation
	Evaluation
	Experimental Setup
	Overview of Unsafe Substitutes Found
	Examples of Unsafe Substitutes
	Root Causes for Unsafe Substitutes
	Failures Observed by the Crash Oracle
	Feedback from Developers
	Performance
	Threats to Validity

	Support for the Thesis
	Automation
	Precision
	Effort

	Limitations and Future Work

	API Protocol Violations
	API Usage Protocols
	Overview of the Approach
	Problem Definition
	Our Approach

	Random Test Generation
	Protocol Mining
	Gathering Execution Traces
	Extracting Subtraces from Large Execution Traces
	Generating Finite State Machines
	Driving Protocol Mining with Passing Tests

	Protocol Checking
	Naive Approach
	Setup Phase versus Liable Phase
	Checking Approach

	Warnings without False Positives
	API-Guided Test Generation
	Evaluation
	Setup
	Detection of Protocol Violations
	API-Guided Test Generation
	Scalability and Performance
	Threats to Validity

	Support for the Thesis
	Limitations and Future Work

	Incorrectly Ordered, Equally Typed Arguments
	Motivation
	Overview of the Approach
	Name Extraction
	Java and C Language
	Java Language
	C Language

	Anomaly Detection
	Algorithm
	Example
	Refinements

	Evaluation
	Anomalies in Mature Programs
	Recall
	Parameter Calibration
	Performance and Scalability
	Threats to Validity

	Support for the Thesis
	Automation
	Precision
	Effort

	Limitations and Future Work

	Brittle Parameter Types
	Motivation
	Overview
	Argument Type Observations
	Points-to Analysis
	Extraction Algorithm
	Example

	Detecting Anomalies
	Preprocessing Argument Type Observations
	Type Histograms
	Identifying Anomalies
	Clustering Warnings

	Evaluation
	Implementation
	Experimental Setup and Measurements
	Anomalies in Real Programs
	Automated Evaluation with Seeded Bugs
	Performance
	Thresholds of Anomaly Detection
	Influence of Points-to Analysis
	Threats to Validity

	Support for the Thesis
	Automation
	Precision
	Effort

	Limitations and Future Work

	Related Work
	Rule-based Static Checkers
	Specification Mining and Anomaly Detection
	Specification Mining
	Bug Finding via Anomaly Detection

	Finding Bugs Related to Equal Types
	Detecting and Avoiding Concurrency Bugs
	Data Races
	Atomicity Violations
	Deadlocks
	Active Testing
	Linearizability
	Other Correctness Criteria
	Support for Finding Concurrency Bugs

	Test Generation
	Substitutability
	Other Testing and Debugging Techniques
	Other Related Work

	Conclusions
	Programs Used for Evaluation
	Warnings Reported by Bug Detection Techniques
	Bibliography

