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Abstract—Neural models of code are successfully tackling
various prediction tasks, complementing and sometimes even
outperforming traditional program analyses. While most work
focuses on end-to-end evaluations of such models, it often remains
unclear what the models actually learn, and to what extent their
reasoning about code matches that of skilled humans. A poor
understanding of the model reasoning risks deploying models
that are right for the wrong reason, and taking decisions based
on spurious correlations in the training dataset. This paper
investigates to what extent the attention weights of effective
neural models match the reasoning of skilled humans. To this
end, we present a methodology for recording human attention
and use it to gather 1,508 human attention maps from 91
participants, which is the largest such dataset we are aware
of. Computing human-model correlations shows that the copy
attention of neural models often matches the way humans reason
about code (Spearman rank coefficients of 0.49 and 0.47), which
gives an empirical justification for the intuition behind copy
attention. In contrast, the regular attention of models is mostly
uncorrelated with human attention. We find that models and
humans sometimes focus on different kinds of tokens, e.g.,
strings are important to humans but mostly ignored by models.
The results also show that human-model agreement positively
correlates with accurate predictions by a model, which calls for
neural models that even more closely mimic human reasoning.
Beyond the insights from our study, we envision the release of
our dataset of human attention maps to help understand future
neural models of code and to foster work on human-inspired
models.

I. INTRODUCTION

Neural models that analyze source code [46] have become
extremely effective on various tasks, such as code summariza-
tion [5], [6], [31], bug detection [28], [48], bug injection [44],
bug repair [16], and type inference [3], [26], [40], [47], [65].
In essence, these models learn implicit rules, patterns, and
heuristics from a large number of code examples, and then
apply them to previously unseen code. An implicit assumption
is that the models reason about code in a way similar to human
software developers. However, it currently remains unclear
to what extent the computations performed by trained neural
models actually resemble how humans reason about code.

Understanding the relation between neural and human rea-
soning is an important step toward better understanding why
neural models of code work, or sometimes do not work.
Current models are mostly black boxes and it remains difficult
to understand why a model succeeds or fails. Gaining a

better understanding of these models is crucial to validate
that a model is right for the right reasons, instead of, e.g.,
picking up coincidental but meaningless correlations in a
dataset. Moreover, it will ultimately help build more effective
models by identifying current weaknesses and confirming why
particular techniques are effective.

A popular way to increase the transparency of neural
networks is an attention mechanism [11], [60]. It assigns
a weight to each part of the input, showing which parts
of an input a model is most interested in. Recent work
in natural language processing studies the effectiveness of
attention weights as an explanation technique by comparing
them with alternative explanation approaches [32], [66]. As
a first attempt to understand attention weights in models of
code, Bui et al. [13] artificially remove individual statements,
observe how it affects a model’s predictions, and then compare
the importance of an input segment to attention weights. A
question that remains open is how attention weights in models
of code relate to how humans reason about source code.

This paper presents the first systematic study to compare
neural models of code with human reasoning. We compare
the attention weights of neural models with the attention that
humans pay when reasoning about source code examples.
Our work focuses on the method summarization task, which
is interesting, as it requires a thorough understanding of a
potentially complex piece of source code, and a popular
task for neural models of code. For this task, we study two
neural models [1], [5], which offer two kinds of attention
weights: regular attention, showing what tokens the model
focuses on, and copy attention, showing what tokens the model
considers to copy verbatim into the output. We compare these
attention weights to humans working on the same method
summarization task while participating in our study.

A key challenge for our work is capturing the attention of
humans while they reason about source code. We address this
challenge through a novel methodology for recording human
attention paid while solving a code-related task. Intuitively,
the idea is to approximate the human attention with the time a
human looks at a particular code element. To measure which
parts of the code the participants of our study pay attention
to, we show blurred source code to the participants, who must
(temporarily) unblur individual tokens of the source code to



understand it. We gather a total of 1,508 human attention maps
from 91 participants, including five examples for each of 250
Java methods sampled from ten real-world projects.

Based on the dataset of human attention maps, we thor-
oughly study to what extent human attention matches the
attention weights of learned models. We envision that a
better understanding of the human-machine relationships could
inspire either future explainability methods or human-inspired
models of code. Our study addresses the following research
questions.

RQ1: Are the intrinsic attention weights of neural models
correlated with human attention? Answering this question
quantifies how closely neural models resemble the human rea-
soning. We find that neural models and humans agree on copy
attention but not on regular attention, which experimentally
confirms the benefit of copy attention in models of code.

RQ2: How does the distribution of attention across tokens
differ between models and humans? Answering this question
could highlight differences between models and humans that
help understand their strengths and weaknesses. We find that
none of the studied models closely mimics how humans
distribute their attention. Similar to copy attention, humans
sometimes do not explore all tokens, but ignore tokens not
relevant for the prediction task.

RQ3: Do neural models and humans attend to the same
kinds of tokens, e.g., identifiers, separators, operators, and
keywords? If humans and models attend to different kinds of
tokens, then future neural models may want to take inspiration
from the humans to better mimic their way of understanding
source code. We find that neural models pay more attention
to basic syntactic tokens, whereas humans pay more attention
to strings, operators, and keywords.

RQ4: Do learned models and humans struggle with the
same kinds of examples? Answering this question could reveal
complementary strengths, and it may motivate work toward ad-
dressing the current weaknesses of neural models. We find that
models and humans largely agree on what methods are hard
to summarize, showing the need for more effective models,
especially on longer methods. We also find that models are
most effective on getter and setter methods, whereas humans
understand a wider range of methods.

RQ5: How does the agreement between models and humans
relate to model effectiveness? This question is relevant to
check if creating models that more closely resemble human
reasoning is likely to yield more effective models. We find
that if a model pays attention to the same tokens as humans,
then the chance of making a correct prediction increases. This
result motivates research on human-inspired neural models.

In summary, this paper makes the following contributions:
• A novel methodology for recording human attention

during code-related tasks.
• An in-depth study of similarities, differences, and corre-

lations between the attention paid by models and humans,
and its impact on model effectiveness.

• A dataset of 1,508 human attention maps, which we make
available for future work.

Our replication package, tooling, and all data are
permanently available at https://github.com/MattePalte/
thinking-like-a-developer.

II. BACKGROUND

a) Attention-Based Models: Neural network models
have recently been proposed to help developers on various
tasks [46]. Many of them use attention layers [1], [4]–[7], [31].
An attention mechanism lets the network learn a weighted
sum of the input units to compose a weighted context vector
for downstream modules [11]. Besides improving a model’s
predictions, attention weights also give some transparency to
models by showing which parts of the inputs are most relevant
to a model. Attention is used to attend to different parts of
source code, e.g., source code tokens [5], paths in the abstract
syntax tree [6], or nodes of a graph representation of source
code [4], [17]. The attention weights of these models tell
us which tokens, paths, or graph nodes explain a specific
prediction. The meaning of attention weights is still under
active discussion [10], [13], [32], [66], but to the best of
our knowledge, no one has ever studied attention weights
by comparing them to the attention of programmers while
performing a task on source code.

b) Copy Attention: Many models of code use copy
attention to learn to copy relevant tokens from the input code
verbatim to the predicted output. This idea was introduced with
the pointer network architecture [61] for solving combinatorial
problems characterized by an output vocabulary of arbitrary
size. A pointer network uses attention as a pointer to select
a part of the input sequence as the output. The output of
the attention mechanism is a probability distribution over the
input. Copy attention has become popular to address the out-
of-vocabulary problem in code summarization tasks, such as
method naming. Allamanis et al. [5] notice that about 35%
of the output tokens appear in the method body. Indeed,
copy attention improves the effectiveness of models [1], [5],
especially when using a dedicated attention layer [1], [21],
[43]. A central assumption for these models is that the output
tokens are either in the fixed-size vocabulary, which is learned
during training, or in the input sequence.

III. METHODOLOGY

When studying the similarities and differences between
attention-based neural models and humans, we face two chal-
lenges. (1) Creating an environment to capture the human
attention on code-related tasks. (2) Comparing the captured
human attention to the learned attention weights in neural
models. We present our methodology for addressing these two
challenges in Sections III-B and III-C, respectively, and we
start by describing the prediction task our work focuses on.

A. Code Summarization Task

Among the many tasks that neural models of code are
applied to [46], we select code summarization. One reason
for this choice are the various neural models targeting this
task [1], [5]–[7], [31], [63], which could be impacted by our
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findings. Another reason is that the task requires a model to
capture and summarize relatively large pieces of code, i.e.,
there are several code elements to attend to.

Two variants of the code summarization task exist:
predicting the method name [5]–[7] and predicting a method-
level comment [1], [19], [29]. Since both variants are popular
in previous work, we select the method name prediction
task, as it simplifies creating a corresponding human task.
Nonetheless, our methodology could also be used to study the
comment prediction task in future work. Thus the task for the
model is to predict the original method name given the method
body as an input. Specifically, the models we study predict
the name as a sequence of tokens1, e.g., “get”, “client”, “data”
for a method called getClientData. We ask the human
participants of our study to perform a variant of this tasks:
inspect a method body and then select the correct method
name among a set of seven alternatives. In addition to the
correct solution, the alternatives consist of three names similar
to the correct name and three randomly selected other names.
The similar names are intended to stimulate the participant’s
reasoning process, and we select them from the nearest
neighbors of the correct name in a tf-idf-based bag-of-words
encoding of method names. The set of alternatives in Figure 1
includes testInitializing DoesntTakeReadAction,
which is the real name of the method, three close-by
alternatives (testToStringDoesntExhaustIterator,
testCorrectProgressAndReadAction, testAction),
and three random options (disableSyncScrollSupport,
testDeepConflictingReturnTypes, calculateTime-

stamp). The tasks given to the models and the humans are
closely related since both the model and the humans must
inspect the method body and condense it into a summary of
the functionality of the code.

As a dataset of methods, we sample 236 methods from
an existing Java corpus [5]. The corpus contains code from
several application domains and is a popular benchmark for
neural models [6], [64].

B. Capturing Human Attention

The first major challenge is how to capture the attention of
a human working on the code summarization task. We address
this challenge through a novel, gamification-inspired atten-
tion annotation interface, called Human Reasoning Recorder
(HRR). The participants working with the HRR are not aware
that the ultimate goal is to capture how much attention they
pay to specific code elements, but instead are simply asked to
select a suitable name for a method. The interface is divided
into two main areas (Figure 1): an answer selection area,
which shows the names to choose from, and a code inspection
area, which shows the code of the method body.

The key idea to capture which parts of the code a participant
attends to is a deblurring mechanism. Initially, all code in the
method body is blurred, and the participant must deblur tokens

1The term “token” in this paper means subtokens that result from tokenizing
code as specified by the programming language and then further splitting
identifiers based on camel-case and other conventions.

ANSWER 
SELECTION
AREA

CODE 
INSPECTION

AREA

Fig. 1. Interface of the Human Reasoning Recorder.

to understand the code. Participants can deblur a token in two
ways. On the one hand, moving the mouse over a token reveals
the token and its neighbors for the time the mouse pointer is
on them. Based on our initial pilot study and the fact that the
average number of pieces of information that a human can hold
in short-term memory is seven [42], we set the neighborhood
to three tokens before and three tokens after the pointed-to
token, ignoring neighbors in other lines.

On the other hand, participants can also click on tokens
to make them permanently visible, even when the mouse
moves away, and they can blur tokens again with another
click. This mechanism allows participants to pinpoint the
most important parts of the already explored code. To force
participants to move the mouse away from the code while
reading the candidate method names, the answer selection area
is also blurred by default and becomes visible only when the
mouse is in this section.

The HRR tracks which tokens a participant deblurs and
for how long each token is visible. To this end, the interface
continuously logs all mouse movements and clicks. Overall,
the HRR captures the following information each time a
participant summarizes a method:

Definition 1 (Human attention record). The human attention
record is a tuple hr = (id , uid , evts, s, r), where id is a
unique identifier for a method in the dataset, uid is the unique
user identifier, evts is a sequence of mouse-token interaction
events, s is the selected method name, and r is a rating given
by the user about the difficulty of naming the method.

The sequence evts contains events for a specific token
becoming visible and invisible, either through hovering or
clicking. The rating r is obtained by asking the participant
after each method to rate how difficult choosing the name
was, on a scale from 1 (“easy”) to 5 (“hard”).

Each participant in our study gets assigned a set of 20
methods that are randomly sampled from the test set of the
dataset [5]. Following a common practice in human stud-
ies [18], we consider the first three questions as a warm-up,
i.e., every participant produces 17 human attention records.
The sampling is done such that each method is seen by m
different participants, where we set m = 5 following related
studies [57], [62].

We recruit participants among undergraduate-level and
graduate-level university students in computer science, and
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Model Prediction: testDestination() Real Method Name: testSendToSynchronousDestination()

Human attention (5x per method)

Regular attention of neural model

Copy attention of neural model

Fig. 2. Visualization of token-level attention weights derived from CNN model (left) and humans (right). Red boxes indicate which token was clicked by the
participant.

via Amazon Mechanical Turk (AMT). The AMT participants
must have at least 90% approval rate and 100 approved
tasks to participate in the study [34] and are rewarded with
one US dollar upon successful completion [62]. To filter out
participants who misunderstand the task or fail to successfully
complete it for other reasons, we measure the correctness of
the selected method name on two levels: exactly correct when
the participant selects the original method name, and pseudo-
correct when the participant selects either the original name
or one of the three similar names.

For each combination of a number of correct and a number
of pseudo-correct answers we compute the probability that a
participant performing random guessing obtains the same or a
better result. Based on this probability, we accept only partic-
ipants that provide results with a probability of less than 5%
to come from a random guesser. Specifically, we consider the
multinomial distribution, as we are dealing with an extension
of the binomial experiment, with three possible outcomes: A
for the participant selecting the exactly correct answer, B for
the participant selecting a pseudo-correct answer, and C for
the participant selecting a wrong name. For a random guesser,
these outcomes have probabilities: P (A) = 1

7 , P (B) = 3
7 ,

P (C) = 3
7 . Given the number of exactly correct, pseudo-

correct, and wrong answers of a single participant as x, y
and z respectively, we compute the probability for a randomly
acting participant to obtain the same or a better result:

Prnd guesser(C = x,N = y,W = z) =

P (C = x,N = y,W = z)+
y∑
i=1

P (C = x+ i,N = y − i,W = z)+

z∑
i=1

P (C = x,N = y + i,W = z − i)+

z∑
i=1

P (C = x+ i,N = y,W = z − i)

where the vector of random variables X = (C,N,W ) is
multinomially distributed with index n = 17 and parameters
π = (P (A), P (B), P (C)) = ( 17 ,

3
7 ,

3
7 ), i.e., X ∼Mult(n, π).

After filtering, the final dataset contains 1,508 human attention
records, which contain at least five human annotations for
250 methods. The records are gathered from those 91 out
of 166 participants that pass our filtering. 26 of the accepted
participants are computer science students and 65 are recruited
via AMT. On average, a human attention record contains about
1,271 mouse-token interaction events.

C. Comparing Attention: Neural Models vs. Humans

The second major challenge is comparing the captured
human attention to learned attention weights in neural models.
Figure 2 illustrates the problem with an example method,
where the model attention is shown on the left, and the human
attention is shown on the right. The following describes the
neural models we study and how we compare them against
the human attention records.

1) Neural Models: We study two attention-based neural
models representative of two widely-used architectures: a
convolutional attention model [5], called CNN model, and a
transformer-based model [1], called transformer model. De-
spite the recent popularity of transformers, we choose to study
also a CNN model because it is one of the first attention-based
models for this task and because it allows us to draw more
general conclusions. The CNN model also has the advantage of
taking arbitrarily sized inputs, whereas the transformer model
imposes a fixed input length.

Both models have a sequence-to-sequence architecture that
reasons about the method body as a sequence of tokens and
then predicts the tokens of the method name.
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We distinguish between two kinds of attention:

• Regular attention, which is implemented as convolutional
attention for the CNN model and as multi-head self-
attention for the transformer model. The regular attention
shows which parts of the code the models pay most
attention to when reasoning about the meaning of the
method.

• Copy attention, a mechanism to tackle the out-of-
vocabulary problem by optionally copying some tokens
from the method body to the output. The copy attention
shows which parts of the method body the model con-
siders as candidates for verbatim copying.

For both the CNN and the transformer, we train project-
specific models, as they outperform a single cross-project
model [5]. We leave the model architecture and all hyper-
parameters in their default configurations, except for one
adaptation of the transformer model. The original model is
designed to summarize a method into a Javadoc sentence. We
adapt the model to the method naming task by first pre-training
the model on its original dataset [1] and by then fine-tuning
the project-specific models on the method naming dataset [5].
Moreover, since the transformer model attends only to the first
150 tokens of a method, all results for this model consider
those tokens only.

To measure the effectiveness of the models, we compute
the F1-score of the top-most predicted name [5], [6]. It
consists of comparing the set of predicted tokens and the
tokens in the original name, and then computing the har-
monic mean between precision = # correctly predicted tokens

# predicted tokens and
recall = # correctly predicted tokens

# tokens in the original name . The average F1-score of the
CNN model and the transformer model are 0.40 and 0.46,
respectively, which is in line with the originally reported
results.

2) Measuring Human-Model (Dis)Agreement: We summa-
rize the attention spent by humans and models into vectors
and then compute correlations between the two. As a proxy
of the human attention given to a token, we consider the total
time that the token was visible, similarly to fixation time in
eye tracking studies [22], [55]:

Definition 2 (Human attention). Let hr = (id , uid , evts, s, r)
be a human attention record for a method body with n tokens.
The human attention vector is ~h = (h1, h2, ..., hn), where hi
is the total time that the token at position i has been visible
to the participant according to evts .

For each of the two kinds of attention, we summarize the
model’s attention as follows:

Definition 3 (Model attention). Suppose a method body
with n tokens and a sequence of k tokens predicted by the
model as the method name. The machine attention vector is
~m = (m1,m2, ...,mn), where mi = mean(a1i , ..., a

k
i ) with aji

indicating the attention weight assigned by the model to the
token at position i of the method body during the prediction
of the jth output token.

Computing the mean handles the fact that the models
produce one vector of attention weights for every predicted
token in the method name. For example, for a predicted
method name getClientData, for each token in the method
body, we average the attention weights assigned to that token
during the prediction of the three tokens “get”, “client”, and
“data”.

Given two attention vectors ~h and ~m, we compute to what
extent they agree on the importance of tokens by computing
Spearman’s rank coefficient [58]. To this end, we convert
the attention vectors to a ranking of tokens, rgh and rgm,
and then compute Spearman’s rank correlation coefficient as
the Pearson correlation coefficient between the rank variables:
Spearman = cov(rgh,rgm)

σrgh
,σrgm

where cov and σ are the standard
deviation and the covariance, respectively. The coefficient
ranges between -1 and 1, where 1 means that both attention
vectors perfectly agree, -1 means that the attention weights
yield exactly the inverse ranking, and zero means that both are
unrelated. For all reported correlation coefficients, we include
only pairs of attention vectors with high-confidence results
(p-value ≤ 0.05). A valid alternative measure to Spearman’s
coefficient is the Kendall Tau [36]; it yields similar results as
those reported here and is omitted for space reasons.

IV. RESULTS

Our dataset contains 1,508 human attention records from
which we extract the same number of token-level attention
vectors, as explained in Definition 2. It comprises 250 methods
from ten different repositories, where each method is annotated
by at least five of the 91 human annotators. On average
our participants took 57 seconds to name a single method,
producing 1,271 mouse-token events each time.

A. RQ1: Correlation Between Model and Human Attention

To quantify the overall degree of agreement between the
attention paid by neural models of code and humans, we
compute the correlation between both. Figure 3 shows the
distribution of Spearman rank correlation coefficients for the
two kinds of model attention for each of the two models we
study. Each plot shows how many of the studied Java methods
fall into a specific correlation range. A correlation of 0.0 would
mean that a model and the humans are completely unrelated,
and a correlation of 1.0 would mean that both agree perfectly
on the relatively order of all attention weights. The first and
second plot show the results for regular and copy attention
of the CNN model, respectively, and likewise with the third
and fourth plot for the transformer model. For example, the
second plot shows that for the majority of methods, the copy
attention weights of the CNN model have a rank correlation
between 0.25 and 1.0 with the humans who inspect the same
method.

For both models, the regular attention weights show a
weak correlation with humans, with means of 0.08 and -
0.20. In contrast, the copy attention weights of both models
show a moderate to strong human-machine correlation, with
means of 0.49 and 0.47. As an example, in Figure 2 both
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Fig. 3. Correlation between machine attention and human attention.

the copy attention of the CNN model (bottom-left) and the
human (bottom-right) are paying most of the attention to
the last few tokens of the method body. Another interesting
observation is that the human shows interest for the string
"testSynchronousDestination", which the model seems
to overlook. We provide a separate discussion on strings in
Section IV-C.

As a point of reference, the last plot in Figure 3 shows the
correlation between different humans who inspect the same
method. The human-human agreement can be considered an
upper bound of the expected model-human agreement, as it
would be unrealistic to expect a neural model to be closer to
the average human than another human. The mean human-
human correlation is 0.59, which shows two points. First,
it confirms that different participants in our study tend to
attend to similar tokens, which is a prerequisite for comparing
models against “humans” as a group. Second, it shows that
the mean correlations on copy attention are relatively high, as
they are only 0.10–0.12 points lower than the human-human
correlation.

Insight 1: Neural models and humans often agree about
what tokens to copy verbatim from the input to the output,
but less on what other tokens to attend to. The relatively high
correlation for copy attention gives an empirical justification to
the copy attention mechanisms used by many neural models.
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Fig. 4. Median value of normalized attention profiles across all studied
methods.

B. RQ2: Distribution of Attention Across Tokens

The following aims at understanding how models and
humans distribute their attention across the tokens in a method.
Intuitively, we are interested in how much the attention is
focused in a few highly relevant tokens, as opposed to being
roughly uniformly distributed. To quantify and visualize the
different attention distributions, we compute a normalized
attention profile from each vector of attention weights:

Definition 4 (Normalized attention profile). Given a vector of
attention weights ~a, its normalized attention profile is

~p = percentiles(sort(normalize(~a)))

where normalize divides all elements by the maximum value
in ~a, sort sorts the vector in increasing order, and percentiles
projects a vector of arbitrary length into a sequence of 100
percentiles (with linear interpolation).

For example, suppose a very small method with five tokens
and an attention vector ~a = [0, 4, 0, 2, 3]. Normalizing and
sorting the attention vector yields [0, 0, 0.5, 0.75, 1], which is
then mapped into percentiles to give the a normalized attention
profile where, e.g., the 20%-percentile is zero and the 50%-
percentile is 0.5.

Figure 4 shows the normalized attention profiles for the
five kinds of attention vectors we study: four from the neural
models and one from the humans. Each curve is the median
value across the attention vectors of all methods in our dataset.
Intuitively, the more a curve is dented toward the lower-right
corner, the more focused the attention vectors are on a small
number of tokens. The results show that copy attention tends to
be clearly more focused then regular attention, i.e., the models
take a clear decision about which tokens may be worth copying
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to the output. In contrast, the regular attention, especially of
the CNN model, are more uniformly distributed with respect
to their own copy counterparts. Both the regular and copy
attention of the transformer disregards a large number of
tokens.

The human profile is in between the two transformer
attention mechanisms for the top-most attended token (top-
right in Figure 4), and then decreases almost constantly until
it, perhaps surprisingly, reaches zero. Reaching zero means
that the humans often completely ignore some tokens, i.e.,
our participants could summarize a method based on only a
subset of all its tokens. During manual inspection of attention
records, we notice that, especially on longer methods, humans
often focus on variables declared at the beginning and then
skim read to the end of the method, paying most attention to
return statements and assertions.

Insight 2: No attention mechanism, among those studied,
closely mimics the way humans distributes their attention on
the tokens of the method body.

Insight 3: The transformer model seems to be overspecial-
ized in attending only a small subset of tokens, as compared
to the convolutional model.

Insight 4: Sometimes the humans do not fully explore
the entire method, but base their answers on a subset of the
tokens in the methods, typically the beginning (esp. variable
declarations) and end (esp. returns and assertions).

Suggestion 1: Future human-inspired transformer models
should be trained with an objective to attend to a larger
portion of the source code, rather than overspecializing to a
few tokens.

C. RQ3: Categories of Tokens
Source code is composed of different categories of tokens,

e.g., identifiers, separators, keywords, and strings. For the
code in our dataset, the most common token categories are
identifiers (46%) and separators (39.7%). To quantify how
much attention a specific token category receives, we define
the following notion. Intuitively, it indicates how much more
or less attention a specific token category receives compared
to uniformly distributed attention.

Definition 5 (Distance from uniformity). Given a vector of
attention weights ~a for a sequence T of tokens, the distance
from uniformity of a subset S of T is:

DFU (S) =

∑
t∈S at∑
t∈T at

− |S|
|T |

|S|
|T |

where at is the attention weight assigned to token t.

A DFU value of zero indicates that the token category is
getting exactly the attention of uniformly distributed attention.
A positive or negative value indicates that the token category is
receiving more or less attention, respectively. The lower bound
is -1, where the token category is receiving no attention at all.

Figure 5 presents the DFU for different token categories.
The results show significant differences between the mod-
els and the humans. For example, the humans give more
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Fig. 5. Distance from uniformity (DFU) for different token categories.

Model Prediction: selectMethod()

Regular attention

Human attention

Real: login()

Fig. 6. Attention maps from the transformer model and humans.

importance to keywords, operators, and strings, whereas the
models pay less attention to these token categories. This
difference suggests that these tokens play an important role in
comprehending code, and they should not be left unattended by
neural models. One can also observe differences between the
different kinds of model attention. For example, the regular
attention by the transformer model is surprisingly high for
separators and relatively small for identifiers. Some token
categories, especially Booleans, are mostly ignored both by
the models and the humans.

A manual inspection of various attention maps confirms
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our quantitative results. For example, consider the code in
Figure 6, which shows the attention maps of the CNN
model’s regular attention (top) and of the humans who studied
this method (bottom). The humans pay a lot more attention
to string literals, which indeed contain information relevant
for the method summarization task, whereas the model is
overlooking their importance in favor of other tokens. The
observation illustrated by this example motivates work on
neural models that “understand” string literals, which currently
are often abstracted away [27] or split with empty spaces [35],
when other splits might be more effective (e.g., with slash).

Another finding, is that humans tend to overlook curly
braces, which is visible in Figure 6 and also confirmed by
the DFU of curly braces being close to its lower limit
(DFU ≤ −0.9). In the upper part of Figure 6 we see
how the transformer model prefers syntactic tokens, such as
dot, comma, and open parenthesis. After a thorough manual
inspection, we confirmed this to be a general characteristic of
the regular attention of the transformer model, which focuses
on tokens that proceed and follow method calls, in an attempt
to isolate method calls. This is explaining also the attention
profile of the regular transformer in Figure 4, where the plateau
on the top right is made of those tokens (i.e., dots, commas,
and open parentheses) used to isolate method calls.

Insight 5: High attention paid by the copy attention to
identifiers confirms their effectiveness in focusing primarily on
tokens that might be copied verbatim into the method name.

Suggestion 2: The focus of copy attention on identifiers
could be stressed even more by masking the other kinds of
tokens.

Insight 6: Strings, keywords, and operators are often
overlooked by the models, whereas the humans give more
attention to them.

Suggestion 3: Future neural models could pay more at-
tention to strings, keywords, and operators, which humans
consider important during the method summarization task.

Insight 7: Block-level separators, such as curly braces, are
attended mostly by the models, whereas the humans get this
information implicitly from the indentation of the formatted
code.

Suggestion 4: Future models of code could encode basic
syntactic information into token embeddings, preventing the
model to focus its attention on purely syntactic tokens, such
as curly braces.

Insight 8: Regular attention of transformers specializes
in the recognition of separators that proceed and follow
method invocations. This confirms and extends an analogous
specialization of multi-head attention observed also in natural
language processing [10]. We here confirm that transformers
are attentive to separators also when applied to code-related
tasks. We hypothesize that recognizing separators is important
for the model to understand the role of individual tokens, e.g.,
that a specific token represents the name of a called method.
An interesting future work could be to further explore the root
causes of this phenomenon.
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Fig. 7. Distance form uniformity (DFU) for different groups of identifiers.

Given the high attention given by models to identifiers, we
further analyze different groups of identifiers based on their
length and popularity. Figure 7 shows how copy attention for
both models prefers long and popular identifiers over short
and rare ones, respectively.

Insight 9: Long and frequent identifiers are good candi-
dates to be copied verbatim into the method name by the
analyzed models.

D. RQ4: Perceived Difficulty vs Model Effectiveness

Understanding which examples are more difficult for hu-
mans and models could reveal in which measure they are
similar and if they can complement each other. We use the
rating given by the participant on how easy it was to name each
method to create a per-method average rating. We aggregate
the ratings of five different annotators on the same method to
get a more stable human ground-truth. Comparing these ratings
to the F1-score of the models shows a positive correlation
(Pearson correlation 0.45 and 0.49 for CNN and transformer,
respectively).

Insight 10: The neural models and the humans agree on
which methods are more difficult to name.

To investigate further which are those difficult methods,
we also compare the performance of humans and models
on different method lengths and different groups of methods.
Figure 8 shows how both humans and models are good on
shorter methods, whereas predicting the name of longer ones
is more challenging.

To better understand what kinds of methods models and
humans are successful on, we analyze five groups of methods:
getter, setter, checker, test starting respectively with “get”,
“set”, “is” or “has”, and “test”, and other for all the remaining
methods. Figure 9 reports the models effectiveness, measured
with F1-score, and the percentage of correctly (and pseudo-
correctly) named methods by humans. It shows how getters
and setters are the easiest to predict for both humans and
models. An interesting finding is that humans are almost as
good on checkers as they are on getters, whereas this is not
the case for the models, which struggle with identifying the
name of a method that is checking some property on the
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object. For test methods and other methods we see a lower
percentage of correctly named methods for both humans and
models. We note that humans have a high portion of pseudo-
correct answers for the test methods, which could be due to
the presence of multiple reasonable method names for them.

Insight 11: Beside getters and setters, neural models often
struggle to predict more challenging kinds of methods, such as
checkers and test methods, whereas the humans are successful
across a wider range of methods.

Suggestion 5: Models could learn from the human to name
more challenging types of methods on which humans perform
better, e.g., by using human attention traces during training.

In Table I, we consider both characteristics, presenting the
length of the different groups in terms of lines of code (LOCs).
We see that test and others methods, which are hard for
models, are generally longer than other groups, showing once
again the impact of method length on model effectiveness.

Insight 12: Longer methods are harder to summarize, both
for models and humans.

Suggestion 6: To obtain models that better complement hu-
man reasoning, future training datasets should include a larger
portion of “difficult” examples for a more effective training, or
at least provide different sub-datasets of increasing difficulty.
To establish the difficulty of a method, we envision the use
of heuristics or human labeling. In particular to select more
difficult methods, we propose the following strategies: include
methods with high cyclomatic complexity [41], reduce the
percentage of getter and setter methods, reduce the percentage
of methods for which the method body contains many or all
subtokens present in the method name (i.e., methods where the
model can exploit the copying mechanism), and increase the
percentage of longer methods. In addition to these automated
strategies for increasing the difficulty, humans could rate a
small pool of methods based on their notion of difficulty,
which could then serve as a curated benchmark.
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TABLE I
METHOD LENGTH OF METHOD BODIES FOR FIVE PREDEFINED GROUPS.

Lines of Code (LOCs)

Group Min Median Mean Max

Getter (20%) 3 3.0 8.6 107
Setter (12%) 3 3.0 4.2 13
Checker (4%) 3 4.0 4.9 11
Test (21%) 1 10.0 14.7 61
Other (43%) 3 8.0 14.8 142

Entire dataset 1 5.0 11.9 142

E. RQ5: Human-Model Agreement vs. Model Effectiveness

Given the moderate to strong correlation between neural
models and humans, a reader may wonder whether a stronger
correlation coincides with more accurate predictions by the
model. We address this question in two ways. One of them is
in Figure 10, which shows for each method in our dataset
two pieces of information: (i) on the horizontal axis, the
accuracy of the model’s prediction, measured as the F1-score
(Section III-C1) and (ii) on the vertical axis, the human-
model agreement, measured as in RQ1. The four plots show
the CNN model on top and the transformer model at the
bottom, with regular attention and copy attention on the
left and right, respectively. Each plot also shows the linear
regression trend between two the axes. Overall, we observe
a moderate correlation between human-model agreement and
model effectiveness. In particular, for the regular attention of
both models the Pearson correlation coefficients are 0.19 and
0.40 (p-values 5 · 10−4 and 2 · 10−17).

As a second way of addressing the question, we repeat the
measurements from RQ1, i.e., how much models and humans
agree about what tokens to attend to, for those methods where
the models make accurate predictions. “Accurate” here means
that the F1 score of a prediction is at least 0.5. Table II
compares the human-model correlation across all methods
with those methods where the respective model predicts the
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TABLE II
HUMAN-MODEL CORRELATION FOR ALL VS. ACCURATE PREDICTIONS.

Spearman rank correlation (mean)

All methods Methods with F1 ≥ 0.5

CNN, regular attention 0.08 0.24
CNN, copy attention 0.49 0.55
Transformer, regular attention -0.20 0.02
Transformer, copy attention 0.47 0.55

name accurately. The results show that the human-model
correlation is clearly higher for accurate predictions, e.g.,
increasing from 0.08 to 0.24 for the regular attention paid
by the CNN model.

Insight 13: A higher human-model correlation coincides
with more effective predictions by the neural models.

Suggestion 7: Creating models that more closely mimic the
human attention seems a promising way toward more effective
models. Future work could use human attention datasets during
model training [51], [54] or use loss functions that nudge the
model’s attention to mimic humans.

V. THREATS TO VALIDITY

1) Internal Validity: Several factors may influence our
results. First, the human task of choosing the correct name
among seven alternatives differs from the model’s task of
predicting the entire name. Because both tasks are strongly
related and require to understand the meaning of a method,
we consider the resulting attention vectors to allow for a
meaningful comparison. Moreover, we ensure the human task
to be challenging by providing alternatives similar to the
correct name (Section III-A). Second, using a crowd platform

to hire participants risks getting submissions of mixed quality.
We carefully filter all human attention records based on
the overall performance of a participant (Section III-B). A
manual inspection of the dataset confirms that realistic code
explorations are retained by the filtering. Third, computing
human attention based on the time a token is visible can
only approximate actual attention. In computer vision, mouse
tracking has been established as a scalable way of capturing
visual attention [14], [33], and an in-depth study could assess
the accuracy of it on source code-related tasks in the future.
Fourth, our HRR interface introduces some trade-offs com-
pared to the eye tracking-based studies: On the one hand, we
lose the pixel-level precision of an eye tracker and are not able
to capture if a participant indeed looks at the unblurred code.
On the other hand, HRR enables easier remote participation,
supports code snippets of arbitrary length, and automatically
captures token-level attention. A further study of strengths and
weaknesses of the two approaches for software engineering
studies will be interesting future work. Fifth, the choice of
the neighborhood size of unblurred tokens, which is three
tokens before and three tokens after the clicked token in our
experiments, could lead to different results. Sixth, truncating
the input to transformers to the first 150 tokens may influence
our results since the model cannot look beyond that limit.
Finally, method length and code style may confound our
findings. We partially study the influence of method length
in Figure 8, but do not consider code style as it is difficult to
quantify. To mitigate the impact of both possible confounders,
we randomly sample from multiple repositories methods with
different lengths and code styles.

2) Threats to External Validity: Several factors may influ-
ence the generalizability of our results. First, the participants of
our study may not fully represent other humans. We mitigate
this threat by recruiting participants through different ways
and by retaining only participants that show high performance.
Second, findings on the code summarization task might not
generalize to other code-related prediction tasks. As the task
has been proved to be a good benchmark for the abstraction
abilities of models of code [39], we envision our findings
to at least partially generalize to other tasks. By making
our Human Reasoning Recorder available, we facilitate future
work to study different tasks. Third, we select a CNN-based
and a transformer-based model with token-level attention as
subjects for the study. Other models, e.g., those based on AST
paths [6], [7], may expose other attention patterns. Our dataset
of human attention records is available for comparisons with
other models.

VI. RELATED WORK

A. Capturing Human Attention

Capturing the human reasoning has always been a chal-
lenging and demanding task, as witnessed by previous studies
on computer vision [14], [50] and natural language process-
ing [9], [15], [38], [49], [57]. Indirect experiments, such
as ours, have been also used in these fields [14], [57]. In
software engineering, eye tracking [55] has been the basis of
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code comprehension studies [12], [20]. With 432 human eye
tracking records, the dataset by Bednarik et al. [12], was the
largest dataset on human attention on code available so far.
Two tools have been proposed to ease the collection of eye
data [23], [37]. However, due to the equipment and calibra-
tion requirements, eye tracking is not easily compatible with
remote participation. Neuroimaging is another interesting, yet
also very involved way to measure the activity of programmers
during program comprehension tasks [45], [56]. Our work
contributes a deblurring-based interface for capturing human
attention on code, which complements existing techniques
by providing a lightweight and scalable technique that is
compatible with remote participation.

B. Comparing Models with Developers

Previous work [52] studies which parts of a method are
of interest for a group of ten Java developers performing a
code summarization task, and compares their eye tracking data
against a tf-idf method [25]. They also show that eye tracking
data from programmers can improve the tf-idf model. A first
attempt to compare neural models of code against human
attention captured via eye tracking [30] compares the gaze
of single human participant against the Code2vec model [7].
Our work contributes the first in-depth, multi-participant study
to compare neural models of code with human attention.

C. Studies of Attention Mechanisms

The role of attention layers as an explanation technique is
still under active study, e.g., by measuring the effectiveness
of attention layers against other explanation techniques [32],
[66]. Instead of comparing multiple explanation techniques
with each other, our work compares a model against human
attention records. Bui et al. study attention in neural models
of code by comparing attention weights with a metric based
on the perturbation of the input program [13]. Their paper
mentions that “evaluations with real programmers can be
more convincing in validating whether [their] results match
the actual importance viewed by human”, which matches the
motivation for our work. Trying to understand the attention
of transformer models, some work highlights how the vari-
ous attention heads of a transformer are redundant and that
some attention heads specialize in attending syntactic tokens,
such as punctuation [10]. A similar observation is that much
of the attention of transformer-based models is assigned to
punctuation tokens [53]. Arous et al. show that integrating
human rationales into an attention-based model for NLP can
improve its effectiveness [8]. The attention records gathered
in our work could serve as a basis of similar future work on
models of code.

D. Neural Models of Code

There are various neural models of code, and we refer to
a recent review article [46] and a survey [2] for a detailed
discussion. Many models consider source code as a sequence
of tokens [24], [26], [59], [67], which also is the representation

underlying our study. Some tree-based models [6] and graph-
based models [17] also adopt an attention mechanism, which
would be interesting to compare against our human attention
records.

VII. CONCLUSION

Motivated by the success of neural models of code, com-
bined with the difficulties to understand what exactly the
models are learning, this paper presents the first compre-
hensive study to compare human and model attention. The
results show how the copy mechanism is empirically very
similar to the human attention. Moreover, we have pointed
out important differences between models and humans, e.g.,
the different attention weights given to basic syntactic tokens,
such as curly braces, but also a tendency of neural models
to underestimate the value of strings. We reveal that neural
models generally struggle on longer methods, and on methods
beyond getters and setters, whereas the humans successfully
understand a wider range of methods. Our work also high-
lights that human-model agreement positively correlates with
accurate predictions, which calls for neural models that even
more closely mimic human reasoning. Together with the study,
we release a novel dataset of 1,508 human attention maps on
the code summarization task, collected via the newly proposed
Human Reasoning Recorder, which could serve as an enabler
of further research and human studies. Ultimately, we envision
the usage of our dataset and our tool to produce ground-truth
human annotations to fuel human-inspired neural models.
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