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Video presentation available here:
https://www.youtube.com/watch?v=B8xMNgIg7FI

Move to the next slide for the full slide presentation.
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1. Motivation
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Evaluation of Neural Models of Code

Prediction

• Risk: deploying a model which is right for the wrong reason (aka spurious dataset correlations)

?
What is going on 
inside the model?
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• Our work: compare human and 
neural model attention 

• Goal: get insights into model 
weaknesses 

Compare Attention

Prediction



2. Methodology
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Methodology

Attention Capturing
• Capture token-level attention maps from neural models and humans.

Attention Layers
Human Reasoning 

Recorder (HRR)

* darker color --> higher attention 6



Task Choice: 

• Motivation:
• Research interest: popularity of the task among neural models of code
• Complex reasoning: a deeper understanding of the code is needed to name a method

Method Name
[OUTPUT]

Method Body
[INPUT]

Code Summarization

7

• Study different model architectures: 
1.Convolutional Attention  (Allamanis et al., ICML 2016) 
2.Transformer-based (Ahmad et al., ACL 2020)



Attention of 
Neural Models

The studied models have two types 
of attention:

1. Regular attention
2. Copy attention to copy 

verbatim tokens from 
the method body
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Regular Attention 

Copy Attention 



Experimental Setup: 
Human Reasoning 
Recorder

• Human Task 
choose the correct method 
name among 7 alternatives
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Answer 
Selection

Code Inspection

• Fixation Time Assumption 
The more time you stare at a 
token the more attention it 
receives



Human-Model Agreement

How to measure it?
Via Spearman 
Rank Coefficient

We compute the 
agreement for each pair:

• (Neural Model, Human)
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Agreement?

Human Attention (5x per method)

Copy Attention

Regular Attention



3. Results
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Human Attention Dataset

Our dataset contains:

• 1,508 human attention maps

• Methods from 10 Java Projects

• 91 participants:
• 26 computer science 

students
• 65 recruited via Amazon 

Mechanical Turk
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Human Attention



Research Question 1:

Human-model 
agreement?

We compare each pair of human vs machine 
attention.
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* Here you see the transformer-based model
   (similar behavior for the CNN-based)

Perfect agreement

Perfect dis-agreement

Our work gives an empirical justification to 
the use of copy attention, as something in 
agreement with the humans.

Regular attention shows a poor agreement.

Copy attention agrees with the humans.



Research Question 2:

How interesting are the 
various kinds of token?

We quantify how much attention certain 
kind of tokens get w.r.t. the uniform 
attention scenario.
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Strings, keywords, and operators are often 
overlooked by the models, whereas the 
humans give more attention to them.

Perfectly
uniform attention

Less than 
uniform attention

More than 
uniform attention

Future human-inspired neural models 
should pay more attention to strings, 
keywords, and operators.

Regular Attention

Copy
Attention
Human
Attention



Research Question 3:
Where do humans and 
models struggle the 
most?

We analyze the human and model 
performance on methods of:

• different families (e.g., getter, setter, test, 
etc.);

• increasing length.

Neural models 
struggle on more 
challenging 
methods (checkers 
and test).

Longer methods 
are harder to 
summarize, both 
for models and 
humans.
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Future training datasets should include a 
larger portion of “difficult” examples for a 
more effective training, or different sub-
datasets of increasing difficulty.



Research Question 4:

Relationship between 
Human-Model agreement 
and model effectiveness?

We compute the correlation 
between agreement and 
performance with a Pearson 
correlation coefficient. 
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Creating models that more closely mimic 
the human attention seems a promising 
way toward more effective models, e.g., by 
using human attention traces during 
training.

A higher human-model correlation 
coincides with more effective 
predictions by the neural models.



Impact on Future Work
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Our work gives an empirical justification to 
the use of copy attention, as something in 
agreement with the humans.

Future human-inspired neural models should pay 
more attention to strings, keywords, and operators.

Ideas and Guidelines

Future training datasets should include a 
larger portion of “difficult” examples.

Creating models that more closely mimic the human 
attention, seems a promising way toward more 
effective models.

Artifacts Available

Dataset of human attention traces:
1. Benchmark another Explainable AI 

method.
2. Train your neural model on our human 

attention traces.

Human Reasoning Recorder:
3. Use it for future human studies on 

source code with remote participants.

Matteo Paltenghi and Michael Pradel



18

Thinking Like a Developer? Comparing the Attention 
of Humans with Neural Models of Code
Matteo Paltenghi and Michael Pradel
Software Lab, University of Stuttgart, Germany

Contact: mattepalte@live.it 
Project: github.com/MattePalte/thinking-like-a-developer

This presentation has been designed using resources from Flaticon.com



19

Video presentation available here:
https://www.youtube.com/watch?v=B8xMNgIg7FI

Thanks in advance for leaving a like to the video, a 
simple like helps to amplify the impact of this work.

Thanks! I wish you a happy and productive day.


