Automatic Generation of Object Usage Specifications
from Large Method Traces

Michael Pradel
Laboratory for Software Technology
Department of Computer Science
ETH Zurich, Switzerland

Abstract—Formal specifications are used to identify pro-
gramming errors, verify the correctness of programs, and as
documentation. Unfortunately, producing them is error-prone
and time-consuming, so they are rarely used in practice. Infer-
ring specifications from a running application is a promising
solution. However, to be practical, such an approach requires
special techniques to treat large amounts of runtime data. We
present a scalable dynamic analysis that infers specifications
of correct method call sequences on multiple related objects.
It preprocesses method traces to identify small sets of related
objects and method calls which can be analyzed separately. We
implemented our approach and applied the analysis to eleven
real-world applications and more than 240 million runtime
events. The experiments show the scalability of our approach.
Moreover, the generated specifications describe correct and
typical behavior, and match existing API usage documentation.

Keywords-Specification inference, dynamic analysis, formal
specifications, temporal properties

I. INTRODUCTION

Typical object-oriented applications involve a large num-
ber of objects that interact by invoking each other’s methods.
In general, not every possible call sequence is legal. Instead,
rules exist that restrict which method calls are allowed in
a particular situation. Unfortunately, such rules are often
implicit in the source code and only known to its developers.
In particular, users of application programming interfaces
(APIs) often have difficulties to understand how the API
should be used, because precise and up to date descriptions
of typical and correct usage are missing.

Formal specifications of correct method call sequences
make legal object interactions explicit and machine-
processable. As a result, one can formally prove the
absence of certain errors [1], [2]. Furthermore, program
analysis tools use specifications to identify potential errors
and unusual programming patterns [1], [3], [4], [5], [6].
Specifications are also documentation artifacts, which can
be used to understand software written by others [7].
Despite these benefits, formal specifications are rarely
used in practice, since writing them is cumbersome,
time-consuming, and requires detailed knowledge of the
program to specify.

Thomas R. Gross
Laboratory for Software Technology
Department of Computer Science
ETH Zurich, Switzerland

This paper presents a novel technique for the automated
generation of specifications of legal method call sequences
on multiple related objects. The proposed analysis produces
specifications, which ideally should have been written be-
fore the implementation, afterwards by analyzing common
usages of an API by existing programs. An automated
approach is advantageous because it allows non-experts to
extract up to date rules of an arbitrary program.

Our analysis derives specifications from method traces of
running programs. A dynamic analysis has the advantage
that correct execution paths can be distinguished from incor-
rect paths, based on the assumption that frequent behavior
is presumably correct [8]. Moreover, we can use precise
type and aliasing information and do not have to rely on
approximations of possible behavior.

A major challenge is the large volume of runtime traces.
Our approach is to focus on small sets of objects and
method calls, called object collaborations, that are related
because they are used together during the execution of a
single method. Each object collaboration can be analyzed
separately, without considering other object collaborations.
As a result, our analysis executes in reasonable time, even
for millions of events.

Our analysis produces finite state machines (FSMs) that
describe legal sequences of method calls. Figure 1 shows a
FSM that was generated during our experiments. It contains
two objects of type Iterable and Iterator from the Java
standard library. The FSM describes how to use an iterator
correctly: every call to next() should be preceded by a call to
hasNext(). The weights show how often each transition was
observed and therefore indicate how common a particular
usage is.

Experiments with an implementation of our approach
show its scalability and the quality of the derived specifi-
cations. We applied the analysis to eleven Java applications,
producing more than 240 million runtime events overall.
Even the largest method traces took less than 30 minutes
to analyze. Furthermore, we evaluate whether the resulting
FSMs describe characteristic behavior rather than incidental
call sequences. We find that 35% of all specifications pro-
duced for the java.util package describe common behavior



Iterator.
hasNext()

Iterable.
iterator()

Iterator.
next()

Figure 1. A generated finite state machine. It describes correct iterator
usage in Java. A transition between two states indicates method calls which
may occur consecutively. The weights report how often a transition was
observed.

that appears in more than one application. Finally, we show
that our approach can recover existing specifications of legal
method call sequences that are given in textual form, and
hence, is able to produce API usage documentation.

Previous work uses static analyses [9], [4], [6] and dy-
namic analyses [8], [10] to infer rules of program behav-
ior. Many existing approaches focus on non-object-oriented
programming languages [8], [4] or on legal call sequences
on single objects [9]. Wasylkowski et al. [6] and Gabel et
al. [10] generate specifications involving multiple objects
using a static and a dynamic approach, respectively. Static
approaches can only give general estimations of correct
behavior due to the lack of precise type and aliasing infor-
mation. Our approach is complementary to that of Gabel et
al. They consider all method traces of an application as input
to a language learning algorithm and reduce complexity by
focusing on predefined specification templates. In contrast,
we preprocess method traces to extract small sets of related
runtime events, which can be analyzed separately.

This paper makes the following contributions:

o Reduced complexity. We focus on dynamic object
collaborations, a construct that combines related objects
and method calls. This strategy reduces the complexity
of analyzing runtime traces, because each object col-
laboration can be analyzed separately.

o Mining techniques. We identify similar execution se-
quences using a set of novel mining techniques, such as
comparing the roles that objects play within a certain
context.

« Specifications of interacting objects. We derive finite
state machines describing legal method call sequences
on multiple objects.

o Implementation and experiments. Our results sug-
gest better performance and scalability than previous
approaches. We validate the inferred specifications by
comparing the results from several applications that use
the same library and by comparing the specifications to
existing textual documentation.

Program

|

[ Instrumentation ]

)

Instrumented Program

|

[ Run ]

i

Method Traces

i

[ Collaboration Finder ]

)

Object Collaborations

|

[ Pattern Extractor ]+

i

Collaboration Patterns

|

[ Specification Inference ]

}

Finite State Machines

Figure 2. The specification generation system.

The following section explains our specification inference
system. Section III describes our implementation, which we
use for an experimental validation (Section I'V). A discussion
of our results follows in Section V. Finally, Sections VI
and VII relate this paper to existing work and conclude.

II. APPROACH

This section details our approach and explains the dif-
ferent steps we take to infer specifications of legal method
call sequences on multiple related objects from a running
program. Figure 2 gives an overview of the system. We
instrument programs so that executing them produces a trace
of method calls. These traces are the input of our analysis.
As a first analysis step, we preprocess the stream of runtime
events to extract sets of collaborating objects (object col-
laborations). By summarizing similar object collaborations
into recurring patterns (collaboration patterns) we obtain a
variety of similar method call sequences, from which we
finally derive temporal specifications. Our approach uses
runtime data to decide how common various call sequences
are and infers correctness from common uses.

A. Instrumentation and Run

We instrument programs in such a way that runtime events
are written into a log file during the program’s execution.
Specifically, the instrumented program reports the following



for each method call and return: unique object identifier and
dynamic type of caller and callee, name and parameter types
of the called method, and the source code location of the
call. The source code location of a method call is required
to distinguish between different call sites within one method.
Static method calls are ignored, as our analysis focuses on
related objects and static calls cannot be mapped to any
object. Exceptional control flows are not handled in a special
way. If a method throws an exception, we handle the method
as if it would return and report the corresponding return
event.

The analysis is performed offline, that is, after running
the application. This setup provides the benefit that event
log files of different applications can be combined, for
instance, to derive specifications of a library used by mul-
tiple applications. Moreover, the analysis can be performed
independently from the program run.

Inferring specifications from runtime data, rather than
source code, has the benefits of precise type and alias-
ing information and does not require any approximations
of real behavior. However, deriving reasonably complete
specifications is difficult in practice, since one requires test
cases that exercise as many execution paths as possible.
Also, we cannot guarantee that all generated specifications
describe semantically correct behavior, because the input
data may contain illegal call sequences that did not lead
to a program crash for some reason. We face the first
problem by using large volumes of method traces that are
derived from unit tests and benchmark suites, giving us an
extensive and reproducible starting point for our analysis. To
approach the correctness problem we exploit an observation
from Ammons et al. [8], which is that execution frequencies
can be used as an estimate for the correctness of observed
behavior.

B. Object Collaborations

Running an instrumented program yields a large volume
of method traces. This entails two major challenges for
deriving legal execution patterns from such data. On the one
hand, we must focus our attention on sets of related method
calls. A naive approach would be to combine arbitrary
method calls that appear somewhere in the traces. However,
many useless specifications would result from method calls
without any semantic link. On the other hand, we need to
ensure the scalability of our analysis to make it practical.

Our approach to both problems is based on the observation
that methods generally implement small and coherent pieces
of functionality. Therefore, the runtime events issued during
a method’s execution are related to each other. We build
upon this relation and define:

class A {
public void callM(LinkedList<B> 1i) {
Iterator<B> iter = li.iterator();
while (iter.hasNext()) {

B b = iter.next();
b.m() ;
}
}
}
class B {
public void m() {
n();
f.90; // £ 1s some field of B
}
private void n() { /* ... */}
}
Figure 3. Method callM() uses an iterator to traverse a list.

Object  Method Calls (Role)

li iterator()
iter  hasNext(), next()
instance of B m()

(more instances of B)  m()

Table 1
AN OBJECT COLLABORATION RESULTING FROM THE EXECUTION OF
callM() FROM FIGURE 3.

Definition: Object collaboration

The sequence of method calls within the execution
of a method and their receiver objects form an
object collaboration.

More formally, let a method call be a pair (o, s)
of the receiver object o and the called method’s
signature s. A collaboration is an ordered sequence

S = (01751)7~~-7(0n75n>

of calls issued within the execution of a method
(Ooutera 80ut€’r‘)~ The ObjeCtS

O ={o|3o,s) e S}

are said to collaborate. Note that an individual
object or method signature can appear multiple
times in S.

Building object collaborations from method traces yields
small sets of related objects and method calls to reason
about. The main advantage is that one can analyze each
object collaboration separately, without considering other
collaborations in the method traces.

As an example, consider the Java code in Figure 3. An
execution of callM() involves multiple objects: the collection
li, the iterator iter, and a number of instances of B accessed



via the variable b. The resulting object collaboration consists
of the objects and method calls given in Table I. Although
the order of calls is missing in this representation, the order
is preserved internally for each collaboration.

To make it more applicable, we refine the definition of
collaborations in two ways. First, each of the called methods
can involve more objects and method calls. Recursively
considering all method calls originating in a certain method
can yield an infinite set. Therefore, we limit the depth of
nested calls to a certain nesting level. The collaboration in
Table I is build with nesting level one. For nesting level two,
we would add method n() to the instances of B because n()
is called during the execution of m(). Moreover, we would
include the objects that B’s field f refers to and list the
method g() for each of them. As the example illustrates,
one can vary the scope of object collaborations by changing
the nesting level.

Second, programmers often split the functionality of a
method into smaller, mostly private methods in the same
class. In that case, executing the outer method includes,
seen from outside of the object, the execution of the inner
methods. We consider this common programming style by
inlining all calls of an object to its own methods when we
build object collaborations. In the example of Figure 3, m()’s
call to n() is considered to be part of m()’s execution. Hence,
it is inlined and does not count as a nested call.

The next step of our analysis identifies frequent execution
patterns in the set of object collaborations.

C. Pattern Extractor

To effectively learn a FSM that describes common method
usages, we need runtime event sequences that are similar but
expose different orders of calls. We say that such runtime
event sequences belong to a collaboration pattern and derive
these patterns from object collaborations.

In the context of a collaboration, a certain set of methods
is called on each involved object. Comparing conceptually
similar execution sequences (such as different uses of iter-
ators), we observed that the involved objects often require
the same sets of methods. We exploit this observation for
extracting patterns:

Definition: Role

The role of an object in a collaboration is the subset
of its methods that are called in the scope of the
collaboration.

In other words, if an object o € O, then

role(o) = {s | (o, s) € S}.

The order of calls is not considered in a role. A particular
object can play different roles in different collaborations.
Likewise, there can be multiple objects with the same role
in one collaboration. In Table I, the right column shows the
roles played by the objects of the collaboration.

Based on this definition of the role of an object, we apply
a set of techniques that make the similarities between object
collaborations explicit:

1) Generalizing types of objects to the most general type
that fulfills their role;

2) Merging objects that play the same role, for instance,
due to an iteration that calls the same methods on each
object of a collection;

3) Filtering of irrelevant objects and method calls, as-
suming that related events relate to the same package.

In the following, we detail these three techniques.

Generalizing types: Our goal in generalizing the types of
objects in a collaboration is to identify similarities between
instances of classes with a common supertype (class or
interface). The role of an object abstracts from the ordering
of methods called on it, which helps in identifying similar
object usages. We can identify even more similarities using
the observation that the role of an object mostly contains
fewer methods than the actual type of the object. Hence, we
assign to each involved object a type that has all methods
of its role but no more additional methods than necessary.
In Figure 3, the dynamic type of variable [i is LinkedList
and that of iter is Listltr'. However, li’s role is {iterator()}
and iter’s role is {hasNext(), next()}. Thus, their supertypes
Iterable and Iterator, which contain these methods, are
sufficient in this collaboration.

In general, the best-fitting type for an object o with respect
to a role r is determined by considering all supertypes of
o’s dynamic type that fulfills r. For each such supertype ¢,
we calculate the ratio between the number of methods in r
and the number of accessible methods in ¢:

_ _ |methods(r)|
fit(r ) = |methods(t)|

Afterwards, we choose the type that maximizes fit, or in
other words, that minimizes the number of methods that are
not required in the collaboration. If a type provides exactly
the role’s methods, fit equals one, such as in Figure 3 for
li and Iterable, which only contains the iterator() method.

To illustrate the effect of generalizing types, consider the
code in Figure 4 and compare it to Figure 3. Comparing the
method traces of executions of addElements() and callM()
shows no obvious similarities apart from common method
names. Focusing on each object’s role and generalizing
their types, though, reveals that both executions contain one
Iterable object and one Iterator object, and that the same
methods are called on these objects.

Merging objects: Iterations over collections are a particu-
lar problem for inferring specifications, because the number
of elements in a collection can vary between executions.
We deal with that problem by merging these elements into a

Liava.util. LinkedList.Listltr is an inner class of LinkedList in Sun’s Java
standard library (version 1.6.0).



public class C {
public int addElements (HashSet<Integer> s) {
int sum = 0O;
for (Iterator<Integer> i = s.iterator();
i.hasNext(); ) {
sum += i.next();
}

return sum;
}
}

Figure 4. Method addElements() iterates over a hash set.

single element. If multiple objects play exactly the same role
in a collaboration, they are reduced to one artificial object
that receives all method calls to the merged objects. For
example, executing callM() from Figure 3 yields arbitrarily
many instances of B, which all play the same role. We merge
all these instances into one object, and as a result, executions
of callM() with lists of different length appear to be the
same.

Package-based filtering: Another obstacle to every spec-
ification inference technique is that events that are relevant
for a particular behavioral pattern are interleaved with irrel-
evant ones. For instance, the callM() method contains calls
to B.m() which are not relevant for inferring specifications
of correct iterator usage. Our analysis handles that problem
by assuming that related method calls deal with objects from
the same package. Specifically, a call is considered to relate
to a package p if:

« the callee is an instance of a class in p,

« the return value is an instance of a class in p, or

« one of the arguments is an instance of a class in p.

Package-based filtering can be run in two modes. One
option for a user of our analysis is to specify a particular
package of interest to only consider runtime events related
to this package. Alternatively, the analysis automatically
identifies potentially interesting packages by considering for
each collaboration all those packages to which at least two
method calls relate. For each such package, we produce
a package-specific collaboration by removing all method
calls that do not relate to the package. That is, one “real”
collaboration can result in multiple filtered collaborations,
where each filtered collaboration only contains the method
calls that relate to a particular package.

Our approach for package-based filtering refines ideas
from Weimer et al., where two method calls can only lead
to a temporal specification if both methods are declared in
the same package [5]. In addition, we also consider calls
that are in a data-flow relation to an object of a particular
package.

Generalizing types, merging objects, and filtering collab-
orations by package are techniques to highlight the similar-

ities between different collaborations. After applying them,
we map collaborations into patterns by comparing their sets
of roles:

Definition: Collaboration pattern

Two collaborations belong to the same collabora-
tion pattern if their objects play the same roles.
That is, given two collaborations with object sets
O, and O», they belong to the same pattern if and
only if there exists a bijective map m : O; — Oq
with

01 +— 09 € m < role(or) = role(os).

Since roles abstract from the order of calls, mapping
collaborations to patterns also suppresses the order. Instead,
we only consider which methods are called on the individual
objects. The two examples in Figures 3 and 4 lead to a com-
mon pattern if one filters events related to java.util. Both,
executing callM() and executing addElements(), involve an
Iterable object with role {iteraror()} and an Iterator object
with role {hasNext(), next()}. That is, there is a one-to-one
correspondence between the involved objects, and hence, we
assign them to the same pattern.

Ranking: Deriving patterns of object collaborations dras-
tically reduces the volume of data compared to the execu-
tion traces they are obtained from. However, for realistic
applications, the number of patterns is still rather large and,
naturally, not all of them contain characteristic behavior. We
propose three criteria to rank patterns and focus on the more
interesting ones.

First, we disapprove patterns whose collaborations involve
many objects, since they lead to FSMs that are rather
complex and too large to be useful to humans. A reasonable
upper limit on the number of involved objects is in the range
between 5 and 10.

Second, we consider the dynamic frequency of a pattern,
that is, the number of times it was found in the method
traces. Recall that we assume correct behavior to occur
frequently. Inversely, this means that patterns with low dy-
namic frequency are less reliable for inferring specifications
of correct behavior. Therefore, reliability is improved by
focusing on patterns whose dynamic frequency is above a
certain threshold.

Third, patterns that occur in multiple different methods
are likely to be more reliable. We call the number of
statically different call sites that lead to a pattern its static
frequency. For example, the iterator usage pattern derived
from Figures 3 and 4 has a static frequency of at least
two, because it occurs in the two methods callM() and
addElements().

This concludes the description of a set of techniques to
identify frequently occurring execution patterns in object
collaborations. In the following, we explain how we infer
specifications from these patterns.



D. Specification Inference

The final step of our analysis is to derive FSMs that model
legal sequences of method calls on a set of related objects.
We create a FSM for each collaboration pattern using the
following mapping:

o States. For each method of an object that is called in

a collaboration of the pattern, create a new state. If
there are multiple objects on which the same method
is called, create a state for each object-method pair.

o Transitions. For each pair of consecutive method calls

(m(), n()), create a transition from the state representing
m() to the state representing n(). Assign weight one to
it. If such a transition exists already, increase its weight
by one.

For example, Figure 1 is a FSM derived from methods that
iterate over collections using iterators, such as callM() and
addElements(). We found this FSM in several applications
we analyzed.

A limitation of the way we construct FSMs is that each
method is represented by only one state, even if multiple
paths lead to a call of a particular method. An alternative
are anonymous states and transitions that represent method
calls [11], [8], [10], [6]. In such FSMs, the presumably
permitted method call sequences correspond to the accepted
language. Unfortunately, learning the smallest such FSM
from a finite set of traces is NP-hard [12]. Numerous
approximations have been proposed that generalize the ac-
cepted language, and hence, accept more call sequences than
the given ones [13]. In contrast, our approach (also taken
by others [9]) makes building FSMs straightforward and
does not require approximations. Moreover, weighting the
transitions by their frequency allows users to estimate the
reliability of each transition.

III. IMPLEMENTATION

To evaluate our approach, we have implemented the
analysis in the Scala programming language [14]. For instru-
menting applications, we use aspect-oriented programming
and the Aspect] compiler [15]. An aspect with two pointcuts
adds instructions before each method call and after each
method return. The corresponding advices pass the runtime
information to a logging module, which writes the method
call and return events into log files. For multi-threaded
applications, we create a separate log file for each thread.
Thus, the order of calls is preserved per thread, but not
globally. The method traces are stored in plain text files.
The largest file we analyzed is about 7.1 GB in size and
contains more than 54 million runtime events.

We instrument only classes that belong to the analyzed
application and omit libraries and frameworks. In particular,
we do not instrument the Java standard library. As a result,
the generated FSMs contain API usage patterns, which
otherwise would be interleaved with events from inside
libraries and frameworks.

The analysis itself has an input reading module, which
transforms log files of method traces into a stream of object
collaborations. For assigning collaborations to patterns, we
need to know the static structure of the application, for
example, to retrieve the supertypes of a class. This part is
implemented using Java’s reflection facilities, and hence, we
need access to the bytecode (but not the source code) of the
application. The main output of our tool is a set of DOT
files [16], each containing one FSM, which we generate
using the dk.brics.automaton library [17].

IV. RESULTS

This section describes our experiences from applying the
proposed approach to several real-world applications. At
first, we give an overview of the applications used in the
experiments. Second, we analyze the runtime performance
and scalability of our implementation and show that it runs
significantly faster than comparable approaches. Third, we
evaluate the quality of the generated specifications. For this
aspect, we analyze different applications that use the same
library and compare their results. Finally, we demonstrate the
ability of our approach to produce API usage documentation.
We show that existing textual descriptions of typical and
correct method call sequences from a commonly used Java
reference [18] can be recovered by our analysis.

A. Overview of Experiments

Table II shows the ten applications we used for most of
the experiments. They are part of the DaCapo benchmark
suite, which has the benefit of ensuring a controlled and
reproducible execution of all applications [19]. For each
application, the number of loaded classes (taken from [19])
and the number of analyzed runtime events is given, where
each event is either a method call or a method return.
Overall, we analyzed more than 240 million events. Fur-
thermore, Table II provides the number of identified object
collaborations and the number of patterns or FSMs derived
from them.? The results show that our approach derives a
manageable number of specifications from a large volume
of method traces.

Note that the results in Table II refer to a run of the
analysis for object collaborations in all packages. Restricting
the analysis to a particular package reduces the number of
FSMs as we show in Section IV-C.

All experiments are done on a 3.16 GHz Intel Core 2 Duo
machine with 4 GB memory. We use the Java Hotspot Server
virtual machine version 1.6.0 running on Debian/GNU
Linux. Execution times are measured with the Linux fime
command.

2The number of collaborations only includes those with at least one
method call. That is, a call to a method that returns without making any
other call does not count as a collaboration.



Application  Classes Events  Collaborations  FSMs
Loaded
antlr 126 18,718,204 1,243,780 262
chart 219 28,875,810 3,862,532 67
eclipse 795 498,328 39,542 491
fop 231 6,813,674 1,045,194 391
hsqldb 131 18,617,950 829,802 244
jython 251 54,204,213 2,742,132 365
luindex 128 38,719,540 1,457,636 46
lusearch 118 21,080,277 1,232,174 45
pmd 325 295,750 11,632 90
xalan 244 56,646,196 8,951,174 581
Overall 2,568 244,469,942 21,415,598 2,582
Table II

OVERVIEW OF THE APPLICATIONS USED IN OUR EXPERIMENTS.

B. Scalability

Our specification inference algorithm scales linearly with
the number of runtime events given to it as input. As a result,
method traces of real-world applications can be analyzed in
a few seconds or minutes.

The main reason for the scalability of our approach is
that each collaboration can be analyzed locally, without
knowledge about prior or future collaborations. Afterwards,
each collaboration is assigned to a pattern based on its set of
roles. If no matching pattern exists, a new pattern is created.
As described in Section II-D, each pattern corresponds to a
FSM. Thus, the only global data structure of the analysis is
the set of resulting FSMs.

Figure 5 depicts the execution times of the analysis for
the applications in Table II. The execution times range
between 7.8 seconds (pmd) and almost 30 minutes (xalan).
The upper graph shows execution time against number of
runtime events. Two executions (chart and xalan) take some
more time per event than the others. We analyzed the
reason for the two exceptions and found that the method
traces of chart and xalan yield exceptionally many object
collaborations. For illustration, consider the lower graph in
Figure 5, which shows execution time against number of
collaborations. Here, all executions perform approximately
linearly.

Figure 5 shows the execution times required to extract
specifications for all packages. The analysis runs even faster
if a particular package is selected. For example, if the focus
is on package java.util, the execution time of the analysis
ranges between 6.3 seconds and 21 minutes.

In summary, the measurements confirm our reasoning that
the runtime of our analysis is roughly linearly dependent
on the size of its input. The analysis runs significantly
faster than existing approaches [20], [10], even though our
implementation is not particularly optimized for speed. As

T T T T T
30 o
xalan
25t -
=
E
< 20 - -
E
_S 15 + ch.art E
8 jython
o 10 ° -
luind
i uindex
hsql lusearch
ST fop iy ]
o
0 pmdieclipse anltlr | | |
0 10 20 30 40 50 60
Events (million)

30 I I I xalan |
25} .
£
E
S 20 - -
£
8 15 + cha .
§ 0 jytho
x " uing ]
w uindex

5 ESOI'gb (isearch _
tor @ antlr
0 d,eclipsg | | )
0 2 4 6 8 10
Collaborations (million)
Figure 5. Execution time of the analysis against the number of analyzed

events (above) and against the number of identified collaborations (below).

a result, not more than a few minutes are required for
analyzing traces from real applications.

C. Quality of Generated Specifications

We use raw runtime data as input and do not make any
approximation that could introduce false behavior. There-
fore, the generated FSMs must be accurate in terms of
only describing possible method call sequences. However,
our technique entails the risk to highlight incidental call
sequences that, although occurring in the method traces, are
not characteristic in general.

Therefore, the crucial question for evaluating the quality
of our results is how many of the produced specifications
describe typical object usages. We measure the proportion
of typical FSMs by comparing the results from different



Application  FSMs Confirmed

Identity  Inclusion  Overall
antlr 12 7 2 75%
chart 7 1 1 29%
eclipse 87 8 8 18%
fop 39 9 8 44%
hsqldb 1 1 0 100%
jython 34 6 9 44%
luindex 12 5 2 58%
lusearch 3 3 0 100%
pmd 20 2 4 30%
xalan 32 5 6 34%
Overall 247 47 40 35%

Table 11T

PROPORTION OF CONFIRMED AND UNCONFIRMED SPECIFICATIONS FOR
THE java.util PACKAGE.

applications that use the same API. We consider a specifi-
cation to be typical if we find it in the results of at least two
applications. More specifically, each generated FSM belongs
to one of the following categories:

o Confirmed by identity, if the same FSM is also derived
from another application;

o Confirmed by inclusion, if the FSM is included in some
FSM derived from another application. A FSM M, is
included in M if all states of M, appear in M5 and if
the transitions of M are a subset of the transitions of
the corresponding states of Moy;

o Unconfirmed, if none of the above applies.

To measure the percentage of confirmed FSMs, we gen-
erate specifications for the utility package java.util and
compare the results from ten applications. Table III shows
the categorization into confirmed and unconfirmed specifi-
cations. Overall, our tool generates 247 specifications. More
than a third (35%) of these specifications are confirmed.
The majority of the confirmed FSMs appear identically in
different result sets. We conclude that a significant part of
the specifications that our approach infers are typical object
usage patterns and not incidental call sequences. Figures 1
and 6 are two examples of the specifications generated
for java.util, originating from the pmd and jython projects,
respectively.

D. Recovery of Documentation

Specifications can be used as documentation. In contrast
to a natural language, formal specifications are less ambigu-
ous and can be processed automatically. To evaluate whether
our inference technique produces FSMs that document cor-
rect API usage, we tried to recover existing documentation
given in textual form (inspired by Xie [21]).

StringTokenizer.
nextToken()

StringTokenizer.
hasMoreTokens()

StringTokenizer()

Specification inferred from the jython project.

Figure 6.

A widely used standard reference provides the following

documentation on using Java’s ZipFile class [18]:
A ZipFile can be created by specifying the ZIP
file to be read either as String filename or as
a File object. ... Once a ZipFile is created, the
getEntry() method returns a ZipEntry object for a
named entry ... To read the contents of a specific
ZipEntry within the ZIP file, pass the ZipEntry to
getInputStream(); this returns an InputStream ob-
ject from which you can read the entry’s contents.

To recover this documentation artifact, we instrumented
JjEdit [22], because it has several plugins that read and
write ZIP files. An analysis of jEdit’s traces, restricted to
the java.util.zip package, produces four FSMs, including
Figure 7. The specification in Figure 7 corresponds to the
documentation given in [18].

During our experiments, we found more FSMs that bear a
resemblance to existing textual documentation. This shows
that our approach is able to generate documentation artifacts.
We conclude that, given representative applications using an
API, our techniques can be applied to generate documenta-
tion of how to use the APIL

V. DISCUSSION

The applications used in the experiments cover a wide
range of domains from program analysis to databases.
Therefore, we consider our results concerning scalability
(Section IV-B) and quality of the inferred specifications
(Section IV-C) to be generalizable to other applications.
The preliminary results on documentation recovery (Sec-
tion IV-D) are promising and should be validated in a
separate case study involving several APIs and applications.

Although our experiments focus on Java programs, we
believe that the techniques presented in this paper can be



ZipFile(String)

Figure 7.

adapted to other programming languages. Our method trace
format fits any statically typed object-oriented language,
and the algorithm for identifying object collaborations is
not tied to particular Java features. In our implementation,
those parts of the analysis that use the static structure of the
analyzed application are separated and can easily be adapted
to support other languages.

Given our results, we consider object collaborations to
be a useful abstraction for specification inference. However,
some specifications that developers could be interested in
may be scattered over different, unrelated methods. For
example, patterns of using a global data structure may
not occur in any object collaboration. Also, our definition
of collaborations considers only control flow and ignores
data flow relations between runtime events. Nevertheless,
our experiments suggest that object collaborations are a
useful abstraction. In particular, we have shown their benefits
for scalability since we can analyze them locally. Since
methods are the main abstraction to structure functionality
and behavior in object-oriented programming, it seems a
reasonable conclusion to exploit this structure for finding
behavioral patterns.

A possible development of our ideas is to use them
as input for static and dynamic verification techniques.
There are several frameworks for monitoring runtime events,
such as method calls, which trigger additional functionality
when particular patterns of events occur [23], [24], [25].
These frameworks support patterns that involve multiple
objects. Hence, the FSMs generated by our analysis can be
combined with these frameworks to search for violations of
the specifications. On the same lines, static analyses, such
as type state systems [26], [27], are possible applications of
our results.

VI. RELATED WORK
A. Specification Mining

Ernst et al. were among the first that derived specifications
from runtime data [28], [29]. Their work extracts invariants,
which possibly involve multiple variables, from program
traces.

There have been several proposals for deriving specifi-
cations of legal calls sequences from runtime data. Am-
mons et al. apply a probabilistic FSM learner to method
traces of C programs to derive specifications of correct API

ZipFile.
getEntry(String)

ZipFile.
getInputStream
(ZipEntry)

Documentation of ZipFile that we recovered from running jEdit.

usage [8]. Gabel et al. advance the idea of specification
inference as language learning problem and present Javert,
a tool to extract FSMs that involve multiple objects [10].
Their analysis reduces the complexity of the problem by
focusing on two predefined micro-patterns. Perracotta is a
specification mining tool that focuses on scalability and
possibly imperfect traces [20]. Similar to [10], the approach
is to search method traces for instances of certain templates,
such as two events that may only occur in strictly alternating
order. Rather than searching instances of pre-defined tem-
plates, our approach can identify arbitrary usage patterns,
and still ensures scalability as shown in Section IV-B. Our
work also differs from the above in the kind of FSMs that
result. Instead of using an approximative language learning
algorithm, we map methods to states and obtain FSMs that
precisely describe the observed behavior.

Ghezzi et al. [30] infer specifications of container-like
classes as FSMs combined with graph transformation rules.
This combination describes the visible state of the specified
classes more fine-grained than plain FSMs. In contrast to
our approach, though, only single classes are specified. Lo
and Khoo [31] propose a framework for dynamically mining
API specifications. It consists of modules for trace-filtering,
clustering, learning, and automata-merging. Similar to [8],
a probabilistic FSM learner is used. The main focus of
the work is on inferring precise specifications instead of
scalability. Reiss et al. discuss space-reducing encodings of
runtime data and, as a by-product, propose an algorithm
for inferring FSMs from method call sequences [32]. Salah
et al. infer different usage scenarios for a single class by
grouping similar method invocation sequences on instances
of this class into canonical sets [33].

Besides these dynamic approaches, different static anal-
yses for the automated generation of programming rules
or specifications have been proposed. Whaley et al. infer
FSMs describing all call sequences to an instance of a class
that do not lead to an exception [9]. The work is based
on the assumption that programmers use some field of a
class to track its internal state. The analysis identifies sets
of related methods by considering those subsets of a class’
methods that access a common field. Alur et al. present a
generalization of that approach [11]. Their analysis searches
the most general temporal interface of a class that does not



lead to an unsafe valuation of the class’ fields. The above
analyses are conservative so that the produced specifications
permit more call sequences than those that are actually legal.
On the contrary, specifications inferred with our approach
are rather restrictive and include only the observed behavior.

Wasylkowski et al. present a static analyzer that finds
temporal properties, such as that n() can be called after
m() [6]. As an intermediate step, their analysis constructs
FSMs that focus on the use of one particular object in
a method. Acharya et al. derive partial orders of API
method calls from C source code [34]. Liu et al. check
the likelihood of API usage patterns with a model checker
that counts the number of validations and violations for
each pattern candidate [35]. PR-Miner is a tool to extract
implicit programming rules from C software [4]. It analyses
variables and functions that are used together in a function
and identifies frequent combinations of them using frequent
itemset mining.

The discovery of algebraic specifications for Java con-
tainer classes is described by Henkel et al. [7]. An algebraic
specification consists of axioms that describe equalities
resulting from different sequences of method calls. Their
approach generates such axioms automatically and tests
them for validity using generated unit tests.

B. Bug Finding and Verification

Among the various applications of generated specifica-
tions, identifying potential bugs is one of the most in-
vestigated. Several of the above mentioned works contain
static [4], [6] or dynamic [9] techniques to detect violations
of the inferred rules. A static analysis by Engler et al. finds
frequently occurring instances of rule-templates and spots
potential errors as violations of the rules [3]. Weimer et
al. present an analysis that identifies potential bugs in error
handling code by searching for unusual pairs of method calls
in exceptional control flow paths [5].

The specifications produced by our analysis can be given
as input to existing verification techniques. Both dynamic
checking, which can emit warnings when methods other than
specified are called, and static checking, such as type state
analysis [26], [27], are possible.

C. Other Related Work

Our notion of roles and collaborations is inspired by
work in conceptual and object-oriented modeling [36] and
program understanding [37]. In both, a role describes the
responsibilities of an object in a certain context. In our
model, this context is an object collaboration that happens
within the execution of a method. Dynamic object process
graphs are another way to extract small sets of related
events from dynamic traces [38]. They can also be used
for inferring specifications [39]. An object process graph is
a view on a control flow path with focus on a single object.
Its vertices are locations in a program; edges correspond

to control flow between these locations. In contrast, object
collaborations focus on the execution of a single method and
can involve multiple objects.

Livshits et al. propose a technique for identifying viola-
tions of application-specific programming rules with the help
of software revision repositories [40]. Similar to us, they
search for sets of related methods. Livshits et al. assume that
methods that occur in the same check-in relate to each other
and apply a data mining algorithm to spot frequent method
sets. A system for detecting code injection attacks by Fetzer
et al. includes a component for learning typical system call
sequences from method traces based on data-flow relations
between calls [41]. Xie and Notkin explore the synergistic
effects of specification inference and test generation [42].
They propose an iterative process that derives specifications
from test executions, which in turn are used to enhance an
existing test suite.

Cook et al. compare different methods for deriving FSMs
that describe software development processes [43]. Despite
the differing application domain, their work is related, since
they also infer temporal rules from sequences of observed
events.

VII. CONCLUSIONS

This paper addresses the question how to infer specifica-
tions of legal method call sequences from traces of runtime
events in a practical manner. Formal specifications can be
used for various software engineering activities ranging
from finding errors to documenting software. Our analysis
automates the generation of specifications, and hence, is a
step toward making specification-based activities accessible
without the need to write them manually.

This paper improves existing approaches in several ways:
First, we show that interesting specifications can be inferred
in reasonable time. Our experiments suggest the analysis to
scale linearly with the size of method traces in most cases,
so that it can handle realistic applications. Second, we show
that regarding the roles that objects play in a certain context
helps in identifying similar execution sequences, which is
required for inferring temporal specifications. Third, our
work differs from most existing approaches by providing
specifications for multiple objects rather than single objects
or classes. Consequently, our results contain more complex
specifications, which may be hard to deduce manually. A
potential shortcoming of our approach is that we may miss
programming rules that exceed the scope of object collabora-
tions. Also, our analysis cannot guarantee the completeness
of the inferred specifications.

We envision different applications of our ideas in future
work. One application is to use the generated specifications
as input for runtime verification or static analysis, to identify
uncommon behavior. Such an approach can spot potential
errors, unusual programming patterns, or disobedience to



project-internal programming rules. Furthermore, our pre-
liminary results on recovering existing documentation are
promising, and we plan to evaluate the ability of our
algorithm to infer documentation in a larger case study.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers, as
well as Zoltdin Majé and Marco Zimmerling for provid-
ing valuable feedback on how to improve this paper. We
thank Stephanie Balzer, Nicholas Matsakis, and Friedrich
Steimann for discussions of this work. Also thanks to
Andreas Mgller for his help on using the dk.brics.automaton
library.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

REFERENCES

D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking sys-
tem rules using system-specific, programmer-written compiler
extensions,” in Symposium on Operating Systems Design and
Implementation (OSDI), 2000, pp. 1-16.

T. Ball and S. K. Rajamani, “The SLAM project: Debugging
system software via static analysis,” in Symposium on Prin-
ciples of Programming Languages (POPL), 2002, pp. 1-3.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: A general approach to inferring
errors in systems code,” in Symposium on Operating Systems
Principles, 2001, pp. 57-72.

Z. Li and Y. Zhou, “PR-Miner: Automatically extracting
implicit programming rules and detecting violations in large
software code,” in European Software Engineering Confer-
ence and Symposium on Foundations of Software Engineering
(ESEC/FSE), 2005, pp. 306-315.

W. Weimer and G. C. Necula, “Mining temporal specifi-
cations for error detection,” in Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), 2005, pp. 461-476.

A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in European Software Engineering Confer-
ence and Symposium on Foundations of Software Engineering
(ESEC/FSE), 2007, pp. 35-44.

J. Henkel, C. Reichenbach, and A. Diwan, “Discovering
documentation for Java container classes,” IEEE Transactions
on Software Engineering, vol. 33, no. 8, pp. 526543, 2007.

G. Ammons, R. Bodik, and J. R. Larus, “Mining specifi-
cations,” in Symposium on Principles of Programming Lan-
guages (POPL), 2002, pp. 4-16.

J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extrac-
tion of object-oriented component interfaces,” in Symposium
on Software Testing and Analysis (ISSTA), 2002, pp. 218-228.

M. Gabel and Z. Su, “Javert: Fully automatic mining of gen-
eral temporal properties from dynamic traces,” in Symposium
on Foundations of Software Engineering (FSE), 2008, pp.
339-349.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis
of interface specifications for Java classes,” in Symposium
on Principles of Programming Languages (POPL), 2005, pp.
98-109.

E. M. Gold, “Complexity of automaton identification from
given data,” Information and Control, vol. 37, no. 3, pp. 302—
320, 1978.

A. W. Biermann and J. A. Feldman, “On the synthesis of
finite-state machines from samples of their behaviour,” IEEE

Transactions on Computers, vol. 21, pp. 592-597, 1972.

M. Odersky, L. Spoon, and B. Venners, Programming in
Scala, A comprehensive step-by-step guide. Artima, 2008.

“The Aspect] project,” http://www.eclipse.org/aspect;/.

“Graphviz -
graphviz.org/.

graph visualization software,” http://www.

A. Mgller, “Finite-state automata and regular expressions for
Java,” http://www.brics.dk/automaton/.

D. Flanagan, Java in a nutshell. O’Reilly, 2005.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump,
H. B. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and
analysis,” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2006, pp.
169-190.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Per-
racotta: Mining temporal API rules from imperfect traces,”
in International Conference on Software Engineering (ICSE),
2006, pp. 282-291.

T. Xie, “Software component protocol inference,” University
of Washington, Tech. Rep., June 2003. [Online].
Available: http://www.csc.ncsu.edu/faculty/xie/publications/
generals-tao.pdf

“jEdit - programmer’s text editor,” http://www.jedit.org/.

M. C. Martin, V. B. Livshits, and M. S. Lam, “Finding appli-
cation errors and security flaws using PQL: A program query
language,” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2005, pp.
365-383.

C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhotdk, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble, “Adding trace matching with free variables to
Aspect],” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2005, pp.
345-364.

F. Chen and G. Rosu, “MOP: An efficient and generic
runtime verification framework,” in Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2007, pp. 569-588.



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

R. E. Strom and S. Yemini, “Typestate: A programming
language concept for enhancing software reliability,” IEEE
Transactions on Software Engineering, vol. 12, no. 1, pp.
157-171, 1986.

K. Bierhoff and J. Aldrich, “Modular typestate checking
of aliased objects,” in Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
2007, pp. 301-320.

M. D. Ernst, “Dynamically discovering likely program invari-
ants,” Ph.D. dissertation, University of Washington, 2000.

M. D. Emnst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” [EEE Transactions on Software
Engineering, vol. 27, no. 2, pp. 213-224, 2001.

C. Ghezzi, A. Mocci, and M. Monga, “Synthesizing inten-
sional behavior models by graph transformation,” in Interna-
tional Conference on Software Engineering (ICSE), 2009, pp.
430-440.

D. Lo and S.-C. Khoo, “Smartic: towards building an accu-
rate, robust and scalable specification miner,” in Symposium
on Foundations of Software Engineering (FSE), 2006, pp.
265-2175.

S. P. Reiss and M. Renieris, “Encoding program executions,”
in International Conference on Software Engineering (ICSE),
2001, pp. 221-230.

M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and
F. I. Vokolos, “Scenariographer: A tool for reverse engineer-
ing class usage scenarios from method invocation sequences,”
in Conference on Software Maintenance (ICSM), 2005, pp.
155-164.

M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns
as partial orders from source code: From usage scenarios
to specifications,” in European Software Engineering Confer-
ence and Symposium on Foundations of Software Engineering
(ESEC/FSE), 2007, pp. 25-34.

(35]

[36]

[37]

(38]

[39]

[40]

(41]

[42]

[43]

C. Liu, E. Ye, and D. J. Richardson, “Software library
usage pattern extraction using a software model checker,” in
Automated Software Engineering (ASE), 2006, pp. 301-304.

F. Steimann, “On the representation of roles in object-oriented
and conceptual modelling,” Data & Knowledge Engineering,
vol. 35, no. 1, pp. 83-106, 2000.

T. Richner and S. Ducasse, “Using dynamic information
for the iterative recovery of collaborations and roles,” in
International Conference on Software Maintenance (ICSM),
2002, pp. 34-43.

J. Quante and R. Koschke, “Dynamic object process graphs,”
Journal of Systems and Software, vol. 81, no. 4, pp. 481-501,
2008.

——, “Dynamic protocol recovery,” in Working Conference
on Reverse Engineering (WCRE), 2007, pp. 219-228.

V. B. Livshits and T. Zimmermann, “DynaMine: Finding
common error patterns by mining software revision histories,”
in European Software Engineering Conference and Sympo-
sium on Foundations of Software Engineering (ESEC/FSE),
2005, pp. 296-305.

C. Fetzer and M. Siikraut, “Switchblade: Enforcing dynamic
personalized system call models,” in EuroSys, 2008, pp. 273—
286.

T. Xie and D. Notkin, “Mutually enhancing test generation
and specification inference,” in Formal Approaches to Soft-
ware Testing, 2003, pp. 60—69.

J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Transactions on
Software Engineering and Methodology, vol. 7, no. 3, pp.
215-249, 1998.



