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ABSTRACT
Maintaining large code bases written in dynamically typed lan-

guages, such as JavaScript or Python, can be challenging due to

the absence of type annotations: simple data compatibility errors

proliferate, IDE support is limited, and APIs are hard to compre-

hend. Recent work attempts to address those issues through either

static type inference or probabilistic type prediction. Unfortunately,

static type inference for dynamic languages is inherently limited,

while probabilistic approaches suffer from imprecision. This paper

presents TypeWriter, the first combination of probabilistic type

prediction with search-based refinement of predicted types. Type-

Writer’s predictor learns to infer the return and argument types for

functions from partially annotated code bases by combining the

natural language properties of code with programming language-

level information. To validate predicted types, TypeWriter invokes

a gradual type checker with different combinations of the predicted

types, while navigating the space of possible type combinations in

a feedback-directed manner.

We implement the TypeWriter approach for Python and evaluate

it on two code corpora: a multi-million line code base at Facebook

and a collection of 1,137 popular open-source projects. We show

that TypeWriter’s type predictor achieves an F1 score of 0.64 (0.79)

in the top-1 (top-5) predictions for return types, and 0.57 (0.80) for

argument types, which clearly outperforms prior type prediction

models. By combining predictions with search-based validation,

TypeWriter can fully annotate between 14% to 44% of the files in

a randomly selected corpus, while ensuring type correctness. A

comparison with a static type inference tool shows that TypeWriter

adds many more non-trivial types. TypeWriter currently suggests

types to developers at Facebook and several thousands of types

have already been accepted with minimal changes.

1 INTRODUCTION
Dynamically typed programming languages, such as Python and

JavaScript, have become extremely popular, and large portions of

newly written code are in one of these languages. While the lack

of static type annotations enables fast prototyping, it often leads

to problems when projects grow. Examples include type errors

that remain unnoticed for a long time [9], suboptimal IDE support,

and difficult to understand APIs [22]. To solve these problems,

in recent years, many dynamic languages obtained support for

type annotations, which enable programmers to specify types in

a fashion similar to a statically typed language. Type annotations
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are usually ignored at runtime; nevertheless, they serve both as

hints for developers using external APIs and as inputs to gradual

type checkers that ensure that specific programming errors cannot

occur. To cope with legacy code bases, type annotations can be

introduced gradually; in such cases, the type checker will check

only code that is annotated.

Asmanually annotating code is time-consuming and error-prone [26],

developers must resort to automated methods. One way to address

the lack of type annotations is type inference via traditional static

analysis. Unfortunately, dynamic features, such as heterogeneous

arrays, polymorphic variables, dynamic code evaluation, and mon-

key patching make static type inference a hard problem for popular

dynamic languages, such as Python or JavaScript [7]. Static type

inference tools typically handle these challenges by inferring a type

only if it is certain or very likely (under some assumptions), which

significantly limits the number of types that can be inferred.

Motivated by the inherent difficulties of giving definitive answers

via static analysis, several probabilistic techniques for predicting

types have been proposed. A popular direction is to exploit the

existence of already annotated code as training data to train ma-

chine learning models that then predict types in not yet annotated

code. Several approaches predict the type of a code entity, e.g., a

variable or a function, from the code contexts in which this entity

occurs [15, 28]. Other approaches exploit natural language infor-

mation embedded in source code, e.g., variable names or comments,

as a valuable source of informal type hints [21, 37].

While existing approaches for predicting types are effective in

some scenarios, they suffer from imprecision and combinatorial
explosion. Probabilistic type predictors are inherently imprecise

because they suggest one or more likely types for each missing

annotation, but cannot guarantee their correctness. The task of

deciding which of these suggestions are correct is left to the devel-

oper. Because probabilistic predictors suggest a ranked list of likely

types, choosing a type-correct combination of type annotations

across multiple program elements causes combinatorial explosion.

A naïve approach would be to let a developer or a tool choose

from all combinations of the predicted types. Unfortunately, this

approach does not scale to larger code examples, because the num-

ber of type combinations to consider is exponential in the number

of not yet annotated code entities.

This paper presents TypeWriter, a combination of learning-based,

probabilistic type prediction and a feedback-directed, search-based

validation of predicted types. The approach addresses the impreci-

sion problem based on the insight that a gradual type checker can
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1 # Predicted argument type: int, str, bool

2 # Predicted return type: str, Optional[str], None

3 def find_match(color):

4 """

5 Args:

6 color (str): color to match on and return

7 """

8 candidates = get_colors()

9 for candidate in candidates:

10 if color == candidate:

11 return color

12 return None

13

14 # Predicted return types: List[str], List[Any], str

15 def get_colors():

16 return ["red", "blue", "green"]

Figure 1: Example of search for type-correct predicted types.

pinpoint contradictory type annotations, which guides the selection

of suitable types from the set of predicted types. To make the search

for a consistent set of types tractable, we formulate the problem

as a combinatorial search and present a search strategy that finds

type-correct type annotations efficiently. TypeWriter makes use of

the variety of type hints present in code through a novel neural

architecture that exploits both natural language, in the form of

identifier names and code comments, similar to prior work [21],

and also programming context, in the form of usage sequences.

To illustrate the approach, consider the two to-be-typed func-

tions in Figure 1. Given this code, the neural type model of Type-

Writer predicts a ranked list of likely types for each argument

type and return type, as indicated by the comments. TypeWriter

starts by adding the top-ranked predictions as type annotations,

which introduces a type error about an incorrect return type of

find_match, though. Based on this feedback, the search tries to

change the return type of find_match to the second-best sugges-

tion, Optional[str]. Unfortunately, this combination of added

types leads to another type error because the return type is in-

consistent with the argument key being of type int. The search
again refines the type annotations by trying to use the second-best

suggestion, str, for the argument key. Because the resulting set

of type annotations is type-correct according to the type checker,

TypeWriter adds these types to the code.

We implement TypeWriter for Python and apply it on two large

code bases: a multi-million line code base at Facebook that powers

applications used by billions of people, and a corpus of popular open-

source projects. We show that the neural model predicts individual

types with a precision of 64% (85%, 91%) and a recall of 52% (64%,

68%) within the top-1 (top-3, top-5) predictions, which outperforms

a recent, closely related approach [21] by 10% and 6% respectively.

Based on this model, the feedback-directed search finds a type-

correct subset of type annotations that can produce complete and

type-correct annotations for 42% to 64% of all files. Comparing

TypeWriter with a traditional, static type inference shows that both

techniques complement each other and that TypeWriter predicts

many more types than traditional type inference. In summary, this

paper makes the following contributions:

• A combination of probabilistic type prediction and search-

based validation of predicted types. The feedback-directed

search for type-correct types can be used with any proba-

bilistic type predictor and any gradual type checker.

• A novel neural type prediction model that exploits both code

context and natural language information.

• Empirical evidence that the approach is effective for type-

annotating large-scale code bases withminimal human effort.

The initial experience from using TypeWriter at Facebook

on a code base that powers tools used by billions of people

has been positive.

2 APPROACH
Figure 2 gives a high-level overview of the TypeWriter approach.

The input to TypeWriter is a corpus of code where some, but not

all types are annotated. The approach consists of three main parts.

First, a lightweight static analysis extracts several kinds of informa-

tion from the given code (Section 2.1). The extracted information

includes programming structure information, such as usages of a

function’s arguments, and natural language information, such as

identifier names and comments. Next, a neural type predictor learns

from the already annotated types and their associated information

how to predict missing types (Section 2.2). Once trained, this model

can predict likely types for currently unannotated parts of the code.

Finally, a feedback-directed search uses the trained model to find a

type assignment that is consistent and type-correct according to

a static, gradual type checker (Section 2.3). The overall output of

TypeWriter is code with additional type annotations.

2.1 Static Extraction of Types and Context
Information

The first part of TypeWriter is an AST-based static analysis that

extracts types and context information useful to predict types. The

analysis is designed to be lightweight and easy to apply to other pro-

gramming languages. We currently focus on function-level types,

i.e., argument types and return types. These types are particularly

important for two reasons: (i) Given function-level types, gradual

type checkers can type-check the function bodies by inferring the

types of (some) local variables. (ii) Function-level types serve as

interface documentation.

For each type, the static analysis gathers four kinds of context

information, which the following describes and illustrates with the

example in Figure 3. Each of the four kinds of information may

provide hints about an argument type or return type, and our model

learns to combine these hints into a prediction of the most likely

types.

Identifier names associated with the to-be-typed program element.
As shown by prior work [21, 27], natural language information

embedded in source code can provide valuable hints about program

properties. For example, the argument names name and do_propa-
gate in Figure 3 suggest that the arguments may be a string and a

boolean, respectively. To enable TypeWriter to benefit from such

hints, the static analysis extracts the identifier name of each with

function and each function argument.
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Figure 2: Overview of TypeWriter.

1 from html import HtmlElement

2

3 def update_name(name, do_propagate, element):

4 """ Update the name and (optionally)

5 propagate to dependents. """

6 first_name = name.split(" ")[0]

7 element.first = first_name

8 if do_propagate:

9 for d in dependents:

10 d.notify(NAME, first_name)

Figure 3: Example of a to-be-typed Python function.

Code occurrences of the to-be-typed program element. In addition

to the above natural language information, TypeWriter exploits

programming language type hints. One of them is the way a to-be-

typed program element is used: As a hint about argument types, the

analysis considers all usages of an argument within the function

body. Another kind of information is code that defines the to-be-

typed program element: As a hint about return types, the analysis

considers all return statements in a function. For each of these

code locations, the analysis extracts the corresponding sequence of

code tokens o1, ...,ok . Specifically, the analysis extracts a window
of tokens around each occurrence of an argument (default size of

window: 7) and all tokens of a return statement. For example, the

analysis extracts the token sequence \n, first_name, =, name, .,
split, ( around the usage of name at line 6.

As an alternative to extracting token sequences, TypeWriter

could perform a more sophisticated static analysis, e.g., by tracking

data flows starting at arguments or ending in return values. We

instead focus on token sequences because it provides a sufficiently

strong signal, scales well to large code bases, and could be easily

ported to other programming languages.

Function-level comments. Similar to identifier names, comments

are another informal source of hints about types. For the example in

Figure 3, a developer might infer from the function-level comment

that the function has some side effects but probably does not return

any value. To allow the approach to benefit from such hints, the

static analysis extracts all function-level comments, i.e., docstrings

in Python. For a given function, the approach uses this comment

both for predicting the argument types and the return type of the

function.

Available types. To annotate a type beyond the built-in types

of Python, the type needs to be either imported or locally defined.

Because types used in an annotation are likely to be already im-

ported or locally defined, the analysis extracts all types available in

a file. To this end, the analysis parses all import statements and all

class definitions in a file. For the example in Figure 3, the analysis

will extract HtmlElement as an available type, which hints at the

argument element being of this type.

Based on these four kinds of type hints, the analysis extracts the

following information for argument types and return types, respec-

tively:

Definition 2.1 (Argument type information). For a function argu-

ment a, the statically extracted information is a tuple

(nfct ,narg ,Nargs, c,U , t)
where nfct is the function name, narg is the name of the argument

a, Nargs is the sequence of names of other arguments (if any), c
is the comment associated with the function, U is a set of usage

sequences, each of which is a sequence o1, ...,ok of tokens, and t is
the type of the argument.

Definition 2.2 (Return type information). For the return type of a

function f , the statically extracted information is a tuple

(nfct ,Nargs, c,R, t)
where nfct is the function name, Nargs is the sequence of argument

names, c is the comment associated with the function, R is a set of

return statements, each of which is a sequence o1, ...,ok of tokens,

and t is the return type of f .

If any of the above information is missing, the corresponding

elements of the tuple is filled with a placeholder. In particular, the

static analysis extracts the above also for unannotated types, to

enable TypeWriter to predict types based on the context.

2.2 Neural Type Prediction Model
Given the extracted types and context information, the next part

of TypeWriter is a neural model that predicts the former from the



Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra

latter. We formulate the type prediction problem as a classification

problem, where the model predicts a probability distribution over a

fixed set of types. The neural type prediction model, summarized in

the middle part of Figure 2, combines the four kinds of information

described in Section 2.1 into a single type prediction.

To represent identifier names, source code tokens, and words

in a way suitable for learning, TypeWriter maps each into a real-

valued vector using a Word2Vec [23] embedding. We train two

embeddings, a code embedding Ecode for code tokens and identi-

fier names, and a word embedding Eword for words in comments.

Ecode is trained on sequences of tokens extracted from source code

files, while Eword is trained on sequences of words extracted from

comments. To mitigate the problem of large vocabularies in source

code [5], TypeWriter preprocesses each identifier using a helper

function norm(), which tokenizes, lemmatizes, and lowercases each

identifier.

2.2.1 Learning from Identifiers. This neural submodel learns from

the identifier names of functions and function arguments. The

model combines all identifiers associated with a type into sequence.

Given argument type information (nfct ,narg ,Nargs, c,U , t), the se-
quence is

norm(narg) ◦ s ◦ norm(nfct ) ◦ norm(Nargs)

where ◦ flattens and concatenates sequences, and s is a separator.
Given return type information (nfct ,Nargs, c,R, t), the sequence is

norm(nfct ) ◦ s ◦ norm(Nargs)

For example, the sequence for the return type of the function in

Figure 3 is “update name s name do propagate element”.

TypeWriter learns from these sequences of words by summariz-

ing them into a single vector using a bi-directional, recurrent neural

network (RNN) based on LSTM cells. To ease parallelization, we pad

sequences that are too short and truncate sequences that are too

long (default length: 10). The final hidden states of the RNN serve

as a condensed vector representation, vids , of all identifier-related
hints.

2.2.2 Learning from Token Sequences. This neural submodel learns

from source code information associated with a type. Similar to

the submodel for identifiers, this submodel composes all relevant

tokens into a sequence and summarize them into a single vector

vcode using an RNN. For arguments and return types, the sequence

consists of the tokens involved in the usagesU (Definition 2.1) and

the return statements R (Definition 2.2), respectively. Before feeding

these sequences into an RNN, we bound the length of each token

sequence (default: k = 7) and of the number of token sequences

(default: 3).

2.2.3 Learning from Comments. This neural submodel learns type

hints from comments associated with a function. To this end, Type-

Writer splits a given comment into a sequence of words, bound the

length of the sequence to a fixed value (default: 20), and summarizes

the sequence via another RNN. The result is a fixed-length vector

vcomments .

2.2.4 Learning from Available Types. The fourth kind of informa-

tion that TypeWriter learns from is the set of types available in the

current source code file. The approach assumes a fixed-size vocabu-

laryT of types (default size: 1,000). This vocabulary covers the vast

majority of all type occurrences because most type annotations

either use one of the built-in primitive types, e.g., str or bool, com-

mon non-primitive types, e.g., List or Dict, or their combinations,

e.g., List[int] or Dict[str, bool]. Any types beyond the type

vocabulary are represented as a special “unknown” type.

To represent which types are available, we use a binary vector of

size T , called the type mask. Each element in this vector represents

one type, and an element is set to one if and and only if its type is

present. The resulting vector vavailTypes of available types is passed
as-is into the final part of the neural model.

2.2.5 Predicting the Most Likely Type. The final submodel concate-

nates the four vectors vids , vcode , vcomments , and vavailTypes into a

single vector and passes it through a fully connected layer that

predicts the most likely type. The output vector has size |T | and
represents a probability distribution over the set of types. For ex-

ample, suppose the type vocabulary had only four types int, bool,
None, and List, and that the output vector is [0.1, 0.6, 0.2, 0.1]. In
this case, the model would predict that bool is the most likely type,

following by None.
There are two ways to handle uncertainty and limited knowl-

edge in the model. First, we interpret the predicted probability of a

type as a confidence measure and only suggest types to a user that

are predicted with a confidence above some configurable thresh-

old. Second, we encode types not included in the fixed-size type

vocabulary as a special “unknown” type. The model hence learns to

predict “unknown” whenever none of the types in the vocabulary

fit the given context information. During prediction, TypeWriter

never suggests the “unknown” type to the user, but instead does

not make any suggestion in case the model predicts “unknown”.

2.2.6 Training. To train the type prediction model, TypeWriter re-

lies on already type-annotated code. Given such code, the approach

creates one pair of context information and type for each argument

type and for each return type. These pairs then serve as training

data to tune the parameters of the different neural submodels. We

use stochastic gradient descent, the Adam optimizer, and cross-

entropy as the loss function. The entire neural model is learned

jointly, enabling the model to summarize each kind of type hint into

the most suitable form and to decide which type hints to consider

for a given query. We train two separate models for argument types

and function types, each learned from training data consisting of

only one kind of type. The rationale is that some of the available

type hints need to be interpreted differently depending on whether

the goal is to predict an argument type or a return type.

2.3 Feedback-guided Search for Consistent
Types

The neural type prediction model provides a ranked list of k predic-

tions for each missing type annotation. Given a set of locations for

which a type annotation is missing, called type slots, and a list of

probabilistic predictions for each slot, the question is which of the

suggested types to assign to the slots. A naïve approach might fill

each slot with the top-ranked type. However, because the neural

model may mis-predict some types, this approach may yield type
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Algorithm 1 Find a correct type assignment for a file f

1: function assign_types(f )
2: T ← all type slots in f

3: P1..k
t ← {predictions(t ,k) | t ∈ T } ▷ Top k predictions

4: a ← {P1

t | t ∈ T } ▷ Initial type assignment

5: a.score← typecheck(a, f ) ▷ Feedback function

6: work_set← new_states(a,P,T )
7: done← {a}
8: while min({x .score | x ∈ done}) > 0 ∧work_set , ∅ do
9: a ← pick(work_set) ▷ Biased random selection

10: a.score← typecheck(a, f )
11: if greedy ∧ a.score < a.parent.score then
12: work_set← new_states(a,P,T )
13: else if non-greedy then
14: work_set ← work_set ∪ (new_states(a,P,T ) \

done)
15: end if
16: done← done ∪ {a}
17: end while
18: return argmin({x .score | x ∈ done})
19: end function
20: function new_states(a,P,T )
21: children← {}
22: for all t ∈ T do
23: for all P jt where j > rank of current a[t] do
24: achild ← modify a to use P jt at t
25: children← {achild }
26: end for
27: achild ← modify a to not use any type at t
28: children← {achild }
29: end for
30: return children

31: end function

assignments where the added annotations are not consistent with

each other or with the remaining program.

To avoid introducing type errors, TypeWriter leverages an ex-

isting gradual type checker as a filter to validate candidate type

assignments. Such type checkers exist for all popular dynamically

typed languages that support optional type annotations, e.g., pyre
and mypy for Python, and flow for JavaScript. TypeWriter exploits

feedback from the type checker to guide a search for consistent

types, as presented in Algorithm 1 and explained in the sections

below.

2.3.1 Search Space. Given a set T of type slots and k predicted

types for each slot, we formulate the problem of finding a consistent

type assignment as a combinatorial search problem. The search

space consists of the set P of possible type assignments. For |T |
type slots and k possible types for each slot, there are (k + 1) |T |
type assignments (the +1 is for not assigning any of the predicted

types).

2.3.2 Feedback Function. Exhaustively exploring P is practically

infeasible for files with many missing types, because invoking the

gradual type checker is relatively expensive (typically, in the order

of several seconds per file). Instead, TypeWriter uses a feedback

function (typecheck) to efficiently steer toward the most promising

type assignments.

The feedback function is based on two values, both of which the

search wants to minimize:

• nmissing : The number of missing types.

• nerrors : The number of type errors.

TypeWriter combines these into aweighted sum score = v ·nmissing+

w · nerrors . By default, we set v to 1 and w to the number of ini-

tially missing types plus one, which is motivated by the fact that

adding an incorrect type often leads to an additional error. By giv-

ing type errors a high enough weight, we ensure that the search

never returns a type assignment that adds type errors to the code.

2.3.3 Exploring the Search Space. TypeWriter explores the space

of type assignments through an optimistic search strategy (Algo-

rithm 1). It assumes that most predictions are correct, and then

refines type annotations to minimize the feedback function. Each

exploration step explores a state a, which consists of a type assign-

ment, the score computed by the feedback function, and a link to

the parent state. The initial state is generated by retrieving the top-1

predictions from P for each type slot t and invoking the feedback

function (lines 4 and 5). The next states to be explored are added to

a work set, while the explored states are kept in the “done” set. The

algorithm loops over items in the work set until either the feedback

score has been minimized or the search explored all potential type

assignments (line 8). The assignment with the minimal score is

returned as a result (line 18).

To retrieve the next type assignments to possibly explore from

the current state, TypeWriter invokes the new_states helper func-
tion. It adds all type assignments that can be obtained from the

current state by modifying exactly one type slot, either by using a

lower-ranked type suggestion or by not adding any type for this

slot (lines 22 to 29).

The main loop of the algorithm (lines 8 to 17) picks a next state

to evaluate from the working set (line 9), queries the feedback

function (line 10) and updates the done set with the explored state

(line 16). The pick function is a biased random selection that prefers

states based on two criteria. First, it prefers states that add more

type annotations over states that add fewer annotations. Second, it

prefers states that modify a type annotation at a line close to a line

with a type error. Intuitively, such states are more likely to fix the

cause of a type error than a randomly selected state.
1
The working

set is updated with all new states that have not been currently

explored.

TypeWriter implements two variants of the search, a greedy

and a non-greedy one. The greedy strategy aggressively explores

children of type assignment that decrease the feedback score and

prunes children of states that increase it (line 12). The non-greedy
performs no pruning, i.e., it can explore a larger part of the search

space at the expense of time (line 14).

As an optimization of Algorithm 1, TypeWriter invokes the as-
sign_types function twice. The first call considers only type slots

for return types, whereas the second call considers all type slots

for argument types. The reason for this two-phase approach is that

1
The reason for relying on line numbers as the interface between the type checker

and TypeWriter is to enable plugging any type checker into our search.
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many gradual type checkers, including pyre, the one used in our

evaluation, type-check a function only if its return type is anno-

tated. If TypeWriter would add argument type annotations before

adding return type annotations, the feedback function might not

include all type errors triggered by an incorrectly added argument

annotation.

3 IMPLEMENTATION
The implementation of TypeWriter builds upon a variety of tools in

the Python ecosystem. For the static analysis phase, we apply a data

extraction pipeline consisting of Python’s own ast library to parse

the code into an AST format, and NLTK and itsWordNetLemmatizer

module to perform standard NLP tasks (lemmatization, stop word

removal). The pipeline is parallelized so that it handles multiple

files concurrently. The neural network model is implemented in

PyTorch. For obtaining embeddings for words and tokens, we pre-

train a Word2Vec model using the gensim library. The search phase

of TypeWriter builds upon the LibCST
2
to add types to existing

Python files.We use pyre for static type checking. Our LSTMmodels

all use 200-dimensional hidden layers, and we train for 10 epochs

with a learning rate of 0.005 using the Adam Optimizer.

4 EVALUATION
We structure our evaluation along four research questions.

RQ 1: How effective is TypeWriter’s model at predicting argument

and return types, and how does it compare to existing work?

RQ 2: How much do the different kinds of context information

contribute to the model’s prediction abilities?

RQ 3: How effective is TypeWriter’s search?

RQ 4: How does TypeWriter compare to traditional static type

inference?

4.1 Datasets
TypeWriter is developed and evaluated within Facebook. As the

internal code base is not publicly available and to ensure that the

presented results are replicable, we use two datasets:

Internal code base We collect Python from a large internal

code repository.

OSS corpus We searchGitHub for all projects tagged as python3.
We also search Libraries.io for all Python projects that in-

clude mypy as a dependency. We then remove all projects

that have less than 50 stars on GitHub, to ensure that the

included projects are of substantial public interest. To ease

future work to compare with TypeWriter, all results for the

OSS corpus are available for download.
3

The resulting dataset statistics can be found in Table 1. The inter-

nal dataset is much larger in size, but both datasets are comparable

in terms of the percentage of annotated code. By restricting the

type vocabulary to a fixed size, we exclude around 10% of all type

occurrences for both datasets. This percentage is similar for both

datasets, despite their different sizes, because types follow a long-

tail distribution, i.e., relatively few types account for the majority of

all type occurrences. We ignore some types because they are trivial

2
https://github.com/Instagram/LibCST

3
http://software-lab.org/projects/TypeWriter/data.tar.gz

Table 1: Internal and open-source datasets.

Metric Internal OSS

Repositories 1 1,137

Files ∗ 11,993

Lines of code ∗ 2.7M

Functions ∗ 146,106

. . .with return type annotation 68% 80,341 (55%)

. . .with comment 21.8% 53,500 (39.3%)

. . .with both 16% 32,409 (22.2%)

. . . ignored because trivial 7.4% 12,436 (8.5%)

Arguments * 274,425

. . .with type annotation 50% 112,409 (41%)

. . . ignored because trivial 33% 96,036 (35%)

Types - Return * 7,383

. . . occurrences ignored (out of vocab.) 20.2% 11.3%

Types - Argument * 8,215

. . . occurrences ignored (out of vocab.) 21.3% 13.7%

Training time (min:sec)
. . . parsing several minutes 1:45

. . . training embeddings several minutes 2:29

. . . training neural model several minutes 2:20

∗ = not available for disclosure

to predict, such as the return type of __str__, which always is str,
or the type of the self argument of a method, which always is the

surrounding class. TypeWriter could easily predict many of these

trivial types, but a simple syntactic analysis would also be sufficient.

We ignore trivial types for the evaluation to avoid skewing the

results in favor of TypeWriter.

4.2 Examples
Figure 4 shows examples of successful and unsuccessful type pre-

dictions in the OSS dataset. Example 1 presents a case where Type-

Writer correctly predicts a type annotation. Here, the code context

and comments provide enough hints indicating that token is of

type Callable. Example 2 presents a case where TypeWriter does

not correctly predict the type, but the prediction is close to what

is expected. We hypothesize that this case of mis-prediction is due

to the fact that TypeWriter tries to associate associations between

natural language and types, or in this case, the word “path” and the

type Path.

4.3 RQ 1: Effectiveness of the Neural Model
Prediction tasks. To evaluate the neural type prediction, we define

two prediction tasks: (i) ReturnPrediction, where the model predicts

the return types of functions, and (ii) ArgumentPrediction, where
the model predicts the types of function arguments, and

Metrics. We evaluate the effectiveness of TypeWriter’s neural

type predictor by splitting the already annotated types in a given

dataset into training (80%) and validation (20%) data. The split is by

file, to avoid mixing up types within a single file. Once trained on

the training data, we compare the model’s predictions against the

validation data, using the already annotated types as the ground

http://software-lab.org/projects/TypeWriter/data.tar.gz
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Table 2: Effectiveness of neural type prediction.

Corpus Task Model Precision Recall F1-score

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Internal ReturnPrediction TypeWriter 0.73 0.88 0.92 0.58 0.66 0.69 0.64 0.76 0.79

NL2Type 0.60 0.82 0.88 0.50 0.61 0.65 0.55 0.70 0.75

DeepTyper 0.70 0.87 0.92 0.43 0.54 0.59 0.53 0.67 0.72

Naïve baseline 0.15 0.22 0.25 0.24 0.40 0.45 0.18 0.29 0.32

ArgumentPrediction TypeWriter 0.64 0.86 0.92 0.52 0.66 0.70 0.57 0.75 0.80

NL2Type 0.53 0.80 0.88 0.46 0.61 0.66 0.50 0.70 0.76

DeepTyper 0.54 0.80 0.87 0.42 0.57 0.62 0.47 0.67 0.73

Naïve baseline 0.08 0.15 0.18 0.17 0.31 0.35 0.11 0.20 0.23

OSS ReturnPrediction TypeWriter 0.69 0.80 0.84 0.61 0.70 0.72 0.65 0.75 0.78

NL2Type 0.61 0.74 0.79 0.55 0.64 0.68 0.58 0.69 0.73

DeepTyper 0.52 0.79 0.83 0.48 0.59 0.64 0.50 0.66 0.72

Naïve baseline 0.16 0.25 0.28 0.25 0.42 0.47 0.20 0.31 0.35

ArgumentPrediction TypeWriter 0.58 0.77 0.84 0.50 0.65 0.70 0.54 0.71 0.77

NL2Type 0.50 0.71 0.79 0.46 0.61 0.66 0.48 0.66 0.72

DeepTyper 0.51 0.76 0.84 0.45 0.59 0.64 0.48 0.67 0.73

Naïve baseline 0.06 0.11 0.14 0.14 0.25 0.29 0.08 0.15 0.19

1 # PrefectHQ/ct/f/blob/master/src/prefect/utilities/notifications.py

2 # Commit: 864d44b

3 # Successful annotation of return type

4 def callback_factory(...) -> Callable:

5 """

6 ...

7 Returns:

8 - state_handler (Callable): a state handler function that

9 can be attached to both Tasks and Flows

10 ...

11 """

12 def state_handler(...):

13 ...

14 return state_handler

Example 1

1 # awslabs/sockeye/blob/master/sockeye/average.py

2 # Commit: bcda569

3 # Incorrect annotation of return type: expected List[str]

4 def find_checkpoints(...) -> List[Path]:

5 """

6 ...

7 :return: List of paths corresponding to chosen checkpoints.

8 """

9 ...

10 params_paths = [

11 os.path.join(model_path, C.PARAMS_NAME % point[-1])

12 for point in top_n

13 ]

14 ...

15 return params_paths

Example 2

Figure 4: Examples of successful and unsuccessful type pre-
dictions (GitHub: PrefectHQ/ct, awslabs/sockeye).

truth. We compute precision, recall, and F1-score, weighted by

the number of type occurrences in the dataset. Similarly to previ-

ous work [21], if the prediction model cannot predict a type for a

type slot (i.e., returns “unknown”), we remove this type slot from

the calculation of precision. Specifically, we calculate precision as

prec = ncorr
nall

, where ncorr is the number of correct predictions

and nall is the number of type slots for which the model does not

return “unknown”. We calculate recall as rec = ncorr
|D | , where |D | is

total number of type slots in the examined dataset. We report the

top-k scores, for k ∈ {1, 3, 5}.

Baseline models. We compare TypeWriter’s top-k predictions

against three baseline models. The naïve baseline model considers

the ten most frequent types in the dataset and samples its pre-

diction from the distribution of these ten types, independently of

the given context. For example, it predicts None as a return type

more often than List[str] because None is used more often as a

return type than List[str]. The DeepTyper baseline is a Python
re-implementation of the DeepTyper [15] model. DeepTyper learns

to translate a sequence of source code tokens to a sequence of

types (and zeros for tokens without a type). To make it directly

compatible with TypeWriter, we do not consider predictions for

variable annotations in function bodies, even though we do perform

basic name-based type propagation in case an annotated argument

is used in a function body. Finally, the NL2Type baseline is a re-

implementation of the NL2Type model [21] for Python, which also

learns from natural language information associated with a type,

but does not consider code context or available types.

Results. Table 2 presents the results for RQ 1. Our neural model

achieves moderate to high precision scores, e.g., 73% in the top-1

and 92% in the top-5 for on the internal dataset for the ReturnPre-
diction task. The recall results are good but less high than precision,

indicating that TypeWriter is fairly confident when it makes a pre-

diction, but abstains from doing so when it is not. All models have

slightly worse performance on the OSS dataset, which we attribute

to the smaller size of that dataset. The fact that the top-3 and top-5

scores are significantly higher than top-1 in all cases motivates our

work on combinatorial search (Section 4.5).

Compared to the baselines, TypeWriter outperforms both the

state of the art and the naïve baseline across all metrics for both

datasets and all three prediction tasks. The differences between
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Figure 5: Precision/Recall curves for different TypeWriter-
configurations. Each data point represents a prediction
threshold level.

TypeWriter and NL2Type are higher in the case of the ReturnPre-
diction than the ArgumentPrediction task. The context information,

as obtained by analyzing token sequences, is helping the TypeWriter

prediction model more in the ReturnPrediction task. Compared to

DeepTyper, both NL2Type and TypeWriter are better, the latter by

a significant margin, in top-1 but not in top-3 or top-5 predictions.

Given that all models learn primarily from identifier names, the

relatively close upper bound performance seems to indicate that

performance improvements may only be achieved by introducing

different (e.g., structural) information to the model.

4.4 RQ 2: Comparison with Simpler Variants of
the Neural Model

The main novelty of TypeWriter’s prediction component is the in-

clusion of code context information and a local type mask in the

predictionmodel. To explore the influence of the different type hints

considered by TypeWriter, we perform an ablation study. Specifi-

cally, we turn off parts of the model, both in training and in testing,

and then measure top-1 precision and recall at various prediction

threshold levels. We start with the full model (typewriter) and then

we remove, in order, the typemask, the token sequences, themethod

and argument names and the documentation. As a baseline, we

also include nl2type, a configuration functionally equivalent with

NL2Type [21], which corresponds to TypeWriter without token

sequences and without a type mask. The results of the ablation

study can be seen in Figure 5.

Overall, the combined information of natural language, token

sequences, and type masks helps TypeWriter to perform better

than previous models, such as NL2Type. The main contributor to

this improvement is the token sequences component. Moreover,

the results seem to reinforce the main thesis of NL2Type, i.e., that

natural language information and types are strongly related: If

we remove the argument and function naming information from

TypeWriter, its performance drops significantly.

Contrary to our initial expectations, the type mask component

is not contributing significantly in the ReturnPrediction task, while

only slightly improving the ArgumentPrediction results. We at-

tribute this to the current implementation of the type mask data

extraction process: the extractor currently neither performs an

in-depth dependency resolution to retrieve the full set of types

available in the processed file’s name space, nor does it track type

renamings (e.g., import pandas as pd). The low predictive capa-

bility of comments can be explained by the fact that only a small

number of the methods in both datasets have documentation at the

method level.

4.5 RQ 3: Effectiveness of Search
To evaluate the search, we collect a ground truth of 50 fully an-
notated files that are randomly sampled from the industrial code

base at Facebook. We ensure that they type-check correctly. The

files we select originate from different products and vary in size

and complexity, the files average 7 (median: 6, 95%: 13) annotations.

The total number of annotations is 346. For each file in the ground

truth, we strip its existing annotations and then apply TypeWriter

to predict and evaluate the missing types. We configure both the

greedy and the non-greedy search strategies to stop when the num-

ber of states explored is seven times the number of type slots. This

threshold empirically strikes a reasonable balance between invest-

ing time and detecting correct types. We use the same prediction

model trained on the Facebook dataset as in Section 4.3.

Table 3 shows the results on two levels: individual type annota-

tions and files. On the annotation-level, column type-correct shows
how many type slots the type assignment returned by the search

fills (recall that the search ensures each added type to be type-

correct). Column ground truth match shows how many of all added

annotations match the original, developer-produced type annota-

tions. On the file-level, a complete and type-correct solution is a file

that TypeWriter fully annotates without type errors. This metric

does not include files where TypeWriter discovers a type-correct,

but partially annotated solution. The ground truth match is the sub-

set of the complete and type-correct solutions, where the solution

is identical to the ground truth for all types in the file. It is possible

to find a type-correct annotation that does not match the ground

truth. For example, TypeWriter may correctly annotate the return

type of a function as a List, but a human expert might choose a

more precise type List[str]: both are type-correct, but the human

annotation provides more guarantees.

Both search strategies successfully annotate a significant fraction

of all types. On the annotation-level, they add between 40% and 63%

of all types in a type-correct way, out of which 28% to 47% match

the ground truth, depending on the search strategy. On the file-

level, TypeWriter completely annotates 14% to 44% of all files, and

10% to 22% of all files perfectly match the developer annotations.

Comparing the two search strategies, we find that, at the annotation-

level, greedy search discovers more type-correct annotations with
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Table 3: Effectiveness of various search strategies for type
inference.

Strategy Top-k Annotations Files

Type-

correct

Ground

truth

match

Complete,

type-

correct

Ground

truth

match

Greedy

search

1 176 (51%) 155 (45%) 7 (14%) 5 (10%)

3 213 (62%) 169 (49%) 14 (28%) 10 (20%)

5 248 (72%) 188 (54%) 22 (44%) 11 (22%)

Non-

greedy

search

1 175 (51%) 149 (44%) 7 (14%) 5 (10%)

3 150 (43%) 109 (32%) 11 (22%) 7 (14%)

5 152 (44%) 109 (32%) 15 (30%) 5 (10%)

Upper

bound

(prediction)

1 – 192 (55%) – 5(10%)

3 – 234 (68%) — 13 (26%)

5 – 240 (69%) — 14 (28%)

Pyre Infer — 100 (29%) 82 (24%) 3 (2%) 2 (2%)

top-3 and top-5 predictions, while non-greedy search actually finds

fewer annotations. This is due to the exponential increase in search

space, which makes it less likely that the non-greedy search finds

a type-correct solution. In contrast, the results suggest that the

greedy search explores a more promising part of the search space.

At the file-level, both search approaches provide more annotations

and fully annotate more files as the number of available predictions

per slot increases. In the greedy case, a search using the top-5

results still improves the outcome significantly; this suggests the

search strategy can efficiently leverage the neural model’s moderate

improvement when k increases beyond 3.

To better understand how effective the search is, we also show

how many ground truth-matching types the top-k predictions in-

clude (“upper bound (prediction)”). Note that these numbers are a

theoretical upper bound for the search, which cannot be achieved

in practice because it would require exhaustively exploring all com-

binations of types predicted within the top-k . Comparing the upper

bound with the results of the search shows that the search gets

relatively close to the maximum effectiveness it could achieve. For

example, a top-5 exploration with greedy search finds a complete

and type-correct solution that matches the ground truth for 11 files,

while the theoretical upper bound is 14 files. We leave developing

further search strategies, e.g., based on additional heuristics, for

future work.

Overall, the results show that a greedy search among top-k types
can uncover more types when given more predictions, while also

maintaining type correctness. k = 5 provides the best annotation

performance. While a non-greedy search should not immediately

be disregarded, it should be considered in terms of how exhaustive

the developer will allow the search to be.

4.6 RQ 4: Comparing with Static Type
Inference

We compare TypeWriter with a state-of-the-art, static type inference

tool pyre infer. The type inference is part of the pyre type checker
and is representative of conservative static analysis-based type

inference that adds only types guaranteed to be type-correct. We

run pyre infer on the same set of randomly chosen, fully annotated

Table 4: Comparison of TypeWriter and a traditional, static
type inference (pyre infer).

Top-5 (greedy) Top-5 (non-greedy)

Total type slots 346 346

. . . added by TypeWriter only 166 95

. . . added by pyre infer only 18 43

. . . added by both tools 82 57

. . . same prediction 63 44

. . . neither could predict 80 151
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Figure 6: Distribution of types found by TypeWriter and
Pyre Infer.

files as in Section 4.5 and then compare the added annotations with

TypeWriter’s top-5 search results.

Tables 3 (bottom) and 4 show the results. In a head to head

comparison, TypeWriter is able to provide type-correct predictions

for about seven times the number of files that pyre infer can. It
also discovers significantly more types, adding a total of 188 types,

whereas pyre infer adds only 100. Additionally, of the 82 type slots

for which both tools suggest a type, the suggestions are the same

in 63 cases. Effectively, the types that TypeWriter suggests are a

superset of those inferred by pyre infer, as pyre infer does not
uniquely find many types.

To further illustrate the differences, we plot the distribution of the

top-10 correctly predicted types in Figure 6. We see that pyre infer
can infer more precise types, but themajority of its inferences are on

methods with no return types. Moreover, some of the inferred types

are of dubious usefulness (e.g., Optional[Optional[Context]])
indicating the difficulty of applying static type inference on dynamically-

typed languages and reinforcing our thesis on the value of prediction-

based type inference.

5 DISCUSSION
Effectiveness of neural type prediction. TypeWriter implements

the first neural type prediction model for Python. As all existing
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type prediction models [15, 21, 28] target JavaScript code, it is diffi-

cult to draw conclusions as to whether the TypeWriter architecture

is the best for the task. Two facts seem to suggest so: i) TypeWriter is

better by a comfortable margin than a re-implementation of the two

best-in-class JavaScript models, and ii) TypeWriter’s performance

is stable across two very different datasets.

Type-correctness vs. soundness. Due to the way current Python

type checkers work, the types that TypeWriter produces are guar-

anteed to be type-correct within the context of a given module. Type

correctness is different from type soundness, as the later can only

be verified using human intuition. This means that if a module is

used within another context, the type checker might invalidate

an initially correct prediction. In turn, this makes TypeWriter a

soundy [20], rather than a sound approach.

Limited type vocabulary. TypeWriter only predicts types that are

part of its type vocabulary. When the vocabulary size is config-

ured at 1000 types, it can account for 90% of the available types in

both our datasets. However, as software evolves, developers create

new types or change the names of existing ones. This may lead to

situations where the model would predict a wrong type because

its name changed or because it simply does not know that the

type exists. The out-of-vocabulary problem is well know in soft-

ware engineering research [16]. Recent work for by Karampatsis et

al. [18] uses sub-word information to account for neologisms with

very good results. We believe that TypeWriter would benefit signif-

icantly from such an approach for embedding identifier names, as

it would enable it to learn semantically similar name variants (e.g.,

AbstractClass and Class or List and List[str]).

Further improvements. TypeWriter is a prototype stemming from

a general effort within Facebook to make their Python code base

more robust. TypeWriter can be improved in several dimensions,

some of which are presented below:

Better data: The ablation study results suggest that type masks

and documentation components of the TypeWriter model are only

marginally contributing to its prediction capabilities. This goes

against both intuition and published work: in [21], the authors

show that code documentation is an important signal. We could,

however, exploit the fact that highly used libraries, such as flask or
the Python standard library itself feature both type annotations (in

the typeshed4 repository) and excellent documentation. Moreover,

we can obtain better type masks using lightweight dependency

analysis, such as importlab,5 to identify all types that are in context.

Faster search feedback: TypeWriter’s execution speed is currently

constrained by the type checker used to obtain feedback. One natu-

ral way to improve this would be to integrate the TypeWriter type

predictor into a static type inference loop: when the type inference

cannot predict a type for a location, it can ask the neural model

for a suggestion. While the theoretical cost of searching for types

is similar, in practice the type inference will be able to quickly

examine suggested types given that all required data is loaded in

memory.

Reinforced learning: As with most neural models, TypeWriter

can benefit from more data. One idea worth exploring is to apply

4
GitHub: python/typeshed

5
https://github.com/google/importlab

TypeWriter in batches, consisting of application of an initial set of

neural predictions, reviewing proposed types through the normal

code review process at Facebook and then retrain the model on the

new data. At the scale of the Facebook code base, we expect that the

feedback obtained (accepted, modified, and rejected suggestions)

could be used to improve the learning process.

6 RELATEDWORK
Type inference for dynamic languages. Static type inference [4, 8,

14, 17] computes types using, e.g., abstract interpretation or type

constraint propagation. These approaches are sound by design, but

due to the dynamic nature of some languages, they often infer only

simple or very generic types [8, 17]. They also require a significant

amount of context, usually a full program and its dependencies.

Dynamic type inference [3, 29] tracks data flows between func-

tions, e.g., while executing a program’s test suite. These approaches

capture precise types, but they are constrained by coverage. Type-

Writer differs from those approaches in two key aspects: i) it only

requires limited context information, i.e., a single a source code file,

ii) it does not require the program to be executed and hence can

predict types in the absence of a test suite or other input data.

Probabilistic type inference. The difficulty of accurately inferring

types for dynamic programming languages has led to research

on probabilistic type inference. JSNice [28] models source code as

a dependency network of known (e.g., constants, API methods)

and unknown facts (e.g., types); it then mines information from

large code bases to quantify the probability of two items being

linked together. Xu et al. [37] predict variable types based on a

probabilistic combination of multiple uncertain type hints, e.g.,

data flows and attribute accesses. They also consider natural lan-

guage information, but based on lexical similarities of names, and

focus on variable types, whereas TypeWriter focuses on function

types. DeepTyper [15] uses a sequence-to-sequence neural model

to predict types based on a bi-lingual corpus of TypeScript and Java-

Script code. NL2Type [21] uses natural language information. Our

evaluation directly compares with Python re-implementations of

both DeepTyper and NL2Type. Besides advances in the probabilistic

type prediction model itself, the more important contribution of

our work is to address the imprecision and combinatorial explosion

problems of probabilistic type inference. In principle, any of the

above techniques can be combined with TypeWriter’s search-based

validations to obtain type-correct types in reasonable time.

Type checking and inference for Python. The Python community

introduced a type annotation syntax along with a type checker

(mypy) as part of Python 3.5 version in 2015 [32]. The combina-

tion of the two enables gradual typing of existing code, where the

type checker checks only the annotated parts of the code. Simi-

lar approaches have also been explored by the research commu-

nity [34]. Since 2015, type annotations have seen adoption in several

large-scale Python code bases, with products such as Dropbox
6
and

Instagram,
7
reportedly having annotated large parts of their multi-

million line code bases. TypeWriter helps reduce the manual effort

required for such a step.

6
Dropbox Blog: How we rolled out one of the largest Python 3 migrations ever

7
Instagram Engineering Blog: Introducing open source MonkeyType

https://github.com/python/typeshed/
https://github.com/google/importlab
https://blogs.dropbox.com/tech/2018/09/how-we-rolled-out-one-of-the-largest-python-3-migrations-ever/
https://instagram-engineering.com/let-your-code-type-hint-itself-introducing-open-source-monkeytype-a855c7284881
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Machine learning on code. Our neural type prediction model is

motivated by a stream of work on machine learning-based pro-

gram analyses [2]. Beyond type prediction, others have proposed

learning-based techniques to find programming errors [25, 27], pre-

dict variable and method names [1, 28, 33], suggest how to improve

names [19], search code [10, 30], detect clones [36, 40], classify

code [24, 39], predict code edits [31, 38, 41], predict assertions [35],

and automatically fix bugs [6, 11, 12]. TypeWriter contributes a

novel model for predicting types and a search-based combination

of predictive models with traditional type checking.

Search-based software engineering. Our search-based validation

of types fits the search-based software engineering theme [13],

which proposes to balance competing constraints in developer tools

throughmetaheuristic search techniques. In our case, the search bal-

ances the need to validate an exponential number of combinations

of type suggestions with the need to efficiently annotate types.

7 CONCLUSIONS
We present TypeWriter, a learning-based approach to the problem

of inferring types for code written in Python. TypeWriter exploits

the availability of partially annotated source code to learn a type

prediction model and the availability of type checkers to refine

and validate the predicted types. TypeWriter’s learned model can

readily predict correct type annotations for half of the type slots on

first try, whereas its search component can help prevent annotating

code with wrong types. Combined, the neural prediction and the

search-based refinement helps annotate large code bases with min-

imal human intervention, making TypeWriter the first practically

applicable learning-based tool for type annotation.

We are currently in the process of making TypeWriter available

to developers at Facebook. We have tested the automation of the

tool in the code review domain. Developers at Facebook received

type suggestions as comments on pull requests they had authored.

They would also receive pull requests containing type suggestions

for their project. The initial experience from applying the approach

on a code base that powers tools used by billions of people has been

positive: several thousands of suggested types have already been

accepted with minimal changes.
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