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ABSTRACT
When debugging unintended program behavior, developers can

often identify the point in the execution where the actual behavior

diverges from the desired behavior. For example, a variable may

get assigned a wrong value, which then negatively influences the

remaining computation. Once a developer identifies such a diver-

gence, how to fix the code so that it provides the desired behavior?

This paper presents TraceFixer, a technique for predicting how

to edit source code so that it does not diverge from the expected

behavior anymore. The key idea is to train a neural program re-

pair model that not only learns from source code edits but also

exploits excerpts of runtime traces. The input to the model is a

partial execution trace of the incorrect code, which can be obtained

automatically through code instrumentation, and the correct state

that the program should reach at the divergence point, which the

user provides, e.g., in an interactive debugger. Our approach fun-

damentally differs from current program repair techniques, which

share a similar goal but exploit neither execution traces nor infor-

mation about the desired program state. We evaluate TraceFixer on

single-line mistakes in Python code. After training the model on

hundreds of thousands of code edits created by a neural model that

mimics real-world bugs, we find that exploiting execution traces

improves the bug-fixing ability by 13% to 20% (depending on the

dataset, within the top-10 predictions) compared to a baseline that

learns from source code edits only. Applying TraceFixer to 20 real-

world Python bugs shows that the approach successfully fixes 10

of them.

1 INTRODUCTION
When trying to fix a bug, a developer must localize the problem and

then edit the source code to prevent the problem from happening.

During the first step, a developer typically identifies a source code

location and understands how the behavior at this location differs

from the desired behavior. For example, when stepping through

a program in an interactive debugger, a developer may realize a

point in the execution where the value of some variable differs from

the value the variable should have. We refer to the point during

an execution where the actual behavior diverges from the desired

behavior as the divergence point of a bug, and we call the state the

program should reach at this point the desired state. Given these

two pieces of information, the second step is to edit the source code

in a way that prevents divergence and reaches the desired state.

For example, Figure 1 shows a snippet of code taken from the

deepmind/pysc2 project
1
, where the program behavior diverges

at the last shown line. The middle part of the figure gives the

trace obtained by executing the buggy code, while the right part

shows the trace the developer intends the program to produce. The

difference is in the state produced at the divergence point: Instead

of storing [88, 89, 90, 91, 92] in variable ports, the desired
state is that ports has the value [88, 89, 90, 91].

Automated program repair has made impressive progress in

fixing programming mistakes over the past few years [31], and

learning-based approaches are shown to be the current state of the

art [10, 15, 36, 69]. However, none of these approaches considers

runtime behavior, such as a partial execution trace or the desired

state, as an input to the approach. Instead, many repair approaches

validate candidate repairs against test cases of the expected behavior

as a post-processing step after predicting fix candidates [10, 30,

36, 60, 68] or use tests as feedback for repair predictions [65]. As

illustrated by the example in Figure 1, determining the intended fix

without knowing what state the program should reach is clearly

difficult. Providing such information to a learning-based repair

technique hence offers an opportunity to further improve their

effectiveness.

This paper presents TraceFixer, the first learning-based program

repair technique guided by execution traces. By analogy to the

human way of debugging, our approach considers a program’s ex-

ecution trace alongside its code. The inputs to the approach are

the source code of a buggy program, an excerpt of the execution

trace produced by this program, and the desired state at the diver-

gence point. Given these inputs, the approach predicts a variant

of the code that produces the desired trace. TraceFixer is enabled

by a neural model that reasons about both code and corresponding

execution traces to predict the proper fix.

In the example of Figure 1, TraceFixer starts by instrumenting

and executing the program using, e.g., inputs provided by a user or

a test case. The result is an execution trace, as shown in the middle

part of the figure. Based on this execution, the developer determines

the divergence point and gives the desired state of the program at

this point. For the example, the developer indicates that the last

shown line is the divergence point, and that the ports variable

should have the value [88, 89, 90, 91]. Given the incorrect

code, its execution trace, and the desired state, TraceFixer predicts

how to fix the code by suggesting to replace the last shown line

1
https://github.com/deepmind/pysc2/commit/803de8a0f707efc3967fde683836c202c73215af
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# some code before
while True:
     start_port = portpicker.pick_unused_port()
     ports = [start_port + p for p in range(5)]

Buggy code Trace

ENTER_WHILE while True: 
start_port = 88 
ports = [88, 89, 90, 91, 92]

ENTER_WHILE while True: 
start_port = 88 
ports = [88, 89, 90, 91]

Desired trace

Figure 1: Example of a buggy program with corresponding execution traces.

with ports = [start_port + p for p in range(4)]. Indeed,
with this fix, the program will produce the desired state.

Creating a trace-guided neural repair approach leads to two

key challenges not addressed in prior work. (C1) First, since our

approach is data-driven, we need an extensive dataset that consists

of pairs of buggy code and the corresponding correct code, along

with execution traces of their behavior. (C2) Second, we need to

identify a suitable neural model and an effective format for feeding

the different input modalities–buggy code, execution trace, and

desired state–into the model.

TraceFixer addresses challenge C1 through a neural bug injection

model that creates hundreds of thousands of realistic bugs from

code with existing test cases. Inspired by the success of existing

neural approaches to generate bugs [4, 39, 41], we train a neural bug

injection model for Python that mimics single-line bugs observed to

occur in the wild [27]. To address challenge C2, TraceFixer provides

an input formatting module that represents the different modalities

in a way that is compatible with popular sequence-to-sequence

models, allowing us to build upon a strong pre-trained model [58].

Our evaluation applies TraceFixer to single-line bugs in Python.

We inject hundreds of thousands of realistic bugs into two large-

scale datasets of executable programs and then train the repair

model to fix these bugs. Once trained, the model successfully repairs

57%–63% of the bugs with its top-most suggestion, and 82%–87% of

the bugs within the top-10 suggestions. Out of a set of 20 real-world

Python bugs, TraceFixer successfully fixes 10. Finally, we compare

our approach with a neural baseline model that, similar to prior

techniques [10, 15, 36, 69], learns only from code but not runtime

information, and find that TraceFixer improves upon the state of

the art by 13% to 20%.

While practical techniques for finding the divergence point and

obtaining the traces provided to TraceFixer are beyond the scope

of this paper, we envision at least two ways of using our approach

in practice. First, we believe that appropriate tool support will

make it relatively easy for developers to provide this information

when they are anyway localizing a bug. For example, an interac-

tive debugger that allows developers to step through their code

and inspect runtime values could provide an option for marking a

specific value as wrong and for providing the correct value instead.

Second, the divergence point and traces could be gathered auto-

matically with existing fault localization techniques [62] applied

to test cases that expose the problem, which generate-and-validate

repair techniques [31] commonly assume to exist.

In summary, this paper contributes the following:

• An automated repair technique that learns not only from

source code but also from runtime traces and information

about the state a program should reach.

• A neural repair model enabled by learning from a large-

scale set of automatically injected bugs and a novel input

formatting that feeds different modalities into a sequence-

to-sequence architecture.

• Empirical evidence that considering execution traces im-

proves the bug-fixing abilities of the approach and that Trace-

Fixer is effective for real-world Python bugs.

2 APPROACH
In this section, we present our data-driven, deep learning-based

automated program repair approach called TraceFixer. We start

by defining the problem we address (Section 2.1), then give an

overview of the approach (Section 2.2), and finally explain its dif-

ferent components in detail (Sections 2.4 to 2.7). We also give a

preliminary background in Section 2.3

2.1 Problem Definition
TraceFixer reasons about executions of programs, which we repre-

sent as a sequence of states:

Definition 2.1 (State). The state 𝑠 at a point during the execution

of a program 𝑝 is a list of pairs (𝑛, 𝑣) where the 𝑛 is the name of a

variable available in the current scope during the execution of 𝑝

and 𝑣 is the value that 𝑛 refers to.

We consider both primitive values, e.g., integers and strings,

and non-primitive values, e.g., a list or an instance of a class. The

approach focuses on the state in the program’s main memory and

ignores any other state, such as the state of the file system, the state

reachable via the network, or the state of another process.

During execution, a program transfers from one state to another.

We represent these transfers in an execution trace:

Definition 2.2 (Execution trace). The execution trace of program 𝑝

is a pair (𝑠𝑖𝑛𝑖𝑡 , 𝐸), where 𝑠𝑖𝑛𝑖𝑡 is the initial state and 𝐸 is a sequence

of events observed starting from the initial state. Each event in 𝐸 is

a pair (𝑙𝑖 , 𝑠𝑖 ) where 𝑙𝑖 is an executed line of code in 𝑝 , and 𝑠𝑖 is the

state after executing the line.

The full execution trace until triggering a bug may consist of

many more events than a developer would typically inspect when

reasoning about an incorrect execution. Instead of considering the

full execution trace starting at the first executed line of the program,

the initial state in a trace may be any point in the program’s execu-

tion. In our evaluation, we consider traces with up to three events.

If the line 𝑙𝑖 captured in an execution trace involves a function call,

then we include the return value of the call (if any) as part of the

state 𝑠𝑖 .
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Figure 2: Overview of TraceFixer approach.

The usage scenario of TraceFixer is that a developer identifies

the point during an execution where the actual and the intended

execution start to diverge:

Definition 2.3 (Divergence point). Consider two traces (𝑠𝑖𝑛𝑖𝑡 , 𝐸)
and (𝑠 ′

𝑖𝑛𝑖𝑡
, 𝐸 ′)with𝐸 = [(𝑙1, 𝑠1), ..., (𝑙𝑘 , 𝑠𝑘 )],𝐸 ′ = [(𝑙 ′

1
, 𝑠 ′
1
), ..., (𝑙 ′

𝑘
, 𝑠 ′
𝑘
)],

𝑙𝑖 = 𝑙 ′
𝑖
and 𝑠𝑖 = 𝑠 ′

𝑖
for all 𝑖 < 𝑘 , but 𝑙𝑘 ≠ 𝑙 ′

𝑘
or 𝑠𝑘 ≠ 𝑠 ′

𝑘
. That is, the

traces are equal except for the last event, where either the line that

gets executed, what state is reached after executing the line, or

possibly both differ. The last event in the two traces is called the

divergence point.

Once a developer has identified a divergence point, e.g., while

stepping through a program using an interactive debugger, the

problem addressed in this paper is how to fix the incorrect code:

Definition 2.4 (Trace-guided repair problem). Given a buggy piece

of code 𝑐 , a trace 𝑡 produced by this code, and a state 𝑠 that is the

desired state of the program at the divergence point, the problem is

to predict the fixed code 𝑐 ′ that, if executed, will yield a trace that

differs from 𝑡 only by reaching state 𝑠 .

2.2 Overview
Our approach to addressing the abovementioned problem consists

of four main steps represented in Figure 2. (i) Bug Injector. The
first step is specific to the training phase. In every deep learning-

based application, having a training dataset is crucial. In our case,

we first need a dataset composed of pairs of buggy code and the

corresponding correct code. Therefore, we design a neural bug

injector: given a correct code and a location, this step injects bugs by

modifying the code at the given location. We leverage a pre-trained

seq2seq model, which receives a correct program with the injection

location (target line) as input and outputs the buggy version of

the target line. At a high level, this step can be thought of using

a seq2seq model in the reverse manner of neural bug fixing [8].

The injector further replaces the target line in the correct program

with the generated buggy line. (ii) Code Execution and Tracing.
Once we have pairs of correct and buggy code, we instrument and

execute them to get their execution traces. In the training phase,

the approach extracts the divergence point and the desired state

from these traces. In the prediction phase, the developer directly

provides this information. (iii) Input Formatter. The buggy code, the

trace of the buggy code, and the desired state will be passed into a

neural model. To this end, we format the different data modalities in

a way suitable for seq2seq architectures. (iv) Deep Learning Model.
In the final step, we train a neural model to fix the buggy code and,

once trained, use the model to predict the fix for previously unseen

bugs.

2.3 Preliminary
Transformer-based sequence-to-sequence model. In recent

years, Transformer based sequence-to-sequence (seq2seq) mod-

els have been applied to code editing tasks [1, 8, 15, 58, 66]. The

model contains an encoder and a decoder, and both are built based

on a stack of Transformer layers [55]. The encoder summarizes

the information of the input sequence, and a decoder generates

the new token sequences based on the output of the encoder. The

decoder predicts the new sequence left-to-right, token by token.

Every token is generated conditioned on both the encoded input

and the generated prefix (i.e., left tokens already generated in the

previous time steps). The model’s input is the flattened sequence

of a program, and the expected output is the edited code so that

the model will learn how to change the input to match the ground

truth during training.

CodeT5. CodeT5 [58] is a state-of-the-art pre-trained seq2seq

model for source code. The pretraining is done across different code-

generation tasks, including code summarization, code generation,

and code refinement. The code refinement task is the most related

task to our work: it randomly masks code tokens of the input

with a special token <MASK>, and trains the model to predict the

masked tokens back. Conceptually, this task teaches the model

to edit the code, which can potentially assist with our proposed

models to inject or fix bugs. CodeT5 is pre-trained with millions

of samples with more than 100 epochs. With such an effective

pretraining, it reports promising results in both code understanding

and generation tasks. In addition, CodeT5 provides two model sizes

in the original paper: small and base. The former has six layers of

transformers for both encoder and decoder, while the latter has 12

layers for both encoder and decoder.

Byte-pair Encoding. The vocabulary for source code is essen-

tially open-ended since developers could name identifiers with any

preferred combination of words or introduce new words that are

not part of any natural language’s vocabulary [28]. To train a neural

network on source code, however, we need a fixed length of vocab-

ulary [23] while minimizing the out-of-vocabulary cases. Byte-pair
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encoding (BPE) was initially applied to address the rare words issue

in neural machine translation [51]: the algorithm splits the rare

and unknown words into sub-words already part of the vocabulary;

in the worst case, a complicated word will be split into characters.

Similarly, we apply BPE to address the out-of-vocabulary issue of

source code in our models: the common code tokens, such as key-

words, will be encoded as single tokens, while the complicated code

tokens will be split into common sub-tokens in the vocabulary.

2.4 Bug Injection
To train a neural model to repair bugs, first, we need a dataset

composed of the buggy and correct code pairs. The dataset should

be large enough to enable effective learning by a neural model. Each

buggy and correct code pair in the dataset should be executable to

allow gathering traces. Last but not least, the injected bugs should

resemble real-world bugs. To this end, we use a neural bug injection

technique, motivated by the success of existing neural approaches

to generate realistic bugs [4, 39, 41].

The backbone of our tool is a Transformer-based, sequence-to-

sequence (seq2seq) neural network. To save the training efforts and

ensure the code generation quality, we initialize our neural network

with CodeT5-small [58], which has been trained on millions of

code samples with a code refinement task, so it already has good

knowledge about how to edit code. Consequently, loading it as

the initial model can help our neural bug injector converge faster

during training and generate more valid programs than random

initialization.

We use the PySStuBs dataset [27] to train the neural bug injector.

This dataset contains samples with both buggy and patched ver-

sions, and we build the model input with the patched version while

the ground truth is the corresponding bug. Consequently, we train

the neural model to inject bugs by reversing the bug-fixing process.

Furthermore, we ignore the samples that cannot be checked out

due to the invalid commit or file hashes, and we do not consider the

files written with Python2. We end up with 47,314 valid samples;

we split them into 95% and 5% portions for training and tuning

parameters, respectively.

The workflow of the bug injector is shown in Figure 3. The first

step of the tool is to create the input for the neural model based

on a correct program and a target line at which to inject bugs.

The correct program will be a patch in the PySStuBs dataset, and

the target line is the changed line when fixing the corresponding

bug. The bottom-left of Figure 3 shows an example of the model

input, where log.log_open(logFile, startTime) is the target
line. To ensure the model performance, we design the model input

following the state-of-the-art neural code editor, Modit[8], where

we extract the line to be edited from the program and prepend it

at the beginning of the input sequence. We use special tokens to

split the target line and its contexts so the model will know their

positions. To further indicate the original location of the target line

and align with the design of the pretrained CodeT5, we fill that

location with a placeholder token, <MASK>.
Given the model input, the second step is to train the seq2seq

model to predict the buggy version of the target line. During train-

ing, the model will be fed with a ground-truth bug, and the model

learns to construct the bug left-to-right, token-by-token. Later, we

replace the <MASK> in the input with the model prediction to gen-

erate the buggy program.

2.5 Execution and Tracing
Since our approach is based on program repair using traces, getting

those traces is essential and required in both the training and the

prediction phase. For that, we instrument the target code and then

execute it. Our instrumentation targets the line level, meaning that

we collect the program state after executing every line of codewhich

matches definition 2.2. However, we limit the instrumentation and

the collected trace to a specific scope. In our case, the scope is

usually one function or a sequential script consisting of one file.

We intentionally do not trace subsequent calls to other functions or

modules, mimicking a developer who steps through the execution

of a function without stepping into callees. In the case of a return

statement, we copy the value of the returned variable before it

is returned, and we copy the new state if the return expression

changes it.

When collecting the traces, we save the printable string of all

variables in scope in a format similar to the one of definition 2.1.

For example, if at some point of execution we have primes = [2,
3, 5, 7, 11], the saved state related to the variable primeswould
be [("primes", "[2, 3, 5, 7, 11]")]. Saving the evaluation

of the variable "primes" as a string is easy because the printable

string of the variable primes matches the value that a developer

cares about, which is, in this case, the list of numbers themselves.

Unfortunately, not all variables are printable like primitive types

and standard data structures. For that, if the value of a variable

is not a primitive type or a standard data structure, we inspect

the object referred to by the variable. We collect the values of all

printable attributes of that object. For example, after this line of

code: rectangle = Rectangle(2, 5), the variable rectangle
will refer to an instance of the class Rectangle, which has two at-

tributes: width and height. The state of the program after that line

would be [("rectangle.width", "2"), ("rectangle.height",
"5")]. In the case where there are no printable values when in-

specting the attributes of an object, we show the type of the variable.

For example, if the variable rectangle has no printable attributes

then the trace of the line rectangle=Rectangle(2, 5) would be

[("rectangle", "instance(Rectangle)")].
In the following, we describe the flow of instrumentation and

execution to get the traces.

Training phase. We need the traces of both buggy programs

and their corresponding correct version for the training. Given a set

of pairs (buggy program 𝑝, fixed version 𝑝 ′), we first start
by filtering out syntactically incorrect code. Next, we instrument

the code of both 𝑝 and 𝑝 ′to get the traces on a line level as defined

in Definition 2.2. Then, we execute the instrumented programs

while automatically excluding programs terminated with a run-

time exception as it is out of the scope of our approach since we

are interested in divergence points caused by the difference in the

value of the program’s state as defined in Definition 2.1. Finally, we

compare the trace of each successfully executed buggy program to

the trace of its correct version to keep only the buggy programs

having a trace that has a divergence point from the trace of the

correct version. In some programs, the traces are non-deterministic,
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Figure 3: Workflow of bug injection.

e.g., due to the existence of a variable or expression that depends

on a random generator or a variant factor (like time). To determine

those non-deterministic traces, we execute the original correct code

(of the program 𝑝 ′) using the same test case at two different times-

tamps. If the two executions produce different traces, we consider it

non-deterministic and drop it. We drop non-deterministic instances

because the trace between the original and buggy codes might differ

because of that random statement, even if it is not the bug’s location.

After getting the correct and buggy code trace, we determine the

point of divergence by doing a diff between the two traces (correct

and buggy). The first location of difference is considered to be the

point of divergence. The program’s trace ends at the determined

point of divergence, and any collected trace after that point is re-

moved. At the end of this step, we get a list of data points (buggy
trace 𝑡, desired state 𝑠, buggy code 𝑐, correct code 𝑐 ′).
To get the desired state, we first locate the point of divergence and

copy the state of the correct program at the point of divergence,

which becomes the desired state.

Prediction phase. In this phase, the developer executes their

code and gets the traces. Then, upon inspecting the trace, the de-

veloper locates the divergence point and gives the corresponding

desired state. At the end of this step, we get a prediction data point

(buggy trace 𝑡, desired state 𝑠, buggy code 𝑐).

2.6 Constructing and Formatting Input
After getting the traces of the programs, we construct the input

data for the neural model. The input formatting module takes a

data point and then transforms it into a format compatible with

the model’s input layer. Similar to most previous work on program

repair [31], we assume that the location where the code needs to

be fixed is known, as this location can be obtained via existing

techniques [62].

Definition 2.5 (Formatted data point). a formatted training data

point is a pair (source, target) where the source is the input

given to the model, and the target is the ground truth for what the

model should predict. The input source and target are defined as

follows:

• Source: concatenation of the following modalities separated

by the special tokens (< .. >).

– <BUGGY_LINE> the buggy target line 𝑙𝑏
– <INITIAL_STATE> initial state 𝑠𝑖𝑛𝑖𝑡 of the program 𝑝

– <LINE> executed line of code <STATE> the programs state

– <DESIRED_STATE> the desired or expected correct state

– <CONTEXT> source code of the program

• Target:

– <START> the fix of the given buggy line <END>

In prediction phase, a data point consistent of source only. We

construct the formatted data point from elements in the data point

resulting from step two.

Figure 4 shows an example of the input format that follows the

format of definition 2.5, including the different modalities. The

special separators <..> inserted between the modalities are in bold

text. The red dashed line surrounds the buggy line, while the green

dashed line delimits the program’s state, followed by the desired

state below (blue dashed lines). We also provide the context as the

last modality. In the example of Figure 4, we represent and give the

model the last three states of the buggy code trace. The trace size

in terms of the number of states is a configurable parameter in our

approach, and it represents the number of traced lines before the

divergence point (included). Furthermore, we only include variables

that get changed from one state to another. For example, we did not

mention the variable start_port in the last state because there

was no change in its value from the second state to the last one.

All the input modalities together form the source input. The other

part is the target delimited by the start and end tokens. The target

is the ground truth used to evaluate the model’s prediction.

2.7 Deep Learning Model
Once we format the input, we tokenize it using BPE tokenizer (ex-

plained in section 2.3). The BPE tokenizer has an encoding function

that encodes a string into a list of tokens Ids. A token Id is a number

that uniquely encodes and designates a token in the vocabulary

of the BPE tokenizer. Figure 4 shows the first tokens Ids resulting

from encoding the source input through BPE tokenizer. The BPE
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Prediction

Sequence-to-sequence model

    <BUGGY_LINE>\tports=[start_port + p for p in range(5)] 

  <INITIAL_STATE> portpicker=instance(PortPicker)

  <LINE>while True:
  <STATE>
  <LINE>\tstart_port=portpicker.pick_unused_port()
  <STATE>start_port=88
  <LINE>\tports=[start_port + p for p in range(5)]
  <STATE>ports=[88, 89, 90, 91, 92]
  
  <DESIRED_STATE>ports=[88, 89, 90, 91]

  <CONTEXT> code of the buggy program 

<START>\tports=[start_port+p for p in rnage(4)]<END>

List of tokens Ids

BPE Tokenizer

Source

Trace

Buggy  
line

Desired 
state

<START>\tports=[start_port+p for p in range(4)]<END>

Target
Ground 
Truth

{'input_ids': [1, 32, 4827, 20564,...]}

{'output_ids': [1, 32, 7570, 34, 202,...]}

BPE Decoder

Compare

Figure 4: Example of input/output format of the neural model (<..> denote special tokens).

tokenizer also has a decoding function that decodes a list of tokens

Ids into a string, as shown in the example of Figure 4.

After tokenization and encoding, the final step in our approach

is training the neural model. Our model is a sequence-to-sequence

Transformer based on CodeT5, explained in section 2.3. At each

training step, the model receives a batch of data points, predicts

the corresponding fixes and gets evaluated against the ground

truth targets by calculating the loss and then updating the weights

accordingly. Given a prediction data point, the model outputs a

sequence of tokens Ids, which the BPE then decodes to construct a

string corresponding to the predicted fix.

3 EVALUATION
To evaluate the approach, we address the following research ques-

tions:

• RQ1: How effective is TraceFixer at fixing bugs?

• RQ2: How does TraceFixer compare to a baseline approach

that takes only the code, but no traces, as its input?

• RQ3: How effective is a multi-task model trained to handle

both trace-guided repair and code-only repair?

• RQ4: How does the effectiveness of TraceFixer vary across

different types of bugs?

3.1 Experimental Setup
3.1.1 Datasets. We use three existing datasets that offer real-world

code and bugs in Python.

PySStuBs. This dataset [27] is an extensive collection of single

statement bugs in popular open-source Python projects. We use

this dataset in two ways. First, we train the bug injector described

in Section 2.4 on the PySStuBs bugs. Second, we sample 20 bugs

from PySStuBs to assess whether TraceFixer can fix real-world bugs.

The reason for focusing on 20 bugs is that we have to manually set

up executable tests that trigger each bug. The setup is non-trivial

as each project in PySStuBs has its own requirements and many

are no longer compatible with the latest versions of packages and

even Python. We made sure these 20 bugs do not overlap with the

training dataset.

CodeNet. This dataset [48] is a set of algorithmic challenges

where participants try to solve a particular problem and submit

their code to the platform to get automatically evaluated against

test cases. We use 3,200 problems, where we take three submissions

from each problem, adding up to 9,600 different programs. Since the

CodeNet dataset does not provide buggy versions of the programs,

we automatically inject bugs (Section 2.4). For each program, the

bug injector injects three different bugs at every line of code, which

yields 850K buggy programs. Following the steps described in Sec-

tion 2.5 we end up with 103K data points. We keep 500 of them for

testing and use the rest to train the neural model.

TheAlgorithms. This dataset2 is a collection of programs that

solve algorithmic problems, along with test cases to validate their

correctness. The problems cover various domains, such as arith-

metic and algebra, neural networks, and web programming. Similar

to the CodeNet dataset, we inject bugs into the given programs with

a rate of five variants per line, which yields 120K buggy programs.

From the resulting 8.5K datapoints, we keep 300 for testing and use

the rest for training.

3.1.2 Metrics. Wemeasure the effectiveness of TraceFixer by check-

ing if the suggested fixes match the known ground-truth fixes. A

suggested fix counts as correct if and only if it exactly matches

the ground truth, except for unnecessary whitespace. Similar to

2
https://github.com/TheAlgorithms/Python
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prior work on learning-based repair [10, 36], we query the model

to produce multiple fix suggestions using beam search. We report

how often the model finds the correct fix among the unique top-k

suggestions, or short UTOPk. The UTOPk metric is a variant of

the usual top-k accuracy that ignores duplicate predictions and

keeps querying the model until we find k unique fix suggestions.

To determine duplicates, we first start by removing unnecessary

tokens from the predicted line of code. For example, a = a + 1 and
a=a+1 are duplicates because the only difference is unnecessary

whitespace.

3.1.3 Baseline. The key contribution of this work is to introduce

execution traces into learning-based repair. To assess the bene-

fits of this idea, we compare TraceFixer to a baseline model that

takes only the buggy source code as its input, called Code-only.
Conceptually, this model follows the source code-only, sequence-

to-sequence approach proposed in recent learning-based repair

techniques [8, 10, 36]. We implement the baseline as a stripped-

down variant of TraceFixer, which differs from the full TraceFixer

approach only by not receiving any execution traces as the input.

This code-only setting is similar to prior work, MODIT [8]—both

use similar input formatting. A possible alternative would be to

compare to the implementation of prior code-only repair techniques

directly. We decided against that setup (i) because prior tools focus

on Java instead of Python and (ii) because it would bias the results

due to details of the techniques that are not directly related to the

question of whether traces are helpful for learning-based repair.

3.1.4 Implementation and Hardware. We implement the different

components of TraceFixer into a Python-based tool. To instrument

and collect traces, we use Python standardmodules such as SetTrace

and Inspect alongside other community packages like beeprint.
3

The neural models are based on CodeT5-small shared through hug-

ging face api.
4
. We conduct our experiments on two GPU machines.

The first machine is equipped with an NVIDIA Tesla P100 (16GB),

while the second has an NVIDIA Tesla V100 (32GB). To save time,

we split our experiments across the two machines, which allows us

to train one epoch in about 2.5 hours on the first machine and in

about 1.5 hours on the second machine.

3.2 RQ1: Bug Fixing Effectiveness
To investigate the effectiveness of TraceFixer in program repair, we

evaluate our approach on three different datasets: CodeNet, TheAl-

gorithms and 20 real bugs sampled from PySStuBs. For the CodeNet

and TheAlgorithms datasets, we finetune a separate CodeT5-small

model for each dataset and then evaluate on a held-out test set from

the same dataset. To evaluate TraceFixer on the 20 real bugs, we

use the model trained on CodeNet.

The results of the evaluation on the test sets are shown in Table 1.

The table shows that TraceFixer achieves high accuracy across the

three setups. For example, considering only the top-most prediction

by the model fixes 63%, 57%, and 10% of the bugs, while the predic-

tions in the UTOP10 contain correct fixes for 87%, 82%, and 50% of

all bugs. The fixing accuracy is the lowest on the set of real bugs,

which we attribute to three reasons. First, the model is trained on a

3
https://github.com/panyanyany/beeprint

4
https://huggingface.co/Salesforce/codet5-small

different dataset (CodeNet) and then applied to the real-world bugs,

which may cause a shift of distribution [21]. Second, the real bugs

are extracted from open-source projects that are more complicated

than the solutions to algorithmic problems in the CodeNet and

TheAlgorithms datasets. Finally, the real-world bugs occur in code

that calls other modules and functions within the same project or

other packages. In contrast, the CodeNet code mainly uses standard

Python functions and data structures.

For a more detailed look into the 20 real bugs, Table 2 shows all

of them alongside the fixes and the effectiveness of the model. We

can see that the TraceFixer is able to fix different kinds of problems,

including control flow-related bugs (e.g., example 4), data structure-

related bugs (e.g., examples 8 and 10), and various kinds of incorrect

expressions (e.g., examples 1 and 14). The cases in which TraceFixer

cannot find a fix often are due to the out-of-vocabulary problem [28],

such as in examples 2, 3 and 18. Out-of-vocabulary here means that

the fix requires some tokens that do appear neither in the provided

code nor the execution trace, and unless the model has seen such a

fix during training, it typically cannot predict the desired tokens.

Finding 1: Throughout the different evaluation setups, Trace-

Fixer effectively predicts the correct fix among the UTOP10 in

50%–87% of the cases.

3.3 RQ2: Comparison with Code-Only
Approach

The key contribution of TraceFixer is to use an execution trace and

the desired state as an additional input to a repair model. To assess

the impact of this contribution over prior work, we compare our

approach to the code-only baseline. Table 1 shows that across the

three evaluation setups, TraceFixer improves over the code-only

baselines in terms of UTOP K accuracy. For example, in the CodeNet

evaluation setup, TraceFixer improves with 13% over the UTOP 1.

Using three different datasets suggests that the improvement over

the code-only approach is independent of the dataset.

Being powered by the trace, our approach provides the model

with more information to fix the bug, which aligns with the analogy

of the developer’s way of debugging. While the code-only model

still performs well on the three evaluation datasets, it has limited

knowledge about the desired change and thus does not predict the

most likely fix in many cases. Our approach mitigates the limitation

of code-only models by adding traces and the desired states as data

modalities, thus giving more guidance to perform the repair task.

Figure 5 shows the Venn diagram of the overlap in the correctly

fixed instances between TraceFixer and code-only across the three

datasets. For example, the first part of Figure 5 shows that Trace-

Fixer predicts correct fixes among the UTOP10 for almost all the

instances that code-only can fix with UTOP10 predictions. Simi-

larly, only 2% of the TheAlgorithms test set is fixed correctly by the

code-only model and not fixed by TraceFixer. Finally, in the real

bugs, the set of fixed instances by the code-only model is strictly

included in the set of instances fixed by TraceFixer. In summary, our

approach fixes more than 97% of the instances that the code-only

baseline can fix across the three datasets. Of course, TraceFixer

fixes other instances that the code-only model cannot fix.
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Table 1: UTOPk accuracy on different datasets.

Dataset Models UTOP1(%) UTOP3(%) UTOP5(%) UTOP10(%)

CodeNet

TraceFixer 63 78 82 87
Code-only 50 65 69 78

TheAlgorithms

TraceFixer 57 75 77 82
Code-only 49 64 66 69

20 Real bugs

TraceFixer 10 25 30 50
Code-only 10 15 25 30

77%10%
1%

The entire
test set

TraceFixer 
UTOP10: 87%

Code-only 
UTOP10: 78%

12%

30%20%

The entire
test set

TraceFixer 
UTOP10: 50%

Code-only 
UTOP10: 30%

50%

CodeNet Dataset

TheAlgorithms Dataset

Real bugs set

67%15%
2%

The entire
test set

TraceFixer 
UTOP10: 82%

Code-only 
UTOP10: 69%

16%

Overlap

Overlap

Overlap

Figure 5: Overlap between TraceFixer and code-only fixed
instances across the three datasets (Venn diagram).

Finding 2: Throughout the different evaluation setups, Trace-

Fixer finds the correct fix more often than the code-only base-

line. Furthermore, almost all the instances (more than 97%)

fixed by code-only model are also fixed by TraceFixer

3.4 RQ3: Combining Trace-Guided and
Code-Only Learning

Multitask learning is a deep-learning training setup in which one

model learns to performmultiple tasks by training on data encoding

multiple tasks. The goal and intuition behind multitask learning is

that the model gains a better understanding by looking at the data

from different perspectives that reflect the specificity of the task.

More formally, the deep learning model trains to find an internal

representation or embedding of data that generalizes to both tasks.

There has been much work on multitask learning recently, and

it has many applications in computer vision, NLP and software

analysis.

In this experiment, we want to explore combining the baseline

approach with our approach in one model through the multitask

learning setup. Therefore, we use the CodeNet dataset for training.

The dataset comprises inputs without trace modality (code-only)

and inputs with trace modality (our approach). The two types of

inputs corresponding to the two tasks are distinguished using two

prefixes: <FFT> (fix from trace) and <FFC> (fix from code). When

querying the multitask model, we first pass a trace-based data point.

Then, if the model cannot fix the bug from trace-based input, we

pass the equivalent code-only data point. In other words, we ask

the model to fix from the trace. Then, if the predicted fixes are

incorrect, we ask the model again to fix from code only. Since the

multitask model performs twice the UTOPk for each query, we use

UTOPk with k in (2, 6, 10, 20) to ensure fairness with other unitask

models.

In Table 3, we compare the UTOPk accuracy of the multitask

model with the single-task models. The table shows a slight im-

provement of the multitask over our default TraceFixer. From one

side, we can understand that training in a multitask setup improves

overall performance. Conversely, we can see that code-only and

trace-based program repair can be complementary. The approach

can benefit from reasoning about the code only when the trace is

unavailable or does not help fix the code.

Finding 3: Training TraceFixer in a multitask setup, where the

model can use code-only mode or trace-based mode, improves

over the single-task variant of TraceFixer and encodes both

TraceFixer and code-only baseline in one model.
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Table 2: The list of 20 real bugs used in RQ2.

Id Buggy line Ground truth and Model’s prediction Project Correct?

1 num_lines = size_log_area / 2 GT/Model: num_lines = size_log_area // 2 MycroftAI Y

2 return ((x + y) == 1) * 1.0 GT: return 1 - abs(x + y - 1)

Model: return ((x + y) == 0) * 1.0

keras N

3 return rs.rand(3) GT: return rs.rand(3).tolist()

Model: return int(rs.rand(3))

pandas N

4 if not columns or len(columns) == 9: GT/Model: if not columns or len(columns) == 0: great-

expectations

Y

5 schedule_json["interval"] = query.

old_schedule

GT: schedule_json["interval"] = int(query.

old_schedule)

Model: schedule_json["interval"] = query.

new_schedule

redash N

6 step_size = step_size_scaling * n**(1/4.) GT: step_size = step_size_scaling / n**(1/4.)

Model: step_size = step_size_scaling * n**(1/2.)

pymc N

7 limit = parse_integer(request, "limit", 100) GT/Model: limit = parse_integer(request, "limit",

0)

matrix-

org/synapse

Y

8 ports = [start_port + p for p in range(5)] GT/Model: ports = [start_port + p for p in range(

4)]

deepmind/pysc2 Y

9 self._ports = _pick_unused_ports(1 + self.

_num_players * 2)

GT/Model: self._ports = _pick_unused_ports(self.

_num_players * 2)

deepmind/pysc2 Y

10 _transfer_block(src, dst.res4, ['4a'] + ['4b%

d' % i for i in range(1, 23)])

GT/Model: _transfer_block(src, dst.res4, ['4a'] +

['4b%d' % i for i in range(1, 24)])

chainer Y

11 return 0.5*(ts-bs) GT: return 0.5 - bs

Model: return 0.5*(ts+bs)

3b1b/manim N

12 self.stdinlogOpen = True GT/Model: self.stdinlogOpen = False cowrie Y

13 self.terminal.stdinlog_open=True GT/Model: self.terminal.stdinlogOpen=True cowrie Y

14 progress_total = self.parameter_depth * len(

self.http_methods) * (

2 + len(self.integration_response_codes) +

len(self.method_response_codes)) - 1

GT/Model: progress_total = self.parameter_depth *

len(self.http_methods) * (

2 + len(self.integration_response_codes) + len(

self.method_response_codes))

Miserlou/Zappa Y

15 outputs = outputs * num_units**0.5 GT: outputs = outputs / num_units**0.5

Model: outputs = outputs * num_units**0.5 / 2

Kyubyong/ trans-

former

N

16 drive_start = drive_letter(path) GT/Model: drive_start = drive_letter(start) numba Y

17 value = utils.force_type(gy[0].dtype, self.

value)

GT: value = utils.force_type(x.dtype, self.value)

Model: value = utils.force_type(gy[1].dtype,

value)

chainer N

18 output = tout.readlines() GT: output = tout.read().splitlines()

Model: output = list(tout.readlines())

salt N

19 join.shared_port = self._ports.pop() GT: join.shared_port = 0

Model: join.shared_port = self._ports.pop(0)

deepmind/pysc2 N

20 ret['changes']['interface'] = ''.join(diff) GT: ret['changes']['interface'] = '\n'.join(diff)

Model: ret['changes']['interface'] = (' ').join(

diff)

salt N
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Table 3: Accuracy of a multitask variant of TraceFixer com-
pared with single-task variants (CodeNet dataset).

Models UTOP2(%) UTOP6(%) UTOP10(%) UTOP20(%)

Multitask 71 86 88 90
TraceFixer 72 82 87 88

Code-only 64 73 78 85

Table 4: Accuracy of the approach on different bug types.

Bug type UTOP1 UTOP3 UTOP5 UTOP10

Arithmetic 75 85 90 90
Varmisuse 75 85 90 90
Functions 35 55 60 65

Data structures 80 80 80 80

Control flow 60 80 80 80

3.5 RQ4: Effectiveness Depending on the Kind
of Bug

In this experiment, we want to explore further how well the ap-

proach performs on different kinds of bugs. For that, we first cat-

egorize the test data sampled from CodeNet data into five cate-

gories. Arithmetic bugs are instances where a numeral operand

or operator is wrong in an arithmetic expression, e.g., speed =
distance * time instead of speed = distance / time. The
Varmisuse category represents bugs where the wrong variable is

used in a statement. For example, row 16 of Table 2 represents

an example of a varmisuse bug. The category Functions include

missing function call on an expression, calling the wrong func-

tion, or calling a function incorrectly. For example, in the follow-

ing code: graph = sorted(graph.items()), the function sorted

is called in the wrong way because it is missing the initializa-

tion of the argument key, and thus the code should be: graph =
sorted(graph.items(), key=lambda x:len(x[1])). The bugs
related to data structures comprise bugs where a data structure

is wrongly manipulated, for example, list.push(0) instead of

list.pop(0). Finally, control flow bugs occur in control flow state-

ments such as if, for and while. Each category has 20 instances.

The second step in our experiment is to use the model trained on

the CodeNet dataset to evaluate each category. Similar to previous

experiments, we calculate UTOP k for each category where k is 1,

3, 5, or 10.

Table 4 summarizes the model’s performance across the five

categories. The model performance on different categories is close

to the overall performance of TraceFixer except for the Functions

category. The drop in performance on the Functions category is

mainly because of the trace’s lack of guidance to perform the proper

fix. In the previous example, adding the key argument will change

the sorting key of the elements of a list or iterable. The sorting is

based on the values of the second element of each tuple in a list of

tuples. In the end, the difference between the divergence state of

the code and the desired state is the order of elements in the list

which is difficult to translate into the addition of the specific new

tokens: key=lambda x:len(x[1]).

Finding 4: Our approach is effective across different kinds of

bugs. It is still challenging for TraceFixer to fix bugs where the

edit requires out-of-vocabulary tokens or needs documentation

on how to use a specific function or API.

3.6 Threats to Validity
Generalization to other languages. Our approach by design

is independent of the target programming language. However, our

implementation is entirely in Python and for Python programs. We

targeted Python because there needs to be more work on Program

repair that evaluates on Python code. While our approach is un-

related to the specifications of any language, it is still interesting

to evaluate on other languages to investigate whether the same

results can be replicated.

Bug localization and tracing. Our approach works under the

hypothesis that the developer can localize the buggy line and give

the desired state at the point of divergence through debugging

or other tools. While there is work on localizing bugs, providing

the desired state is still an issue. It might take much work for the

developer to accurately provide the desired state in complicated

programs or programs manipulating large data structures.

4 RELATEDWORK
Traditional approaches to program repair. Program repair

and fixing has been extensively studied in the literature [17, 18, 38].

Traditional program repair often follows a pipeline of steps. It

starts with fault localization [29, 34, 50, 62, 64, 67], followed by

searching fix candidates based on various search strategies [25,

59, 61]. The fixes are then checked against correctness criteria

(e.g., executing tests). Generating fix candidates is often the most

expensive part as it requires searching in a combinatorial space

of the program fixes. While there exist strategies to reduce the

search space by limiting the fix templates, i.e., using only insertions,

deletions, or existing code snippets appeared in the program [20],

but it may not be expressive enough to represent the correct fixes.

TraceFixer automates the search process over the entire vocabulary
of the program space by producing fixes directly via an efficient

inference pass (using GPUs).

Learning-based program repair. Machine learning has been

widely used to localize bugs [3, 29, 33, 35, 49] and generate program

fixes [2, 6, 13, 15, 24, 49, 53, 66, 69], the two critical steps in auto-

mated program repair. In particular, to localize bugs, Lou et al. [35]

used tests coverage and employed a gated graph neural network on

ASTs of buggy code and test cases. DeepBugs [47] embeds single

expression to predict 3 types of bugs: swapped function arguments,

incorrect binary operator, and incorrect operand in a binary op-

eration. Li et al. [33] learns a convolution network based on the

code coverage, statement dependency, and stack traces to predict

bug locations. Qi et al. [49] exploits bug reports to localize bugs. To

generate repairs, Devlin et al. [12] and Vasic et al. [54] leverage a

pointer network to predict the fixes for a restricted set of bug classes.

DeepFix [19] learns an attention-based sequence-to-sequence net-

work to localize and generate fixes for C programs. Codit [6] learns

a tree-based network to better capture the structural changes for
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program fix. CoditT5 [66] pretrains a large language model to ex-

plicitly learn the general edit operations, and finetune it on three

downstream code editing tasks. Unfortunately, none of the exist-

ing program repair approaches consider dynamic program traces,

which provide an important hint to repair programs. As a result,

the class of bugs that TraceFixer can repair is much broader than

prior works.

Learning representations for programming tasks. With abun-

dant open-source software and computing power available, deep

neural networks have been broadly used to automate software de-

velopment processes [45]. Examples have these applications include

type inference [22, 43, 46, 63], program generation [5, 9, 11, 32], code

summarization [52, 56], bug/vulnerability detection [7, 14, 16, 42],

and code clone detection [14, 37, 44]. It has been shown that in-

corporating traces benefits learning program representations for

downstream applications that relies on understanding program

semantics [26, 40, 42, 43, 57]. We demonstrate that feeding the

trace divergence to neural networks can significantly improve its

effectiveness of repairing program bugs (3.2).

5 CONCLUSIONS
In this paper, we present TraceFixer, a new approach for learning-

based program repair that incorporates the execution trace into

the input of the deep learning model. The evaluation on multiple

datasets shows that TraceFixer is effective at fixing bugs, improves

over code-only baseline approaches, and allows to repair more real

bugs.
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