
Type Safety with JSON Subschema

ANDREW HABIB, TU Darmstadt, Germany

AVRAHAM SHINNAR, IBM Research, USA

MARTIN HIRZEL, IBM Research, USA

MICHAEL PRADEL, University of Stuttgart, Germany

JSON is a popular data format used pervasively in web APIs, cloud computing, NoSQL databases, and increas-

ingly also machine learning. JSON Schema is a language for declaring the structure of valid JSON data. There

are validators that can decide whether a specific JSON document is valid with respect to a schema. However,

validators cannot show that all documents valid under one schema are also valid under another schema. This

paper presents a technique to address this limitation: JSON subschema checking, which can be used for static

type checking with JSON Schema. Deciding whether one schema is a subschema of another is non-trivial

because of the richness of the JSON Schema specification language. Given a pair of schemas, our approach

first canonicalizes and simplifies both schemas, then reasons about the subschema question on the canonical

forms, dispatching simpler subschema queries to type-specific checkers. We apply an implementation of our

subschema checking algorithm to 8,548 pairs of real-world JSON schemas from different domains, demonstrat-

ing that it can decide the subschema question for most schema pairs and is always correct for schema pairs

that it can decide. We hope that our work will bring more static guarantees to hard-to-debug domains, such as

cloud computing and artificial intelligence.

1 INTRODUCTION
JSON (JavaScript Object Notation) is a data serialization format that is widely adopted to store

data on disk or send it over the network. The format supports primitive data types, such as

strings, numbers, and Booleans, and two possibly nested data structures: arrays, which represent

lists of values, and objects, which represent maps of key-value pairs. JSON is used in numerous

applications. It is the most popular data exchange format in web APIs, ahead of XML [21]. Cloud-

hosted applications also use JSON pervasively, e.g., in micro-services that communicate via JSON

data [17]. On the data storage side, not only do traditional database management systems, such

as Oracle, IBM DB2, MySQL, and PostgreSQL, now support JSON, but two of the most widely

deployed NoSQL database management systems, MongoDB and Cloudant, are entirely based on

JSON. Beyond web, cloud, and database applications, JSON is also gaining adoption in artificial

intelligence (AI) [13, 24].

With the broad adoption of JSON as a data serialization format soon emerged the need for a

way to describe how a JSON document should look. For example, a web API that consumes JSON

data can avoid unexpected behavior if it knows the structure of the data it receives. To describe a

JSON document, JSON Schema allows users to declaratively define the structure of nested values

(documents) via types (schemas) [19]. We adopt the value space definition for type as being a set of

possible values [18]. A JSON Schema validator checks whether a JSON document d conforms to a

schema s , denoted d : s . There are libraries with JSON Schema validators for many programming

languages, and they are widely used to make software more reliable.

Since these d : s validation checks happen at runtime, they can usually only detect problems

late during deployment and production. In cloud applications, a wrongly-structured document

can cause hard-to-debug failures, it may go unnoticed and simply cause undesired behavior, or

even worse, it may exploit a security vulnerability. In AI, a machine learning pipeline is a graph of

Authors’ addresses: Andrew Habib, TU Darmstadt, Germany, andrew.a.habib@gmail.com; Avraham Shinnar, IBM Research,

USA, shinnar@us.ibm.com; Martin Hirzel, IBM Research, USA, hirzel@us.ibm.com; Michael Pradel, University of Stuttgart,

Germany, michael@binaervarianz.de.

1

ar
X

iv
:1

91
1.

12
65

1v
2

 [
cs

.P
L

]
 1

8
M

ay
 2

02
0

sc tc

s t

canonicalize
and simplify

check if <:

canonicalize
and simplify

check if <:

sc1

scn
…

tc1

tcn

…

extract
fragments

check if <:

check if <:

extract
fragments

Fig. 1. Overview of JSON subschema checker.

operators for preprocessing and prediction [8]. Any mismatch between training data and a pipeline,

between production data and training data, or between data in adjacent steps of a pipeline can

cause crashes or poor predictive performance [7]. Sometimes, dynamic data validity checks of the

form d : s only trigger after earlier pipeline steps have already performed costly computations.

Given how essential dynamic d : s checks are, we argue that JSON schemas could be even more

useful if they were also checked statically. The quintessential static property is whether one schema

is a subschema of another. We say that a schema s is a subschema of a schema t , denoted s <: t , if all
documents that validate against s also validate against t . Subschema checks of the form s <: t can
find the same mistakes as dynamic schema validation, but with less wasted compute and human

time, as they can statically rule out entire classes of errors.

JSON subschema checking has various practical applications, such as statically reasoning about

breaking changes of web APIs and type-checking machine learning pipelines before running

them. As one example, consider two independently evolving services that communicate over a

RESTful API, where both services, as well as the schema that describes the data they exchange,

are evolving [10, 16]. JSON subschema checking could detect a number of likely errors before

deployment by checking whether the schemas of the services remain compatible. As another

example, consider a machine learning pipeline where the data, as well as the input and output of

operations, are specified as JSON schemas [13, 24]. JSON subschema checking could type-check

the entire pipeline before running it, saving precious developer time caused by bugs that otherwise

may be detected only after hours of computation.

JSON schemas have several features that make subschema checking difficult. Schemas for primi-

tive types involve non-trivial features, such as regular expressions for strings and multipleOf for

numbers. Schemas for compound types involve uniqueItems constraints for arrays and regular

expressions for object property names. Furthermore, JSON schemas can be composed using schema

conjunction, disjunction, and negation, which requires handling of complex, compound types.

Finally, the enum type is entangled with other types, further exacerbating the above-mentioned

difficulties. As a result of these and other features of JSON Schema, a simple lexical check or a

structural comparison of JSON schemas is insufficient to address the subschema question.

This paper presents jsonsubschema, a formally described and fully implemented subschema

checker for JSON Schema. Figure 1 gives a high-level overview of our algorithm. To check whether

s <: t , the checker first canonicalizes and simplifies s to sc and t to tc. This preprocessing disentangles
different cases to consider during subschema checking, while preserving the schema semantics. Next,

our algorithm extracts corresponding fragments sci and tci . These fragments are type-homogeneous,

2

i.e., they refer to only one basic JSON type each. This homogeneity makes it possible to use separate

rules to check whether sci <: tci for each type.

Our algorithm is sound, i.e., whenever it gives an answer about the subtype relation of two given

schemas, then this answer is correct. In principle, the algorithm is incomplete, i.e., for some pairs

of subschemas, jsonsubschema refuses to answer the question whether one schema is a subtype

of the other. However, the approach handles various challenging cases, including almost all that

appear in practice. Our evaluation with 8,548 pairs of real-world JSON schemas shows that the

algorithm handles the vast majority of all pairs (94%) and that all the given answers are correct.

The most closely related prior work is an open-source project called is-json-schema-subset
developed concurrently with our work, but it only handles a small fraction of the features of JSON

Schema [12]. The problem of subschema checking has also been explored for XML, where it is called

schema containment [25]. However, that approach treats XML schemas as tree automata, which

has been shown to be insufficient for JSON schemas because JSON Schema is more expressive than

tree automata [19].

In summary, this paper makes the following contributions:

• A canonicalizer and simplifier that converts a schema s into a schema sc that is simpler to

check yet permits the same set of documents (Sections 4.1 and 4.2).

• A subschema checker for canonicalized JSON schemas that uses separate subschema checking

rules for each basic JSON type (Section 4.3).

• Empirical evidence on 8,548 pairs of JSON schemas taken from real-world applications in the

web, cloud computing, and AI.We show that the implementation of our algorithm successfully

answers the subschema question in most cases, and when it does, yields correct answers in

reasonable time (Section 6).

Our JSON subschema checker is available as open-source (link elided for double-blind review).

We also have plans for an artifact submission.

2 BACKGROUND
This section briefly describes JSON data and JSON Schema validation.

2.1 JSON Data
JSON was conceived as a light-weight, text-based, and programming-language agnostic data

interchange format [15].

Definition 2.1 (Jprimitive). The primitive JSON types are:

Jprimitive = {boolean, null, number, integer, string}

Besides primitive types, JSON has two structured types: ordered lists of values (arrays) and

unordered maps of key-value pairs (objects).

Definition 2.2 (Jstructure). The structured JSON types are: Jstructure = {array, object}

Definition 2.3 (Jtypes). The set of JSON data types is: Jtypes = Jprimitive∪ Jstructure

A valid JSON document (or value) is either a value of one of the basic types, or an array whose

elements are valid JSON documents, or an object mapping string keys to valid JSON documents.

Some examples of valid JSON documents include true, null, 5, 'ab', [], [1, 2, 3], [.5, {}, 'a'], and

{'foo':1, 'bar': [true,'']}.

Finally, JSON documents can use JSON references to point to data from the same or other JSON

documents. For example, the reference {'$ref':'#'} points to the root of the current document and

3

the reference {'$ref':'#/p/q}' assumes that the root is an object whose 'p' property is a nested

object and points to its 'q' property.

2.2 JSON Schema
JSON Schema is a declarative language for defining the structure and permitted values of a JSON

document [27]. JSON Schema itself uses JSON syntax. JSON Schema is an Internet Draft from the

Internet Engineering Task Force (IETF). It is continuously evolving, currently at draft-2019-09. This

work focuses on draft04 [11], one of the most widely adopted versions of JSON Schema.

To specify which data types are allowed, JSON Schema uses the keyword 'type' with one

type name or a list of type names. For example, schema {'type':'string'} accepts strings and

schema {'type':['null','boolean']} accepts null or Boolean values. Each JSON type has a set of

validation keywords that restrict the values a schema of this type permits. For example, the schema

{'type':'integer','minimum':0} uses the keyword minimum to restrict integers to be non-negative,

while schema {'type':'string','pattern':'^[A-Za-z0-9]+$'} uses the keyword patternwith a regular
expression to restrict strings to be alphanumeric. The upper part of Table 1 lists the set of keywords

associated with each JSON type along with their meta-schema. For example, string schemas

have a minLength keyword with a non-negative integer that defaults to 0. The meta-schema acts

similarly to a grammar in that it defines the syntax for schemas, while at the same time using and

thus illustrating a realistic JSON Schema use-case.

In addition to type-specific keywords, JSON Schema allows enumerating exact values with enum
and combining different schemas using a set of logic connectives (Table 1, lower part). For example,

schema {'enum':['a', [], 1]} restricts the set of permitted JSON values to the string literal 'a', an

empty array, or the integer 1. Logic connectives, such as anyOf, allOf, and not, allow schema

writers to express disjunctions, conjunctions, and negations of schemas. The empty schema, {}, is

the top of the schema hierarchy (all documents are valid for {}). The negation of the empty schema,

{'not':{}}, is the bottom of the schema hierarchy (no documents are valid for {'not':{}}. Finally, the

keyword $ref retrieves schemas using URIs and JSON pointers. JSON validation against a schema

with $ref has to satisfy the schema retrieved from the specified URI or JSON pointer. We refer the

interested reader to the full specification of JSON Schema [11] and its formalization [19].

Given a JSON document d and a JSON schema s , schema validation checks if d conforms to s .

Definition 2.4 (JValid(d, s)). For any JSON document d and any JSON schema s , JValid(d, s) →
{True, False}, also written d : s , decides whether d is valid with respect to s .

This decision problem JValid(d, s) is shown to be PTIME-hard [19] and solvable in linear time

when eliminating the uniqueItems keyword as it involves sorting. JSON validators have been

implemented in most major programming languages and are widely used in several domains.

3 PROBLEM STATEMENT
Given two schemas s and t , our approach tries to decide whether s is a subschema of t . This section
defines the subschema relation, gives concrete usage scenarios for it, and describes why deciding

the subschema question is non-trivial.

3.1 JSON Subschema
The goal of this work is to tell whether the set of documents that conform to schema s is a subset
of the set of documents that conform to schema t . We aim at answering this question without

enumerating all valid documents, and we call this question the JSON Subschema decision problem.

Definition 3.1 (JSubSchema <:). For any two JSON schemas s and t , the subschema relation,

denoted <:, is defined as: s <: t ⇐⇒
(∀d : JValid(d, s) =⇒ JValid(d, t)

)
4

Table 1. Overview of JSON Schema (version draft04).
null and boolean are basic types without keywords. $ref refers to another schema, and $ref:{'#'} points to the root of

the meta-schema, thus indicating a nested sub-schema. default:{} indicates the top schema, which validates for all values.

Description Keyword Meta-schema

Schemas for type string, e.g.,{type:'string',minLength:1,pattern:'[a-z]*'} :

Restrict length of the string minLength {type: 'integer',minimum:0, default:0}

maxLength {type: 'integer',minimum:0}

String must match a pattern pattern {type: 'string',format:'regex'}

Schemas for types number and integer, e.g.,{type:'number',minimum:0.0,multipleOf:0.1} :

Restrict range of values minimum {type: 'number'}

maximum {type: 'number'}

exclusiveMinimum {type: 'boolean',default:false}

exclusiveMaximum {type: 'boolean',default:false}

Must be a multiple of a given

value

multipleOf {type: 'number',minimum:0, exclusiveMinimum:true

}

Schemas for type array, e.g.,{type:'array',items:{type:'string'},minItems:1, uniqueItems:true} :

Restrict type of all items .. items {default:{}, anyOf:[{$ref:'#'},

.. or for each individual item {type:'array',minItems:1, items:{$ref:'#'}}]}

Restrict number of items minItems {type: 'integer',minimum:0, default:0}

maxItems {type: 'integer',minimum:0}

Allow items beyond those speci-

fied above

additionalItems {anyOf:[{type:'boolean'},{$ref:'#'}],default:{

}}

Enforce that items are unique uniqueItems {type: 'boolean',default:false}

Schemas for type object, e.g.,{type:'object',properties:{'a':{type:'string'},'b':{enum:[0,1]}}} :

Specify key-value pairs allowed

in the schema

properties {type: 'object',additionalProperties:{$ref:'#'},

default:{}}

Restrict number of properties minProperties {type: 'integer',minimum:0, default:0}

maxProperties {type: 'integer',minimum:0}

Names of properties that must

be present

required {type: 'array',items:{type:'string'},minItems:1

, uniqueItems:true}

Allow properties beyond those

specified above

additional-

Properties

{anyOf:[{type:'boolean'},{$ref:'#'}],default:{

}}

Restrict properties whose name

match a regular expression

pattern-

Properties

{type: 'object',additionalProperties:{$ref:'#'},

default:{}}

When one property is present,

enforce presence or type of an-

other one

dependencies {type: 'object',additionalProperties:{anyOf:[{

$ref:'#'}, {type: 'array',items:{type:'string'},

minItems:1, uniqueItems:true}]}}

Specifying types and combining schemas, e.g.,{'anyOf':[{'type':'string'},{'$ref':'#/some/type'}]} :

Restrict value to one type or to

an array of types

type {anyOf:[{$ref:'#/definitions/types'},{type

:'array',items:{$ref:'#/definitions/types'},

minItems:1,uniqueItems:true}]}

{definitions:{types:{enum:['boolean','null','

number','integer','string','array','object']}}}

Enumerate values enum {type:'array',minItems:1, uniqueItems:true}

Negation not {$ref:'#'}

Conjunction allOf {type:'array',minItems:1, items:{$ref:'#'}}

Disjunction anyOf {type: 'array',minItems:1, items:{$ref:'#'}}

Exclusive or oneOf {type: 'array',minItems:1, items:{$ref:'#'}}

5

{'type': 'object ',

'required ': ['type', 'address '],

'properties ': {

'address ': {

'description ': 'Node address ',

'type': ['string ', 'null']},

'type': {

'description ': 'Node address

type; one of Hostname ,

ExternalIP or InternalIP ',

'type': ['string ', 'null']}}}

(a)

{'anyOf ': [

{'type': 'object ',

'required ': ['type', 'address '],

'properties ': {

'type': { 'enum': ['ExternalIP ', 'InternalIP ']},

'address ': {

'type': 'string ',

'pattern ': '^\d+\.\d+\.\d+\.\d+$'}}},

{'type': 'object ',

'required ': ['type', 'address '],

'properties ': {

'type': { 'enum': ['Hostname ']},

'address ': {

'type': 'string ',

'pattern ': '^[A-Za-z0 -9.]+$'}}}]}

(b)

Fig. 2. Example for usage scenario of schemas as static types.

The relation <: is a partial order, and equivalence of schemas follows directly by the anti-

symmetry of the subtype relation.

Definition 3.2 (JEquivSchema ≡). For any two JSON schemas s and t , the equivalence relation
s ≡ t is given by: s ≡ t ⇐⇒ (s <: t ∧ t <: s)

That is, two schemas are equivalent if they describe the same exact set of JSON documents.

3.2 Usage Scenarios
In many usage scenarios, a membership check with JValid corresponds to a runtime check, whereas

a subschema check provided by JSubSchema corresponds to static type checking.

Backward compatibility. One of the most pervasive use cases of JSON schemas is describing

requests and responses of web APIs. For example, version 0.6.1 of the Washington Post ans-schema
contains the following:

'category ': {

'type': 'string ',

'enum': ['staff ', 'wires ', 'freelance ', 'other ']}

The continuous development and evolution of these APIs involves regular changes to the cor-

responding JSON schemas, and developers need to keep a close eye on such changes to avoid

breaking backward compatibility. For example, version 0.6.2 of the same schema contains:

'category ': {

'type': 'string ',

'enum': ['staff ', 'wires ', 'freelance ', 'stock ', 'handout ', 'other ']}

Version 0.6.1 is a subschema of version 0.6.2. Assuming the developers intend to retain backward

compatibility, this evolution would be fine for an API request argument, but it could break clients

when used as an API response.

Schemas as static types. JSON subschema checking can help make code more robust by flagging

some mistakes statically. Consider version 0.14.0 of the NodeAddress schema from Kubernetes,

extracted from its OpenAPI specification, shown in Figure 2a. With this schema, an application can

check NodeAddress objects at runtime, but runtime errors in distributed, cloud-based systems are

difficult to debug. Therefore, client code might define a stricter schema s , as shown in Figure 2b.

Schema s uses enums to constrain the values for 'type' and patterns to constrain the values for

6

'address', with an anyOf to provide two cases. By being stricter, schema s can rule out more bugs.

The static check s <: NodeAddress can validate that s is indeed a subschema.

Machine learning pipelines. Machine-learning pipelines are of little use if the data is formatted

incorrectly [7]. For example, here is the input schema for the NMF transformer from scikit-learn [8],

which performs non-negative matrix factorization.

{ 'type': 'array ',

'items ': {

'type': 'array ',

'items ': {

'type': 'number ', 'minimum ': 0.0}}}}}

The outer array ranges over rows (samples in machine learning) and the inner array ranges over

columns (features in machine learning). NMF requires non-negative numbers as input, captured by

the keyword minimum. This transformer is typically used in the middle of a larger machine-learning

pipeline, after data cleansing transformers but before a classifier or regressor. This schema can

check a specific part of a dataset at a specific point in the pipeline, but this check has to be repeated

for production data, which may differ from training data for various reasons.

Instead, several sources argue that the dataset itself should also be associated with a schema [7,

9, 23]. For example, here is a schema for the features of the California Housing dataset.

{ 'type': 'array ',

'items ': {

'type': 'array ', 'minItems ': 4, 'maxItems ': 4,

'items ': [

{ 'description ': 'AveRooms ', 'type': 'number ', 'minimum ': 0.0},

{ 'description ': 'Population ', 'type': 'number ', 'minimum ': 0.0},

{ 'description ': 'Latitude ', 'type': 'number ', 'minimum ': 0.0},

{ 'description ': 'Longitude ', 'type': 'number '}]}}

The outer array ranges over rows, each one describing a different district in California. The

inner array ranges over columns, each one describing a feature that might be helpful for predicting

the median house value in that district. Instead of a single schema for all items, there are separate

per-item schemas (see the meta-schema for the items keyword in Table 1).

Is the dataset compatible with the input expected by the NMF transformer? California is north

of the equator, so the latitude is positive, and west of Greenwich, so the longitude is negative. Due

to the negative longitudes (expressed by the absence of the minimum keyword), this schema is not

a subschema of the input schema of NMF. Machine learning engineers could add 360 degrees to

the longitude and change its schema to {'description':'Longitude','type':'number','minimum':0.0}.

Then, the dataset schema would be a subschema of the NMF input schema, thanks to the keywords

'minItems':4, 'maxItems':4 which guarantee the absence of additional columns with unspecified

schemas. Later, when this model is used in production, the schema can be used to check the validity

of new samples. For instance, if there is a sample that comes not from California but from south of

the equator, a schema check could catch the negative latitude early and explain which assumption

it violated.

3.3 Challenges
JSON schemas define the nested structure and valid values permitted in a set of JSON documents. The

rich feature set of JSON Schema makes establishing or refuting a subschema relationship between

two schemas non-trivial. Even for simple, structurally similar schemas, such as {'enum':[1, 2]} and

{'enum':[2, 1]}, equivalence does not hold through textual equality. There are several challenges for

algorithmically checking the subtype relation of JSON schemas.

7

{'type': [

'null',

'string '],

'not': {

'enum': ['']}}

(a)

{'anyOf ': [

{'type': 'null'},

{'type': 'string '}],

'not': {

'type': 'string ',

'enum': ['']}}

(b)

{'allOf ': [

{'anyOf ': [

{'type': 'null'},

{'type': 'string '}]},

{'not': {

'type': 'string ',

'enum': ['']}}]}

(c)

{'allOf ': [

{'anyOf ': [

{'type': 'null'},

{'type': 'string '}]},

{'anyOf ': [

{'type': 'boolean '}, {'type': 'null'},

{'type': 'number '}, {'type': 'integer '},

{'type': 'array '}, {'type': 'object '},

{'type': 'string ', 'pattern ': '.+'}]}]}

(d)

{'anyOf ': [

{'type': 'null'},

{'type': 'string ', 'pattern ': '.+'}]}

(e)

Fig. 3. Five syntactically different but semantically equivalent schemas for a value that is either a non-empty
string or null.

First, the schema language is flexible and the same set of JSON values, i.e., the same type, could

be described in several different syntactical forms, i.e., schemas. For example, Figure 3 shows five

equivalent schemas describing a JSON value that is either a non-empty string or null.

Second, even for primitive types, such as strings and numbers, nominal subtyping is not applicable.

JSON Schema lets users specify various constraints on primitive types, resulting in non-trivial

interactions that are not captured by nominal types. For example, one cannot infer that an integer
schema is a subtype of a number schema without properly comparing the range and multiplicity

constraints of the schemas.

Third, logic connectives combine non-homogeneous types such as 'string' and 'null' in Fig-

ure 3b. Moreover, enumerations restrict types to predefined values, which require careful handling,

especially when enumerations interact with non-enumerative types, such as in Figures 3a, 3b,

and 3c.

Fourth, the schema language allows implicit conjunctions and disjunctions. For example, Figure 3b

has an implicit top-level conjunction between the subschemas under anyOf and not. As another
example, a schema that lacks a type keyword, such as {'pattern':'.+'}, has an implicit disjunction

between all possible types, while still enforcing any type-specific keyword, such as the pattern for

strings only. For illustration purposes, Figure 3d makes this implicit disjunction explicit.

Finally, JSON Schema also allows uninhabited types. That is, a schema can be syntactically valid

yet semantically self-contradicting, e.g., {'type':'number','minimum':5,'maximum':0}. Such schemas

validate no JSON value at all and complicate reasoning about subtyping.

4 ALGORITHM
This section describes how we address the problem of checking whether one JSON schema is a

subtype of another. Because JSON schemas are complex, creating a subtype checker for arbitrary

schemas directly would necessitate a complex algorithm to handle all of its variability. Instead,

we decompose the problem into three steps. The first step canonicalizes a given schema into

an equivalent but more standardized schema (Section 4.1). The second step further simplifies a

schema by eliminating enumerations, negation, intersection, and union of schemas where possible

8

Table 2. Canonicalization and simplification guarantees.

Language Use of feature in schemas

feature Full JSON schema Canonicalized Simplified

null Yes Yes Yes

boolean Yes Represented as enum Represented as enum
string All keywords Keyword pattern only Keyword pattern only

number All keywords All keywords All keywords

integer All keywords Eliminated Eliminated

array All keywords All keywords; items is always list All keywords; items is always list

object All keywords Only {min,max}Properties,
patternProperties,
required keywords

Only {min,max}Properties,
patternProperties,
required keywords

enum Heterogeneous, any type Homogeneous, any type Only for boolean
not Multiple connectives Single connective Only for number, array, object
allOf Multiple connectives Single connective Only for not
anyOf Multiple connectives Single connective Only for not, allOf, array,

object, and disjoint number.
oneOf Multiple connectives Eliminated Eliminated

(Section 4.2). Table 2 summarizes the first two steps. Finally, the third step checks for two canoni-

calized and simplified schemas whether one is a subtype of the other by extracting and comparing

type-homogeneous schema fragments (Section 4.3).

Notation. We formalize canonicalization and simplification via rewrite rules of the form s1 → s2.
The notation s .k indicates access of property k in schema s . For any JSON schema s , helper function
dom(s) returns its property names, i.e., the set of keys in the key-value map s . The notation s[k 7→ v]
indicates a substitution, which is a copy of s except that the mapping of key k is added or changed

to value v . The notation [. . .] indicates a JSON array and the notation { . . . } indicates a JSON
object. The notation {k:v | . . . } indicates a JSON object comprehension. The notation a ∥ b is a

default operator that returns a if it is defined and b otherwise.

4.1 JSON Schema Canonicalization
This section introduces a canonicalization procedure that compiles any JSON schema into an

equivalent canonical schema. Column “Canonicalized” of Table 2 summarizes the properties that

the canonicalizer establishes. Given any JSON schema as input, canonicalization terminates and

produces a semantically equivalent, canonical JSON schema as output.

The canonicalization enforces two main simplifications. First, JSON Schema allows schemas to

mix specifications of different types. To enable local, domain-specific reasoning in the subtype

checker, canonicalization splits up these schemas into smaller, homogeneously typed schemas that

are combined using logic connectives. Second, JSON Schema allows many alternative ways to

represent the same thing. Additionally, there are keywords that can be omitted and the defaults

are then assumed. Canonicalization picks, when possible, one form, and supplies omitted defaults

explicitly.

Figure 4 presents non-type-specific canonicalization rules whose purpose it is to enable reasoning

about one type or connective at a time. Rule multiple types applies to schemas whose type is a list,

such as in the example in Figure 3a, making the implicit disjunction explicit using anyOf, as shown

9

multiple types

s .type = [τ1, . . . ,τn]

s → {anyOf:[s[type 7→ τ1], . . . , s[type 7→ τn]]}

multiple connectives

dom(s) ∩ {enum, anyOf, allOf, oneOf, not} , ∅ dom(s) \ {c} , ∅
s → {allOf:[{c:s .c}, {k:s .k | k ∈ (dom(s) \ {c})}]}

missing type

dom(s) ∩ {type, enum, anyOf, allOf, oneOf, not} = ∅
s → s[type 7→ Jtypes]

Fig. 4. Non-type-specific canonicalization rules that ensure exactly one type, enum, or logic connective.

in Figure 3b. Rule multiple connectives applies to schemas that contain a connective mixed with

other connectives, such as in the example in Figure 3b, making the implicit conjunction explicit

using allOf, as shown in Figure 3c. Rule missing type generously assumes all JSON types are

possible, yielding an implicit disjunction to be further canonicalized by the multiple-types rule.

Figure 5 presents type-specific canonicalization rules whose purpose it is to reduce the number

of cases to handle for later simplification and subschema rules. Rule missing keyword adds the

default for a keyword if there is a single type and the keyword for that type is missing, using a

helper function default that returns the default from the meta-schema in Table 1 and maps minimum
to −∞ and maximum to∞ for convenience. Rule irrelevant keywords strips out spurious keywords
that do not apply to a given type (or to any type), using a helper function kw that returns the

relevant keywords in Table 1. Rule integer rewrites integer schemas to number schemas with the

appropriate multipleOf. Rule heterogeneous enum, when iterated, ensures that each enumeration

contains only values from a single type, using a helper function typeOf that maps a concrete JSON

value to its type. Rule oneOf eliminates the oneOf keyword by rewriting the exclusive or into a

disjunction of conjunctions.

The two string rules eliminate the keywords minLength and maxLength by compiling them into

regular expressions, so that after canonicalization, string schemas only have the keyword pattern.
The two array rules handle keywords that can be specified in multiple different ways, as indicated

by meta-schemas with anyOf in Table 1. Rule array with one schema for all items changes the
keyword items from a single schema to a list (empty) of schemas, by moving the schema into

additionalItems. Rule array with additionalItems false changes the keyword additionalItems
from a boolean to a schema (bottom).

The five object rules eliminate the object keywords properties, additionalProperties, and
dependencies by rewriting them into the keywords required and patternProperties, and en-

sure that patternProperties uses non-overlapping regular expressions. The object rules are the

most intricate out of the canonicalization rules because in JSON Schema, object schemas have the

largest number of special cases. Reducing the cases reduces the complexity of subsequent rules

for simplification and subschema checking. Rule object with additionalProperties false changes the
keyword additionalProperties from a boolean to a schema (bottom). Rule object with properties
eliminates properties and additionalProperties by rewriting them into patternProperties.
First, it turns each property key ki from properties into a pattern property with the regular

expression '^ki$' that accepts exactly ki . Second, it subtracts all keys ki from each of the original

pattern properties so they only apply as a fall-back, where the notation p1 \ p2 indicates regu-
lar expression subtraction. Third, it creates a tertiary fall-back regular expression that applies

when neither the original properties nor the original pattern properties match, using the notation

¬p for the complement of a regular expression, and associates that regular expression with the

original additionalProperties. Finally, it removes the eliminated keywords properties and

10

missing keyword

s .type = τ τ ∈ Jtypes τ , string k ∈ kw(τ) k < dom(s)
s → s[k 7→ default(k)]

irrelevant keywords

s .type = τ τ ∈ Jtypes

s → {k:s .k | k ∈ (dom(s) ∩ (kw(τ) ∪ {type, enum})}

integer

s .type = integer

s → s[type 7→ number, multipleOf 7→ lcm(1, s .multipleOf ∥ 1)]

heterogeneous enum

s .enum = [v1, . . . ,vn] ∃j, typeOf (vj) , typeOf (v1)

s → {anyOf:[s[enum 7→ [vi | typeOf (vi) = typeOf (v1)], type 7→ typeOf (v1)],
s[enum 7→ [vj | typeOf (vj) , typeOf (v1)]]]}

oneOf

s .oneOf = [s1, . . . , sn]

s → {anyOf:[{allOf:[s1, {not:s2}, . . . , {not:sn}]},
. . . ,

{allOf:[{not:s1}, . . . , {not:sn−1}, sn]}]}

string without maxlength

s .type = string s .pattern = p s .minLength = a maxLength < dom(s)
s → {type:string, pattern:p ∩ '^.{a}'}

string with maxlength

s .type = string s .pattern = p s .minLength = a s .maxLength = b

s → {type:string, pattern:p ∩ '^.{a,b}$'}

array with one schema for all items

s .type = array s .items = { . . . }

s → s[items 7→ [], additionalItems 7→ s .items]

array with additionalItems false

s .type = array s .additionalItems = false

s → s[additionalItems 7→ {not:{}}]

object with additionalProperties false

s .type = object s .additionalProperties = false

s → s[additionalProperties 7→ {not:{}}]

object

with

properties

s .type = object s .properties = {k1:sk1 , . . . ,kn:skn }
s .additionalProperties = { . . . } s .patternProperties = {p1:sp1 , . . . ,pm:spm }

s →s[patternProperties 7→ {'^k1$':sk1 , . . . , '^kn$':skn ,
p1 \ '^(k1|...|kn)$':sp1 , . . . , pm \ '^(k1|...|kn)$':spm ,
¬'^(k1|...|kn)$|p1|...|pm':s .additionalProperties}]

\{properties, additionalProperties}

object with string

list dependencies

s .type = object s .dependencies = {ki:[ki1 , . . . ,kin]} ∪ drest

s → s[dependencies 7→ drest ∪ {ki : {type:object, required:[ki1 , . . . ,kin]}}]

object with sche-

ma dependencies

s .type = object s .dependencies = {ki:si} ∪ drest

s → {allOf:[s[dependencies 7→ drest],
{anyOf:[si , {type:object, properties:{ki:not:{}}}]}}

object with overlap-

ping patternProperties

s .type = object s .patternProperties = {pi:si} ∪ {pj:sj} ∪ drest

s → s[patternProperties 7→
{pi ∩ pj:{allOf:[si , sj]}} ∪ {pi ∩ ¬pj:si} ∪ {¬pi ∩ pj:sj} ∪ drest]

Fig. 5. Type-specific canonicalization rules.

11

multi-valued enum

s .type = τ τ , boolean s .enum = [v1, . . . ,vn] n > 1

s → {anyOf:[{type:τ , enum:[v1]}, . . . , {type:τ , enum:[vn]}]}

null enum

s .type = null s .enum = [null]

s → {type:null}
string enum

s .type = string s .enum = [v]

s → {type:string, pattern:'^v$'}

number enum

s .type = number s .enum = [v]

s → {type:number, minimum:v, maximum:v}

array enum

s .type = array s .enum = [[v1, . . . ,vn]]

s → {type:array, minItems:n, maxItems:n, items:[{enum:[v1]}, . . . , {enum:[vn]}]

object enum

s .type = object s .enum = [{k1:v1, . . . ,kn:vn}]

s → {type:object, required:[k1, . . . ,kn], additionalProperties:false,
properties:{k1:{enum:[v1]}, . . . ,kn:{enum:[vn]}}}

Fig. 6. Simplification rules to eliminate enum except for type boolean.

additionalProperties from the resulting schema. Rule object with string list dependencies, when
iterated, eliminates dependencies specified as a list of property names by rewriting them into

dependencies specified as a schema. Rule object with schema dependencies, when iterated, eliminates

dependencies of a key ki on a schema si by rewriting them into a conjunction with either si or a
schema that enforces the absence of ki . Rule object with overlapping pattern properties rewrites a pair
of pattern properties with overlapping regular expressions pi and pj so their regular expressions
match only disjoint keys, by replacing them with different schemas for the cases where (i) both pi
and pj match, (ii) only pi and not pj matches, and (iii) only pj and not pi matches. When iterated,

this eliminates all overlapping patterns, facilitating local reasoning.

4.2 Simplification of Enumeration, Negation, Intersection, and Union Types
This section describes the second step of our approach: a simplifier that compiles any canonical

JSON schema into an equivalent simplified schema. Column “Simplified” of Table 2 summarizes the

properties that the simplifier establishes. The simplifier eliminates many cases of enum, not, allOf,
and anyOf connectives, thus making subschema checking rules less complicated. Unfortunately, in

some cases, JSON schema cannot express schemas without these connectives, so they cannot be

completely simplified away.

Figure 6 shows simplification rules for enum, which turn schemas with enums into schemas

without enums by using restrictions keywords from their corresponding types instead. Rule multi-
valued enum puts each non-Boolean enumerated value into an enum of its own. The rules for

primitive types (null, string, and number) express a primitive enumerated value via a schema that

does not use an enum. For instance, in Figure 3c, the enumerated empty string value is compiled

into the regular expression '^$' before computing its complement '.+' in Figure 3d. The rules for

structured types (array and object) push down enums to components; with iteration, the rules

eventually reach primitive types and the enums get eliminated. The simplifier does not eliminate

Boolean enumerations as the space of values is finite and there is no other way to specify the true

or false value.

Figure 7 shows simplification rules for not, which eliminates negation except for numbers, arrays,

and objects. Rule not type turns a schema of a given type τ into a disjunction of either ¬s (the
complement of the values permited by s in τ) or values of any type other than τ . An example for this

rule in action is the rewrite from Figure 3c to Figure 3d, where the complement of a string schema

12

not type

s .type = τ τ ∈ Jtypes

{not:s} → {anyOf:[¬s, {type:(Jtypes \τ)}]}
complement null

s .type = null

¬s → {not:{}}

complement

boolean

s .type = boolean s .enum = e

¬s → {type:boolean, enum:¬e}
complement

string

s .type = string s .pattern = p

¬s → {type:string, pattern:¬p}

not anyOf

s = {anyOf:[s1, . . . , sn]}

{not:s} → {allOf:[{not:s1}, . . . , {not:sn}]}

not allOf

s = {allOf:[s1, . . . , sn]}

{not:s} → {anyOf:[{not:s1}, . . . , {not:sn}]}
not not

s = {not:s1}

{not:s} → s1

Fig. 7. Simplification rules to eliminate negation, except for types number, array, and object.

introduces schemas of all non-string types. The complement rules for null, boolean, and string
use the bottom type {not:{}}, the complement of the Boolean enumeration, and the complement

of the regular expression, respectively. Rules not anyOf and not allOf use De Morgan’s theorem to

push negation through disjunction and conjunction, and rule not not eliminates double negation.

Unfortunately, JSON Schema is not closed under complement for numbers, arrays, and objects.

For example, the complement of schema {type:'number',multipleOf:1} is R \ Z, which cannot be

expressed in JSON schema without a negation. Similar counter-examples exist for array and object

schemas. The case of negated number schemas is handled later during subschema checking.

Figure 8 shows simplification rules for allOf. For example, the intersection type in Figure 3d

yields the simplified schema in Figure 3e. Rule singleton allOf rewrites a conjunct of just one

schema into that schema. Rule fold allOf turns an n-ary allOf into a binary one, so the remaining

rules need to handle only the binary case. Rule intersect heterogeneous types returns the bottom
type because intersection of incompatible types is the empty set, so the remaining rules only need

to handle homogeneously-typed schemas. Rule intersect null rewrites two nulls to one null. Rule

intersect boolean uses the intersection of enumerations. Rule intersect string uses the intersection of

regular expressions. Rule intersect number uses helper functions schema2range and range2schema to
convert back and forth between number schemas and mathematical ranges, and lcm to compute the

least common multiple of the multipleOf constraints, where lcm handles undefined arguments by

returning the other argument if defined, or an undefined value if both arguments are undefined. Rule

intersect array takes advantage of the canonical form, where items are always specified as lists, to

compute an item-wise intersection; undefined per-item schemas default to additionalItems. Rule
intersect object simply picks up the union of the patternProperties keywords, relying on the rule

for objects with overlapping patternProperties to make them disjoint again later. Finally, rule

intersect anyOf pushes conjunctions through disjunctions by using the distributivity of intersection

over union. We choose not to push intersections through negations because we prefer the end

result of simplification to resemble distributive normal form to the extent possible.

Figure 9 shows simplification rules for anyOf. In contrast to intersection, union allows incom-

patible types, e.g., string or null as in Figure 3e. Fortunately, such heterogeneous unions are

non-overlapping for inhabited schemas, so they can be handled later during subschema checking.

Rule singleton anyOf rewrites a disjunct of just one schema into that schema. Rule fold anyOf
turns an n-ary anyOf into a binary one so the remaining rules only need to handle the binary

case. Rule union null rewrites two nulls to one. Rule union boolean uses the union of enumerations.

Rule union string uses the union of regular expressions. Rule union number turns a binary union

with overlap into a ternary non-overlapping union. In other words, while it does not eliminate

the union of number schemas, it does simplify subschema checking by at least making the union

13

singleton allOf

s .allOf = [s1]
s → s1

fold allOf

s .allOf = [s1, s2, . . . , sn] n ≥ 3

s → {allOf:[s1, {allOf:[s2, . . . , sn]}]}

intersect hetero-

geneous types

s1.type , s2.type

{allOf:[s1, s2]} → {not:{}}
intersect null

s1.type = null s2.type = null

{allOf:[s1, s2]} → {type:null}

intersect boolean

s1.type = boolean s2.type = boolean

{allOf:[s1, s2]} → {type:boolean, enum:s1.enum ∩ s2.enum}

intersect string

s1.type = string s2.type = string

{allOf:[s1, s2]} → {type:string, pattern:s1.pattern ∩ s2.pattern}

intersect

number

s1.type = number s2.type = number r1 = schema2range(s1) r2 = schema2range(s2)
{allOf:[s1, s2]} → range2schema(r1 ∩ r2) ∪ {multipleOf:lcm(s1.multipleOf, s2.multipleOf)}

intersect

array

s1.type = array s2.type = array s1.items = [s11 , . . . , s1k] s2.items = [s21 , . . . , s2m]
n = max(k,m)

{allOf:[s1, s2]} → {type:array,
minItems:max(s1.minItems, s2.minItems),
maxItems:min(s1.maxItems, s2.maxItems),
items:[{allOf:[s11 ∥ s1.additionalItems, s21 ∥ s2.additionalItems]},

. . . ,

{allOf:[s1n ∥ s1.additionalItems, s2n ∥ s2.additionalItems]}],
additionalItems:{allOf:[s1.additionalItems, s2.additionalItems]},
uniqueItems:s1.uniqueItems ∧ s2.uniqueItems}

intersect

object

s1.type = object s2.type = object

{allOf:[s1, s2]} → {type:object,
minProperties:max(s1.minProperties, s2.minProperties),
maxProperties:min(s1.maxProperties, s2.maxProperties),
required:s1.required ∪ s2.required,
patternProperties:s1.patternProperties ∪ s2.patternProperties}

intersect anyOf

s2 = {anyOf:[s21 , . . . , s2n]}

{allOf:[s1, s2]} → {anyOf:[{allOf:[s1, s21]}, . . . , {allOf:[s1, s2n]}]}

Fig. 8. Simplification rules to eliminate allOf except for connective not.

disjoint so it can be checked elementwise. Unfortunately, JSON Schema is not closed under union

for types number, array, and object. For example, the union of {type:number,minimum:0} and {type:

number,multipleOf:1} is R+∪Z, which cannot be expressed in JSON schema without anyOf. There are
similar counter-examples for arrays and objects. The case of unioned number schemas is handled

later in subschema checking. As mentioned earlier, we would like simplification to end in schemas

that resemble a distributive normal form, so we choose not to push anyOf through allOf or not.

4.3 JSON Subschema Checking
Given two canonicalized and simplified schemas, the third step of our approach checks whether

one schema is a subtype of the other. Figure 10 presents inference rules defining the subschema

relation on canonical, simplified schemas. All rules are algorithmically checkable, and all rules

except for schema uninhabited are type-directed. To simplify their presentation, some of the rules

use quantifiers, but all quantifiers are bounded and can thus be checked via loops.

14

singleton anyOf

s .anyOf = [s1]
s → s1

fold anyOf

s .anyOf = [s1, s2, . . . , sn] n ≥ 3

s → {anyOf:[s1, {anyOf:[s2, . . . , sn]}]}

union null

s1.type = null s2.type = null

{anyOf:[s1, s2]} → {type:null}

union boolean

s1.type = boolean s2.type = boolean

{anyOf:[s1, s2]} → {type:boolean, enum:s1.enum ∪ s2.enum}

union string

s1.type = string s2.type = string

{anyOf:[s1, s2]} → {type:string, pattern:s1.pattern ∪ s2.pattern}

union number

s1.type = number s2.type = number r1 = schema2range(s1) r2 = schema2range(s2)
r1 ∩ r2 , ∅

{anyOf:[s1, s2]} → {anyOf:[
range2schema(r1 ∩ r2) ∪ {multipleOf:gcd(s1.multipleOf, s2.multipleOf)},
range2schema(r1 \ r2) ∪ {multipleOf:s1.multipleOf},
range2schema(r2 \ r1) ∪ {multipleOf:s2.multipleOf}]}

Fig. 9. Eliminating overlapping anyOf, except for connectives not and allOf, and types array and object.

Rule schema uninhabited states that an uninhabited schema is a subtype of any other schema. It

uses an auxiliary inhabited predicate, which is elided for space but easily computable for primitives

(recall that emptiness is decidable for regular languages). For structures, the predicate ensures that

the schemas of all required components are inhabited. For logic connectives, the predicate is more

involved but decidable. The rule for uninhabited types is the only rule that is not type-directed.

Because canonicalization generally separates schemas by type, all other rules check same-typed

schemas. We can handle uninhabited schemas independently of their type because there is no

actual data of that type that would require type-specific reasoning.

Rule subschema non-overlapping anyOf handles anyOf schemas for the cases where simplification

eliminates overlapping unions. Helper function nonOverlapping checks for unions of arrays and

objects and conservatively assumes that those might overlap. In the non-overlapping case, it

suffices to check the component schemas independently. For each schema on the left, we require a

same-typed super schema on the right.

Rule subschema number is the most complicated of the subtype rules for primitive types due

to multipleOf constraints. The simplifier cannot push negation through multipleOf constraints,

and it cannot combine allOf combinations of such negated schemas. As a result, the rule has

to handle multiple such constraints on both sides of the relation, with or without negation. We

treat simple number schemas as single-element allOfs for consistency. This rule verifies that any
number allowed by the set of constraints on the left is also allowed by the set of constraints on the

right using an auxiliary subNumber relation, which is sketched in the following.

The subNumber relation first normalizes all schema range bounds by rounding them to the

nearest included number that satisfies its multipleOf constraint. For each side, it then finds the

least and greatest finite bound used. Every unbounded schema is split into two (or three for totally

unbounded) schemas: one (or two) that are unbounded on one side, with the least/greatest bound

as the other bound. The “middle” part is bounded. All these derived schemas keep the original

multipleOf. The bounded schemas can all be checked (exhaustively if needed). For the unbounded

schemas, we can separately check the positive and negative schemas, since they do not interact in

interesting ways over unbounded sets. If PL and PR are the left and right positive schemas, and NL

15

subschema uninhabited

¬ inhabited(s1)
s1 <: s2

subschema non-overlapping anyOf

∀i ∈ {1..n},∃j ∈ {1..m}, si <: tj nonOverlapping([t1, . . . , tm])
{anyOf:[s1, . . . , sn]} <: {anyOf:[t1, . . . , tm]}

subschema null

s1.type = null s2.type = null

s1 <: s2

subschema boolean

s1.type = boolean s2.type = boolean s1.enum ⊆ s2.enum

s1 <: s2

subschema string

s1.type = string s2.type = string s1.pattern ⊆ s2.pattern

s1 <: s2

subschema number

∀i ∈ {1..k}, not < dom si ∧ si .type = number
∀i ∈ {k + 1..n}, not ∈ dom si ∧ si .not.type = number

∀i ∈ {1..l}, not < dom ti ∧ ti .type = number
∀i ∈ {l + 1..n}, not ∈ dom ti ∧ ti .not.type = number

subNumber(([s1, . . . , sk], [sk+1, . . . , sn]), ([t1, . . . , tl], [tl+1, . . . , tm]))
{allOf:[s1, . . . , sk , sk+1, . . . , sn]} <: {allOf:[t1, . . . , tl , tl+1, . . . , tm]}

subschema array

s1.type = array s2.type = array
s1.minItems ≥ s2.minItems s1.maxItems ≤ s2.maxItems
s1.items = [s11 , . . . , s1k] s2.items = [s21 , . . . , s2m]

∀i ∈ [0, . . . ,max(k,m) + 1], s1i ∥ s1.additionalItems <: s2i ∥ s2.additionalItems
s2.uniqueItems =⇒ (s1.uniqueItems ∨ allDisjointItems(s1))

s1 <: s2

subschema

object

s1.type = object s2.type = object
s1.minProperties ≥ s2.minProperties s1.maxProperties ≤ s2.maxProperties

s1.required ⊇ s2.required
∀p1 :sp1 ∈ s1.patternProperties,p2 :sp2 ∈ s2.patternProperties,p1 ∩ p2 , ∅ =⇒ sp1 <: sp2

s1 <: s2

Fig. 10. JSON Schema subtype inference rules.

and NR are the left and right negative schemas, we verify that the constraints divide each other:

∀pl∈PL,∃pr∈PR, pl.multipleOf mod pr.multipleOf = 0

∀nr∈NR,∃nl∈NL, nr.multipleOf mod nl.multipleOf = 0

Rule subschema array checks two array schemas. The left array size bounds should be within

the size bounds of the right array. Additionally, the schema of every item specified in the former

needs to be a subschema of the corresponding specification in the latter. If a schema is not ex-

plicitly provided, the schema provided by additionalItems is used. Recall that canonicalization
adds in a default additionalItems schema if it was not specified. Additionally, if the right side

specifies that the items must be unique, then the left needs to either specify the same or implicitly

enforce this. For example, {type:array,items:[{enum:[0]},{enum:[1]}]} is a subschema of {type:array,

uniqueItems:true]}. The allDisjointItems predicate checks for this by first obtaining the set of all the

effective item schemas: every item schema for an index within the specified min/max bounds, and

additionalItems if any allowed indices are unspecified. It then verifies that the conjunction of all

pairs of effective items schemas are uninhabited.

16

Rule subschema object checks two object schemas. It first verifies that the number of properties

of both sides have the appropriate relation, and that the left side requires all the keys that the right

side requires. Next, for every regular expression pattern p1 on the left, if there is an overlapping

regular expression pattern p2 on the right, it checks that the corresponding schemas are subschemas.

This check can be done separately for one pattern at a time thanks to the fact that canonicalization

eliminates overlapping pattern properties.

5 IMPLEMENTATION
We implemented our subschema checker as a Python tool in around 2,000 lines of code. The

implementation builds upon the jsonschema library
1
to validate schemas before running our

subtype checking, the greenery library
2
for computing intersections of regular expressions, and

the jsonref library3 for resolving JSON schemas references.

6 EVALUATION
This section evaluates the implementation of our JSON subschema checker, which we refer to as

jsonsubschema. It answers the following research questions:

RQ1 How correct is jsonsubschema in practice?

RQ2 How does jsonsubschema fare against existing work?

RQ3 How complete is jsonsubschema in practice?

RQ4 How efficient is jsonsubschema?

6.1 Experimental Setup
We evaluate our subschema checker on four datasets of JSON schemas from different domains:

JSON schema official test suite, WP , K8s, and Lale.
The official test suite for JSON Schema draft-04

4
is a widely-used test suite for JSON Schema

validators and provides 146 schemas and 531 tests that offer full coverage of the JSON Schema

specification. Each test provides a JSON document d to be validated against a specific schema

s and the expected correct validation behavior res ∈ {True, False}, i.e., tests are of the form

JValid(d, s) = res. These schemas are designed to cover the JSON schema features, but they are

not representative for real-world schemas. Moreover, these schemas were not designed to test

the subschema relation we define in this work, so we only use this test suite to evaluate the

canonicalization and simplification steps (Sections 4.1 and 4.2) of our approach.

The three other datasets, WP , K8s, and Lale, are used for evaluating the full jsonsubschema
approach.WP is a collection of schemas describing content used by the Washington Post within the

Arc Publishing content creation and management system.
5 K8s is the set of JSON schemas describing

the OpenAPI specifications for Kubernetes, an open-source system for automating deployment,

scaling, and management of containerized applications.
6
Since OpenAPI specifications contain

more information beyond the schemas for the REST API endpoints, we use a set of JSON schemas

extracted from them.
7
Specifically, we used the standalone flavor of schemas where $ref have been

1
https://github.com/Julian/jsonschema

2
https://github.com/qntm/greenery

3
https://github.com/gazpachoking/jsonref

4
https://github.com/json-schema-org/JSON-Schema-Test-Suite

5
https://github.com/washingtonpost/ans-schema

6
https://kubernetes.io/

7
https://kubernetesjsonschema.dev/

17

https://github.com/Julian/jsonschema
https://github.com/qntm/greenery
https://github.com/gazpachoking/jsonref
https://github.com/washingtonpost/ans-schema
https://kubernetes.io/
https://kubernetesjsonschema.dev/

Table 3. Dataset details.

Dataset Versions Schemas Schema pairs Schema pairs used for evaluation

WP 28 2,604 2,411 2,060

K8s 124 86,461 82,814 6,460

Lale – – 28 28

Total 8,548

resolved to local files. The Lale dataset is a set of schema pairs from the Lale open-source project8,
which is a Python library for type-driven automated machine learning.

The second and third datasets, WP and K8s, comprise several versions. We apply our subschema

checker across each pair of consecutive versions of the same schema that introduces some textual

modification, to spot whether a change may impact the compatibility of the corresponding systems.

We use the third dataset, Lale, to find type errors in AI pipelines where wrong operators could be

applied to specific datasets. We consider 4 Lale operators and 7 datasets, yielding 28 schema pairs.

Table 3 shows statistics for the three datasets that we use for the full evaluation of jsonsubschema.
For example, K8s has in total 124 versions, with a total of 86,461 schemas. Due to the additions and

deletions of schemas between pairs of consecutive versions, the total number of pairs of schemas

across all pairs of subsequent versions is 82,814. Finally, since not every new version of an API

modifies every schema, we only keep pairs of non-equal files. Overall, the total number of pairs

of schemas is 8,548. Many of the schemas are of non-trivial size, with an average of 56KB and

a maximum of 1,047KB. The first dataset, the JSON schema test suite, is omitted from Table 3

since it does not have pairs of versions and we only use it to evaluate the canonicalization and

simplification steps.

All experiments are performed on an Intel Core i7-4600U CPU (2.10GHz) machine with 16GB of

memory running Ubuntu 18.04 (64-bit).

6.2 Correctness in Practice
For RQ1, we evaluate the correctness of the two main steps of our approach: canonicalization and

simplification (canonicalization), and subtype checking.

6.2.1 Canonicalization. Canonicalization and simplification aim at producing a valid and simpler

canonical schema that is semantically equivalent to the input schema. To test validity, jsonsubschema
checks the canonicalized schema against the meta-schema of JSON Schema using an off-the-shelf

JSON schema validator (Section 5). Across our entire dataset, there is no single case where this

check fails.

To check that canonicalization and simplification preserve the semantics of the original input

schema, we apply the canonicalization step to all schemas in the JSON Schema official test suite.

We tested whether: ∀s,∀d, JValid(d, s) = res =⇒ JValid(d, canonical(s)) = res. for schema s , JSON
document d , and outcome res . In all cases except one where jsonsubschema yields a canonicalized
schema, this new schema passes all relevant tests in the JSON schema test suite. This single case, we

believe, is due to the ambiguity of the specification of JSON schema and hence, a mismatch between

our own interpretation and the interpretation of the JSON schema validator of the semantics of the

allOf connector when combined with the additionalProperties object constraint.

These results, of course, show only that canonicalization in most of the cases does not yield

an invalid or a more strict schema than the input schema. The following experiments on the

8
https://github.com/ibm/lale

18

https://github.com/ibm/lale

Table 4. Effectiveness of jsonsubschema and comparison to the existing issubset tool.

jsonsubschema issubset

Pairs Fail TP TN FP FN Fail TP TN FP FN

<: 35 0 29 6 0 0 10 9 0 6 10

:> 35 0 31 4 0 0 10 21 0 4 0

≡ 100 0 100 0 0 0 50 27 0 0 23

. 100 0 63 37 0 0 0 63 0 37 0

Lale 28 0 12 16 0 0 7 3 10 0 8

Total 298 0 235 63 0 0 77 123 10 47 41

correctness of subtype checking rely on correct canonicalization, and hence, provide additional

evidence.

6.2.2 Subtype Checking.

Self-equivalence. As an automated, large-scale correctness check of the subtype checking, we

perform a simple sanity check that asks jsonsubschema whether a schema is equivalent to itself

(Definition 3.2). We randomly sample 1000 schemas from the K8s dataset and run our subschema

checker using the same schema on both sides of the subtype relation, i.e., checking for a schema s
whether s <: s . Our subtype checking does not rely on any sort of structural equality. Therefore,

in this setup, our implementation is oblivious to the fact that both schemas are the same, so it

canonicalizes both schemas and then performs subtype checking. In all 1,000 samples, this test

passes correctly.

Comparison against a ground truth. For further validation, we compare the results of jsonsub-
schema against a ground truth. Specifically, we gather pairs of schemas, along with their expected

subtype relationship, in three ways. First, we randomly sample pairs that are textually different and

manually assess their subtype relationship. Second, we sample consecutive versions of schemas

fromWP and K8s and manually assess their subtype relationship. For example, we consider versions

0.7.0 and 0.7.1 of the utils/named_entity schema from the WP dataset. This sample of pairs rep-

resents the usage scenario where our approach checks whether an evolving API specified through

a JSON schema may break an application. Third, for the 28 schema pairs from Lale, the ground
truth is whether or not the corresponding machine-learning operator throws an exception when

training on the corresponding dataset. By checking the schemas statically, our subtype checker can

avoid such runtime errors. To focus on the correctness of the subtype checker output, we sampled

pairs of schemas from the set of schemas where our approach yields a decision, i.e., ignoring the

few cases where jsonsubschema cannot decide on the subschema relation.

In total, we gathered 298 pairs with a ground truth subtype relationship, as summarized in

Table 4. The <:, :>, ≡, and . symbols represent what test we performed on each pair. For example,

for each pair ⟨s, t⟩ in the <: row, the ground truth indicates whether s <: t holds (positive, P) or
not (negative, N). The jsonsubschema part of the table shows the results of applying our subschema

checker to each pair. The TP, TN, FP, and FN columns indicate the true positives, true negatives,

false positives, and false negatives, respectively. For example, TN means that the tool produces the

correct result (T for true) and that the ground truth indicates that the relationship being tested is

not expected to hold (N for negative). Our tool produces the correct results for all 298 schema pairs

in the ground truth.

19

6.3 Comparison to Existing Work
As we discuss in Section 7, our work is the first to define the subschema relation on JSON schemas

and present an algorithm to perform this check for a large subset of JSON schema features. Therefore,

to our knowledge, there is no academic work that we can compare against. However, since our

work is motivated by the practical need for subtyping JSON schemas, for RQ2, we compare our

implementation to the closest developer tool we could find, is-json-schema-subset (issubset) [12].
The issubset tool is written in TypeScript and its documentation states the same goal as ours: “Given

a schema defining the output of some process A, and a second schema defining the input of some

process B, will the output from A be valid input for process B?” We use the most recent version,

which is 1.0.6.

We first run issubset on the three datasets,WP, K8s, and Lale. It fails to run on some schemas

from WP and Lale due to unsupported schema versions, although the issubset documentation

does not describe such a limitation. Next, we compare the correctness results of issubset against
our jsonsubschema. The right part of Table 4 shows the correctness results for issubset using the
methodology described in Section 6.2.2.

The first observation is that issubset produces a non-negligible number of true positives, which

means it indeed captures some of the semantic of the subtyping relation. However, issubset also
produces 47 false positives and 41 false negatives, i.e., gives a wrong answer to a subtype query.

Overall, the existing tool gives a wrong answer in 40% of the cases where the tool does not fail.

To get a better understanding of the low recall, we inspected the code of issubset and tested it on

simple hand-crafted schemas. We find that although the tool performs some simple semantic checks,

e.g., it correctly reports {'type':'integer'} <: {'type':'number'}, it lacks the ability to capture the

richness of JSON schema in many ways. For instance, it fails to detect {'type':['string','null']} ≡
{'type':['null','string']}, and is oblivious to uninhabited schemas, such as {'type':'string','enum'

:[1]}.

6.4 Completeness in Practice
Being complete in practice is difficult. To balance completeness and effort, there is a set of features

our approach currently cannot deal with. As discussed in Section 4, our approach cannot reason

about negation and complement of object, array, and numeric with multipleOf schemas. Therefore,

for RQ3, we report on two dimensions. The first is the pervasiveness of different validation keywords

and which of them jsonsubschema supports. The second dimension is failure cases of jsonsubschema,
i.e, cases where we do not produce a subtype decision, due to a limitation of the approach.

6.4.1 Pervasiveness of Validation Keywords and Supported Features. Figure 11 shows the frequency
of validation keywords across all schemas in the K8s and WP datasets. Validation keywords on the

x-axis are sorted by their relevance to each schema type and according to the order of keywords

in Table 1. The figure shows that jsonsubschema indeed supports the majority of JSON schema

features which are used in practice

We observe that JSON schema types null and string are the two most prevalent schema types

present in the dataset. Both types are fully supported in the subtype checking performed by

jsonsubschema as indicated by the color code in Figure 11.

The keywords properties, additionalProperties, and required for specifying constrains on a JSON

object show up next on the order of the number of use cases. Of these keywords, jsonsubschema
fully supports properties. The additionalProperties and required keywords are supported whenever

they are not used in union schemas or negated schemas. In general, disjunction of schemas happens

rarely (146 occurrence among millions of occurrences of other keywords); while negated schemas

are not used at all in our dataset of real-world schemas.

20

 ty
pe

:bo
ole

an

 ty
pe

:nu
ll

 ty
pe

:st
rin

g

 m
inL

en
gth

 m
ax

Len
gth

 pa
tte

rn

 ty
pe

:in
teg

er

 ty
pe

:nu
mbe

r

 m
inim

um

 m
ax

im
um

 ex
clu

siv
eM

inim
um

 ex
clu

siv
eM

ax
im

um

 m
ult

iple
Of

 ty
pe

:ar
ray

 ite
ms

 m
inI

tem
s

 m
ax

Ite
ms

 ad
dit

ion
alIt

em
s

 un
iqu

eIt
em

s

 ty
pe

:ob
jec

t

 pr
op

ert
ies

 m
inP

rop
ert

ies

 m
ax

Pro
pe

rtie
s

 re
qu

ire
d

 ad
dit

ion
alP

rop
ert

ies

 pa
tte

rnP
rop

ert
ies

 de
pe

nd
en

cie
s
 en

um no
t

 an
yO

f
 al

lOf
 on

eO
f
 $r

ef

 $r
ef_

rec
urs

ive

Validation keyword

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

of

 o
cc

ur
re

nc
es

56
7,

06
3

5,
20

4,
96

6
4,

46
0,

67
1

42 42 57
89

3,
02

3
45

,2
23

17 0 0 0 0
97

0,
11

2
97

0,
11

2
40 36 0 0

62
8,

97
6 1,

94
4,

71
4

0 0
1,

03
9,

92
3

19
8,

08
6

33
4

24
1

99
,0

48
0 14

6
42

9 24
9,

98
2

12
,2

08
1,

05
9

 Fully supported
 Supported, unless

 in negation or union
 Depends on other key

 words in the schema
 Not supported

Fig. 11. Prevalence of JSON schema validation keywords in practice and supported features in jsonsubschema.

Worth noting here is that the counts in Figure 11 are for schemas that do not use the negated

schema keyword not at all, which is also evident from its frequency being 0. The reason is that in the

dataset of schemas, there is no single use of a negated schema. In fact, the use of negation in JSON

schemas is indeed highly discouraged since the purpose of schema validation is to constraint what

is allowed rather than filtering out what is disallowed. The NSA security guidelines for using JSON

schemas also advises against using negated schemas for the same reason
9
. That said, jsonsubschema

still supports the negation of all Jprimitive except for the union and negation of numeric schemas

with a multipleOf constraint. Overall, this shows that the incompleteness of jsonsubschema rarely
affects its usability in real world, on a large dataset of real-world schemas.

The only feature that is not supported at the moment is recursive references in schemas using

$ref. Although our approach currently does not handle recursive schemas, we know theoretically

that subtyping recursive types is decidable [1].

6.4.2 Unsupported Features in Practice. The jsonsubschema tool reports an error and terminates

without yielding a decision when an unsupported JSON schema feature is encountered.

Table 5 shows the cases when jsonsubschema fails on our dataset. In total, out of 8,548 schemas

pairs, the subschema checks fails for 5.69% of the pairs. The table shows three kinds of failures

that happen in practice due to limitations of our approach. The first and most dominant failure

reason are circular and recursive schemas. As indicated above, this is not an inherent limitation of

jsonsubschema. The second case is the rare use case of negating objects schemas. As seen in Table 5,

only 0.34% of schema pairs fail due to the absence of this feature. It is worth noting here is that

the original schemas do not use negated schemas at all as seen in Figure 11. However, they were

introduced as part of jsonsubschema canonicalization phase (Section 4.1) where oneOf constraints

are re-written into disjunction of conjunctions with negations (Figure 5). We have discussed in

Section 4 that JSON schema is not closed under union or negation of object schemas. The third

case is when string schemas or object schemas use non-regular language for specifying textual

patterns using the keywords pattern amd patternProperties, respectively. Inclusion in non-regular

languages (e.g., regular expressions with positive and negative look-around) is undecidable and is

beyond our scope.

9
https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm

21

https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm

Table 5. Reasons for incompleteness in practice.

Failure reason Count %

Recursive or circular $ref 453 5.30%

Negated object schema 29 0.34%

Non-regular regex pattern 5 0.06%

Total 487 5.69%
0 100 200 300 400 500

Size of pairs of schema files in KB
0

2

4

6

8

10

12

14

16

Ru
nt
im

e
in
 se

co
nd

s

Fig. 12. Efficiency of Subschema checking.

For eleven pairs of schemas, at least one of the schemas had an invalid $ref. For two pairs of

schemas, at least one of the two files is not a valid JSON document. These thirteen pairs are omitted

from Table 5.

For the same incompleteness reasons described here, the canonicalizer failed to canonicalize

22 schemas out of the 146 schemas in the JSON schema test suite. However, the schemas in this

test suite indeed cover the entire language features of JSON schema but they do not represent the

real-world use cases of JSON schema in practice.

6.5 Efficiency
To evaluate how fast our subschema checker is in practice for RQ4, we measure the time taken by

subschema checks on a sample of 798 pairs of non-equal schemas from Table 3. We took every time

measurement ten times and report the average. Figure 12 shows the size of pairs of schema files in

KB against the time subschema checking takes in seconds.

In most cases, our subschema checker terminates within a few seconds for moderately sized

schemas, with time increasing roughly linearly with the schema file size. However, our subschema

approach is lazy and terminates on the first violation of a subtyping rule. On one pair of schemas

in our dataset, eliminated from the figure for scaling sake, it took around 2.8 minutes to terminate,

which is not optimal for production. We will explore how to improve on this, for instance, by

on-demand canonicalization.

7 RELATEDWORK
7.1 JSON Schema and Schema Subtyping
Practitioners have significant interest in reasoning about the subtype relation of JSON schemas.

Section 6.3 has an experimental comparison against the strongest competitor among the available

tools, is-json-schema-subset [12], which was developed concurrently with our work. Another

closely related tool
10
relies on simple syntactic checks. For example, that work considers a change

as a breaking change whenever a node is removed from the schema. As illustrated by Figure 3,

removing nodes (and replacing them by others) may yield not only subtypes but even equivalent

schemas. Yet another existing tool
11

checks whether two schemas are equivalent but does not

address the subtyping problem.

Pezoa et al. [19] formally define the syntax and semantics of JSON Schema, including the JSON

validation problem. An alternative formulation of JSON validation uses a logical formalism [6].

10
https://bitbucket.org/atlassian/json-schema-diff-validator

11
https://github.com/mokkabonna/json-schema-compare

22

https://bitbucket.org/atlassian/json-schema-diff-validator
https://github.com/mokkabonna/json-schema-compare

Baazizi et al. [2] address the problem of inferring schemas for irregular JSON data, but their work

does not use the JSON Schema standard we are targeting here. None of the above pieces of work

addresses the subschema problem.

There are other schema definition languages for JSON besides JSON Schema. One popular

alternative is the Swagger/OpenAPI specification language.
12
While similar to JSON Schema, it is

not fully compatible. The swagger-diff tool
13
aims at finding breaking API changes through a set

of syntactic checks, but does not provide the detailed checks that we do. Avro is another schema

definition language
14
, which, however, does not specify a subschema relation. We envision our

work to help define subtype relations of these alternative schema definition languages.

7.2 Type Systems for XML, TypeScript, and Python
CDuce is a functional language designed for working with XML, which can reason about the types

of XML documents and about subtype relations [4]. [25] address the problem of subschema checking

for XML, where it is called schema containment. These approaches treat XML as tree automata,

which is impossible for JSON, as JSON Schema is more expressive than tree automata [19].

Both JavaScript and Python have a convenient built-in syntax for JSON documents. Further-

more, there are type systems retrofitted onto both JavaScript [5] and Python [26]. Therefore, a

reasonable question to ask is whether JSON schema subtype queries could be decided by expressing

JSON documents in those languages and then using the subtype checker of those type systems.

Unfortunately, this is not the case, since JSON Schema contains several features that those type

systems cannot express. For instance, JSON Schema supports negation, multipleOf on numbers,

and pattern on strings, none of which those type systems support.

7.3 Applications of Subschemas
One application of JSON subschema is for statically reasoning about breaking changes of web APIs.

A study of the evolution of such APIs shows that breaking changes are frequent [16]. Another

study reports that breaking changes of web APIs cause distress among developers [10]. Since JSON

schemas and related specifications are widely used to specify data types, our subschema checker

could help identify breaking changes already statically and on the schema-level, instead of relying

on testing.

Data validation for industry-deployed machine learning pipelines is of crucial value as such

pipelines are usually retrained frequently with new data. In order to validate incoming data, Google

TFX [3] synthesizes a custom data schema based on statistics from available data and uses this

schema to validate future data instances fed to the TensorFlow pipeline [7]. Amazon production ML

pipelines [22] offer a declarative API which allow users to manually define desired constraints or

properties of data. Then data quality metrics such as completeness and consistency are measured on

real-time data with respect to the pre-defined constraints and anomalies are reported. Both systems

are missing an explicit notion of schema subtyping. For instance, TFX uses versioned schemas to

track the evolution of inferred data schemas, and reports back to the user whether to update to a

more (or less) permissive schema based on the historical and new data instances [3]. Lale uses

JSON schemas to specify both correct ML pipelines and their search space of hyperparameters [13].

The ML Bazaar also specifies ML primitives via JSON [24]. Another type-based system for building

ML pipelines is described by [20]. These systems could benefit from JSON subschema checking to

avoid running and deploying incompatible ML pipelines.

12
https://swagger.io/

13
https://github.com/civisanalytics/swagger-diff

14
http://avro.apache.org/

23

https://swagger.io/
https://github.com/civisanalytics/swagger-diff
http://avro.apache.org/

8 CONCLUSION
This paper introduces a subtype checker for JSON Schema. There are several features in JSON

Schema that make subtype checking difficult, including a full set of Boolean connectives, enumer-

ations containing values of possibly heterogeneous other types, regular expressions for strings,

and multiple-of constraints for numbers. Our checker is the first to effectively handle these cases.

The evaluation demonstrates that the tool works well on a large set of examples of high real-world

importance, including web APIs, cloud computing, and artificial intelligence.

24

REFERENCES
[1] Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. Transactions on Programming Languages and

Systems (TOPLAS) 15, 4 (Sept. 1993), 575–631. http://doi.acm.org/10.1145/155183.155231

[2] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2017. Counting types for massive JSON

datasets. In Symposium on Database Programming Languages (DBPL). 9:1–9:12. https://doi.org/10.1145/3122831.3122837
[3] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir,

Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti

Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich. 2017.

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. In Conference on Knowledge Discovery and
Data Mining (KDD). 1387–1395. https://doi.org/10.1145/3097983.3098021

[4] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: an XML-centric general-purpose language.

In International Conference on Functional Programming (ICFP). 51–63. https://doi.org/10.1145/944705.944711

[5] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In European Conference for
Object-Oriented Programming (ECOOP). 257–281. https://doi.org/10.1007/978-3-662-44202-9_11

[6] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017. JSON: Data model, Query languages

and Schema specification. In Symposium on Principles of Database Systems (PODS). 123–135. https://doi.org/10.1145/

3034786.3056120

[7] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang, and Sudip Roy. 2019. Data Validation for Machine

Learning. In Conference on Systems and Machine Learning (SysML). https://www.sysml.cc/doc/2019/167.pdf

[8] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae,

Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt,

and Gaël Varoquaux. 2013. API Design for Machine Learning Software: Experiences from the scikit-learn Project.

https://arxiv.org/abs/1309.0238

[9] James Campbell et al. 2017. Great Expectations: Always know what to expect from your data. https://github.com/great-

expectations/great_expectations

[10] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. 2015. Web API growing pains: Loosely coupled yet strongly

tied. Journal of Systems and Software (JSS) 100 (2015), 27–43. https://doi.org/10.1016/j.jss.2014.10.014

[11] Francis Galiegue and Kris Zyp. 2013. JSON Schema draft 04. http://json-schema.org/draft-04/json-schema-validation.

html

[12] Petter Haggholm. 2019. Check if a JSON schema is a subset of another. https://github.com/haggholm/is-json-schema-

subset

[13] Martin Hirzel, Kiran Kate, Avraham Shinnar, Subhrajit Roy, and Parikshit Ram. 2019. Type-Driven Automated Learning

with Lale. https://arxiv.org/abs/1906.03957

[14] John E. Hopcroft and Jeffrey D. Ullman. 2000. Introduction to Automata Theory, Languages and Computation, Second
Edition. Addison-Wesley.

[15] ECMA International. 2017. ECMA-404 Standard: The JSON Data Interchange Syntax. http://www.ecma-international.

org/publications/files/ECMA-ST/ECMA-404.pdf

[16] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. 2013. How Does Web Service API Evolution Affect Clients?. In

International Conference on Web Services (ICWS). 300–307. https://doi.org/10.1109/ICWS.2013.48

[17] Sam Newman. 2015. Building Microservices: Designing Fine Grained Systems. O’Reilly.
[18] David L. Parnas, John E. Shore, and David Weiss. 1976. Abstract types defined as classes of variables. In Conference on

Data: Abstraction, Definition and Structure. 149–154. https://doi.org/10.1145/800237.807133

[19] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč. 2016. Foundations of JSON Schema.

In International Conference on World Wide Web (WWW). 263–273. https://doi.org/10.1145/2872427.2883029

[20] Martin Pilat, Tomas Kren, and Roman Neruda. 2016. Asynchronous Evolution of Data Mining Workflow Schemes by

Strongly Typed Genetic Programming. In International Conference on Tools with Artificial Intelligence (ICTAI). 577–584.
https://doi.org/10.1109/ICTAI.2016.0094

[21] Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Trabucco, Luigi Canali, and Gianraffaele

Percannella. 2016. REST APIs: A Large-Scale Analysis of Compliance with Principles and Best Practices. In International
Conference on Web Engineering (ICWE). 21–39. https://doi.org/10.1007/978-3-319-38791-8_2

[22] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biessmann, and Andreas Grafberger. 2018.

Automating Large-scale Data Quality Verification. In Conference on Very Large Data Bases (VLDB). 1781–1794. https:

//doi.org/10.14778/3229863.3229867

[23] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael

Young, Jean-François Crespo, and Dan Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In

Conference on Neural Information Processing Systems (NIPS). 2503–2511. http://papers.nips.cc/paper/5656-hidden-

technical-debt-in-machine-learning-systems

25

http://doi.acm.org/10.1145/155183.155231
https://doi.org/10.1145/3122831.3122837
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/944705.944711
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/3034786.3056120
https://doi.org/10.1145/3034786.3056120
https://www.sysml.cc/doc/2019/167.pdf
https://arxiv.org/abs/1309.0238
https://github.com/great-expectations/great_expectations
https://github.com/great-expectations/great_expectations
https://doi.org/10.1016/j.jss.2014.10.014
http://json-schema.org/draft-04/json-schema-validation.html
http://json-schema.org/draft-04/json-schema-validation.html
https://github.com/haggholm/is-json-schema-subset
https://github.com/haggholm/is-json-schema-subset
https://arxiv.org/abs/1906.03957
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.1109/ICWS.2013.48
https://doi.org/10.1145/800237.807133
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1109/ICTAI.2016.0094
https://doi.org/10.1007/978-3-319-38791-8_2
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems

[24] Micah J. Smith, Carles Sala, James Max Kanter, and Kalyan Veeramachaneni. 2019. The Machine Learning Bazaar:

Harnessing the ML Ecosystem for Effective System Development. https://arxiv.org/abs/1905.08942

[25] Akihiko Tozawa and Masami Hagiya. 2003. XML Schema Containment Checking based on Semi-implicit Techniques.

In International Conference on Implementation and Application of Automata (CIAA). 213–225. https://doi.org/10.1007/3-

540-45089-0_20

[26] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing

for Python. In Dynamic Languages Symposium (DLS). 45–56. http://doi.acm.org/10.1145/2661088.2661101

[27] Kris Zyp. 2009. JSON Schema. http://json-schema.org/

26

https://arxiv.org/abs/1905.08942
https://doi.org/10.1007/3-540-45089-0_20
https://doi.org/10.1007/3-540-45089-0_20
http://doi.acm.org/10.1145/2661088.2661101
http://json-schema.org/

	Abstract
	1 Introduction
	2 Background
	2.1 JSON Data
	2.2 JSON Schema

	3 Problem Statement
	3.1 JSON Subschema
	3.2 Usage Scenarios
	3.3 Challenges

	4 Algorithm
	4.1 JSON Schema Canonicalization
	4.2 Simplification of Enumeration, Negation, Intersection, and Union Types
	4.3 JSON Subschema Checking

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Correctness in Practice
	6.3 Comparison to Existing Work
	6.4 Completeness in Practice
	6.5 Efficiency

	7 Related Work
	7.1 JSON Schema and Schema Subtyping
	7.2 Type Systems for XML, TypeScript, and Python
	7.3 Applications of Subschemas

	8 Conclusion
	References

