
1

Michael Pradel
TU Darmstadt, software-lab.org

Joint work with Koushik Sen

DeepBugs: A Learning Approach
to Name-based Bug Detection

2

Traditional Approach

How to create a new bug detector?

Time-consuming
process

Program
analysisHuman

expert

2

Traditional Approach

How to create a new bug detector?

Time-consuming
process

Program
analysis

� Heuristics, e.g., to avoid
spurious warnings

� Carefully tuned algorithms,
e.g., to ensure scalability

Human
expert

3

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

3

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

How to get training data?
� Gather past bugs, e.g., from version histories
� Here: Insert artificial bugs via simple program

transformations

3

Learning to Find Bugs

Train a model to distinguish correct from
buggy code

Buggy code

Correct code
Classifier

New code

Buggy/Okay

Train machine
learning model

How to represent code?
� Token-based, AST-based, graph-based, etc.
� Here: Embeddings of natural language

elements in code

4

Benefits of Learning Bug Detectors

Simplifies the problem
� Before: Writing a program analysis

� Now: Providing examples of buggy and correct
code

Catches otherwise missed bugs
� Learns conventions from corpora of existing code

� ML can handle natural language in code, which
expresses domain-specific knowledge

5

Name-related Bugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

What’s wrong with this code?

5

Name-related Bugs

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Incorrect order of arguments

What’s wrong with this code?

6

Name-related Bugs (2)

for (j = 0; j < params; j++) {

if (params[j] == paramVal) {

...

}

}

What’s wrong with that code?

6

Name-related Bugs (2)

for (j = 0; j < params; j++) {

if (params[j] == paramVal) {

...

}

}

Should be params.length

What’s wrong with that code?

7

Overview of DeepBugs

Code
corpus

New
code

Classifier

Bugs

Correct code Buggy code

Correct vectors Buggy vectors

Generate training data

Represent code as vectors

Train classifier

Predict bugs in new code

8

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

8

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

1) Swapped arguments

setPoint(x, y) setPoint(y, x)

8

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

2) Wrong binary operator

i <= length i % length

Randomly selected
operator

8

Generating Training Data

Simple code transformations to inject
artifical bugs into given corpus

3) Wrong binary operand

bits << 2 bits << next

Randomly selected operand
that occurs in same file

9

Representing Code as Vectors

Goal: Exploit natural language
information in identifier names

How to reason about identifier names?

� Prior work: Lexical similarity
� x similar to x dim

� Want: Semantic similarity
� x similar to width

� list similar to seq

10

Word2Vec

Word embeddings
� Continuous vector representation for each word
� Similar words have similar vectors

Learn embeddings from corpus of text
� Context: Surrounding words in sentences

10

Word2Vec

Word embeddings
� Continuous vector representation for each word
� Similar words have similar vectors

Learn embeddings from corpus of text
� Context: Surrounding words in sentences

Input layer:
Context
words

Hidden
layer

Output layer:
Word

Embedding size=200
gensim’s Word2Vec implementation

11

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

11

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

11

Word2Vec for Source Code

Natural
language

� Sentences
� Words

Programming
language

� Program
� Tokens

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Context of x:
function - setPoint - (- , - y -)

12

Example: Embeddings

13

Code Snippets as Vectors

Concatenate embeddings of names in
code snippet

1) Swapped arguments

someObj.someFun(arg1, arg2)

For each argument: Name, type, and
formal parameter name

13

Code Snippets as Vectors

Concatenate embeddings of names in
code snippet

2) + 3) Wrong binary operator/operation

i <= length

For each operand:
Name and type

Parent and grand-parent
AST node type

14

Learning the Bug Detector

� Given: Vector representation of code
snippet

� Train neural network:
Predict whether correct or wrong

Vector
representation
of code
snippet

Probability
that correct

Hidden layer

Hidden layer: size=200, dropout=0.2
RMSprop optimizer with binary cross-entropy as loss function

15

Predicting Bugs in New Code

� Represent code snippet as vector

� Sort warnings by predicted probability
that code is incorrect

Vector
representation
of code
snippet

Probability
that correct

Hidden layer

16

Evaluation: Setup

68 million lines of JavaScript code
� 150k files [Raychev et al.]

� 100k files for training, 50k files for validation

Bug detector Examples

Training Validation

Swapped arguments 1,450,932 739,188
Wrong binary operator 4,901,356 2,322,190
Wrong binary operand 4,899,206 2,321,586

17

Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100,

function(delay, fn) {

setTimeout(delay, fn);

});

17

Examples of Detected Bugs

// From Angular.js

browserSingleton.startPoller(100,

function(delay, fn) {

setTimeout(delay, fn);

});

First argument must be
callback function

17

Examples of Detected Bugs

// From DSP.js

for(var i = 0; i<this.NR_OF_MULTIDELAYS; i++){

// Invert the signal of every even multiDelay

mixSampleBuffers(outputSamples, ...,

2%i==0, this.NR_OF_MULTIDELAYS);

}

17

Examples of Detected Bugs

// From DSP.js

for(var i = 0; i<this.NR_OF_MULTIDELAYS; i++){

// Invert the signal of every even multiDelay

mixSampleBuffers(outputSamples, ...,

2%i==0, this.NR_OF_MULTIDELAYS);

}

Should be i%2==0

18

Precision

Bug Inspected Bugs Code False
detector quality pos.

Swapped args. 50 23 0 27
Wrong bin. operator 50 37 7 6
Wrong bin. operand 50 35 0 15

Total 150 95 7 48

18

Precision

Bug Inspected Bugs Code False
detector quality pos.

Swapped args. 50 23 0 27
Wrong bin. operator 50 37 7 6
Wrong bin. operand 50 35 0 15

Total 150 95 7 48

68% true positives. High, even compared
to manually created bug detectors

19

Accuracy of Classifier

Embedding

Random Learned

Swapped arguments 93.88% 94.70%
Wrong binary operator 89.15% 92.21%
Wrong binary operand 84.79% 89.06%

Validation accuracy (after training)

19

Accuracy of Classifier

Embedding

Random Learned

Swapped arguments 93.88% 94.70%
Wrong binary operator 89.15% 92.21%
Wrong binary operand 84.79% 89.06%

Validation accuracy (after training)

20

Recall of Seeded Bugs

How many of all seeded bugs are found?

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Swapped arguments

20

Recall of Seeded Bugs

How many of all seeded bugs are found?

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Swapped arguments

Learned embeddings
Random embeddings

20

Recall of Seeded Bugs

How many of all seeded bugs are found?

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Swapped arguments

Learned embeddings
Random embeddings

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Wrong binary operator

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Wrong binary operand

20

Recall of Seeded Bugs

How many of all seeded bugs are found?

Embeddings enable generalization across
similar names

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Swapped arguments

Learned embeddings
Random embeddings

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Wrong binary operator

0
0.2
0.4
0.6
0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold for reporting warnings

Wrong binary operand

21

Efficiency

� Data extraction and learning:
28 minutes – 59 minutes
(depending on bug detector)

� Prediction of bugs:
Less than 20ms per JavaScript file

48 Intel Xeon E5-2650 CPU cores, 64GB of memory, 1 NVIDIA
Tesla P100 GPU

22

Open Challenges

� Bug detection based on other code
representations
� Token-based, graph-based, etc.
� One representation for many bug patterns

� Support more bug patterns
� Learn code transformations from version

histories
� Train one model per bug pattern

23

Conclusion

� Bug detection as a learning problem
� Classify code as buggy or correct

� DeepBugs: Name-based bug detector
� Exploit natural language information to detect

otherwise missed bugs
� Learning from seeded bugs yields classifier

that detects real bugs

OOPSLA’18: DeepBugs: A Learning Approach to Name-based
Bug Detection (Pradel & Sen)

ASE’18: How Many of All Bugs Do We Find? A Study of Static
Bug Detectors (Habib & Pradel)

