
1

Andrew Habib, Michael Pradel

TU Darmstadt, Germany

software-lab.org

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors



2

Static Bug Detection

Error Prone



2

Static Bug Detection

� General framework

� Scalable static analysis

� Set of checkers for specific bug
patterns

Error Prone



3

How Many Bugs Do They Find?



3

How Many Bugs Do They Find?

Given a representative set of real-world
bugs, how many of them do static bug
detectors find?



3

How Many Bugs Do They Find?

Given a representative set of real-world
bugs, how many of them do static bug
detectors find?

This talk:
Empirical study with 594 real-world Java
bugs and 3 popular static checkers



4

Real-World Bugs

� 594 bugs from 15 popular Java
projects
� Extended version of Defects4J data set

� Why this set?
� Gathered independently

� Used in other bug-related studies *

� Contains real fixes by developers

* Just et al., 2014 (mutation testing); Shamshiri et al., 2015 (test generation); Pearson et
al., 2017 (fault localization); Martinez et al., 2017 (program repair)



5

Defects4J: Files Involved in Bug

0

50

100

150

200

250

300

350

400

450

500

550

1 2 3 4 5 6 7 11

N
um

be
ro

fb
ug

s

Number of buggy files

501

64

12 10 4 1 1 1



6

Defects4J: Size of Bug Fix

1-
4

5-
9

10
-1

4
15

-1
9

20
-2

4
25

-4
9

50
-7

4
75

-9
9

10
0-

19
9

20
0-

1.9
99

Diff size between buggy and fixed versions (LoC)

296

128

54
29 29 44

6 6 1 10

50

100

150

200

250

300

350

400

450

500

550
N

um
be

ro
fb

ug
s



7

Previous Approach

How to determine which bugs are found?
[Thung et al., 2012]

� Get diff between buggy and fixed code

� Run tool on code with buggy lines

� If warning on buggy line: Bug found

� Result: 50% – 95% of all bugs found

� Limitation:
� No check that warning points to bug
� One tool flags up to 57% of all lines



7

Previous Approach

How to determine which bugs are found?
[Thung et al., 2012]

� Get diff between buggy and fixed code

� Run tool on code with buggy lines

� If warning on buggy line: Bug found

� Result: 50% – 95% of all bugs found

� Limitation:
� No check that warning points to bug
� One tool flags up to 57% of all lines



8

Methodology: Overview
Bug detectorsBugs + fixes

Automated filtering of warnings

Combined
Fixed

warnings-
based

Diff-based



8

Methodology: Overview
Bug detectorsBugs + fixes

Automated filtering of warnings

Combined
Fixed

warnings-
based

Diff-based



8

Methodology: Overview
Bug detectorsBugs + fixes

Automated filtering of warnings

Combined
Fixed

warnings-
based

Diff-based



8

Methodology: Overview

Manual inspection of candidates

Bug detectorsBugs + fixes

Candidates for detected bugs

Detected bugs

Automated filtering of warnings

Combined
Fixed

warnings-
based

Diff-based



9

Methodology: Diff-based

Manual inspection of candidates

Bug detectorsBugs + fixes

Candidates for detected bugs

Detected bugs

Automated filtering of warnings

Diff-based



9

Methodology: Diff-based

1) Identify lines changed to fix bug

2) Intersect with lines with warning



9

Methodology: Diff-based

Buggy file:

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Fixed file:



9

Methodology: Diff-based

Buggy file:

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Fixed file:

Modified line



9

Methodology: Diff-based

Buggy file:

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Fixed file:

Removed line

Modified line



9

Methodology: Diff-based

Buggy file:

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Fixed file:

Newly inserted line

Removed line

Modified line



9

Methodology: Diff-based

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Buggy file:

Warnings by
bug detector

Fixed file:



9

Methodology: Diff-based

1) Identify lines changed to fix bug

2) Intersect with lines with warning

Buggy file:

Warnings by
bug detector

Fixed file:

Candidate for detected bug



10

Example:

public Dfp multiply(final int x) {

return multiplyFast(x);

}

public Dfp multiply(final int x) {

if (x >= 0 && x < RADIX) {

return multiplyFast(x);

} else {

return multiply(newInstance(x));

}

}

Bug fix



10

Example:

public Dfp multiply(final int x) {

return multiplyFast(x);

}

public Dfp multiply(final int x) {

if (x >= 0 && x < RADIX) {

return multiplyFast(x);

} else {

return multiply(newInstance(x));

}

}

Bug fix
Warning:
Missing
@Override



10

Example:

public Dfp multiply(final int x) {

return multiplyFast(x);

}

public Dfp multiply(final int x) {

if (x >= 0 && x < RADIX) {

return multiplyFast(x);

} else {

return multiply(newInstance(x));

}

}

Bug fix
Warning:
Missing
@Override

Candidate for detected bug

-1
+1



11

Method.: Fixed Warnings-based

Manual inspection of candidates

Bug detectorsBugs + fixes

Candidates for detected bugs

Detected bugs

Automated filtering of warnings
Fixed

warnings-
based



11

Method.: Fixed Warnings-based

1) Compare warnings before and after fix

2) Warning that disappears was for bug



11

Method.: Fixed Warnings-based

1) Compare warnings before and after fix

2) Warning that disappears was for bug

Buggy file: Fixed file:



11

Method.: Fixed Warnings-based

1) Compare warnings before and after fix

2) Warning that disappears was for bug

Buggy file: Fixed file:

Warnings by
bug detector



11

Method.: Fixed Warnings-based

1) Compare warnings before and after fix

2) Warning that disappears was for bug

Buggy file: Fixed file:

Warnings by
bug detector

Candidate for detected bug



12

Example

public Week(Date time, TimeZone zone) {

this(time,

RegularTimePeriod.DEFAULT_TIME_ZONE,

Locale.getDefault());

}

public Week(Date time, TimeZone zone) {

this(time,

zone,

Locale.getDefault());

}

Bug fix



12

Example

public Week(Date time, TimeZone zone) {

this(time,

RegularTimePeriod.DEFAULT_TIME_ZONE,

Locale.getDefault());

}

public Week(Date time, TimeZone zone) {

this(time,

zone,

Locale.getDefault());

}

Bug fix Warning:
Chaining
constructor
ignores
argument

Candidate for detected bug



13

Methodology: Combined

Manual inspection of candidates

Bug detectorsBugs + fixes

Candidates for detected bugs

Detected bugs

Automated filtering of warnings

Combined
Fixed

warnings-
based

Diff-based + =



14

Results



15

Warnings to Inspect

All warnings

Per bug Candidates

Tool Min Max Avg Total only

Error Prone 0 148 7.58 4,402 53
Infer 0 36 0.33 198 32
SpotBugs 0 47 1.1 647 68

Total 5,247 153



15

Warnings to Inspect

All warnings

Per bug Candidates

Tool Min Max Avg Total only

Error Prone 0 148 7.58 4,402 53
Infer 0 36 0.33 198 32
SpotBugs 0 47 1.1 647 68

Total 5,247 153



15

Warnings to Inspect

All warnings

Per bug Candidates

Tool Min Max Avg Total only

Error Prone 0 148 7.58 4,402 53
Infer 0 36 0.33 198 32
SpotBugs 0 47 1.1 647 68

Total 5,247 153

97% of all warnings are removed
by the automated filtering step



16

Manual Inspection

Candidate = (bug, warning)

Distinguish coincidental matches from
actually detected bugs

Full match

Partial match

Mismatch

Created by Freepik



17

Manual Inspection: Example

public Dfp multiply(final int x) {

return multiplyFast(x);

}

public Dfp multiply(final int x) {

if (x >= 0 && x < RADIX) {

return multiplyFast(x);

} else {

return multiply(newInstance(x));

}

}

Bug fix
Warning:
Missing
@Override

Candidate for detected bug



17

Manual Inspection: Example

public Dfp multiply(final int x) {

return multiplyFast(x);

}

public Dfp multiply(final int x) {

if (x >= 0 && x < RADIX) {

return multiplyFast(x);

} else {

return multiply(newInstance(x));

}

}

Bug fix
Warning:
Missing
@Override

Mismatch



18

Manual Inspection: Example (2)

public Week(Date time, TimeZone zone) {

this(time,

RegularTimePeriod.DEFAULT_TIME_ZONE,

Locale.getDefault());

}

public Week(Date time, TimeZone zone) {

this(time,

zone,

Locale.getDefault());

}

Bug fix Warning:
Chaining
constructor
ignores
argument

Candidate for detected bug



18

Manual Inspection: Example (2)

public Week(Date time, TimeZone zone) {

this(time,

RegularTimePeriod.DEFAULT_TIME_ZONE,

Locale.getDefault());

}

public Week(Date time, TimeZone zone) {

this(time,

zone,

Locale.getDefault());

}

Bug fix Warning:
Chaining
constructor
ignores
argument

Full match



19

Most Bugs are Missed

Three tools together:
Detect 27 of 594 bugs (less than 5%)

SpotBugs ErrorProne

Infer

14 6

3

0
0

2

2



20

Why are Most Bugs Missed?

Manual inspection of random sample of
20 missed bugs:

14 are domain-specific

� Unrelated to any of the supported bug patterns

� Application-specific algorithms

� Forgot to handle special case

� Difficult to decide whether behavior is intended



20

Why are Most Bugs Missed?

Manual inspection of random sample of
20 missed bugs:

14 are domain-specific

� Unrelated to any of the supported bug patterns

� Application-specific algorithms

� Forgot to handle special case

� Difficult to decide whether behavior is intended



21

Why are Most Bugs Missed? (2)

Manual inspection of random sample of
20 missed bugs:

6 are near misses

� Root cause is targeted by bug detector, but
current implementation misses the bug

� Detector targets similar, but not the same,
problem



22

Conclusion

� Novel methodology to measure how many of a
set of bugs are detected

� Popular static bug detectors miss most bugs

� Main reason: Domain-specific bugs vs. generic
bug patterns

� Huge potential for future work on bug detection



23

Implications for Future Work

Huge potential for:

� Bug detectors that catch domain-specific bugs

� More sophisticated yet precise static analyses

� Generalizations of existing bug checkers

� Bug finding techniques other than static analysis,
e.g., test generation


