Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code

Michael Pradel

Software Lab – University of Stuttgart

Joint work with Matteo Paltenghi

Executive Summary

Direct comparison:

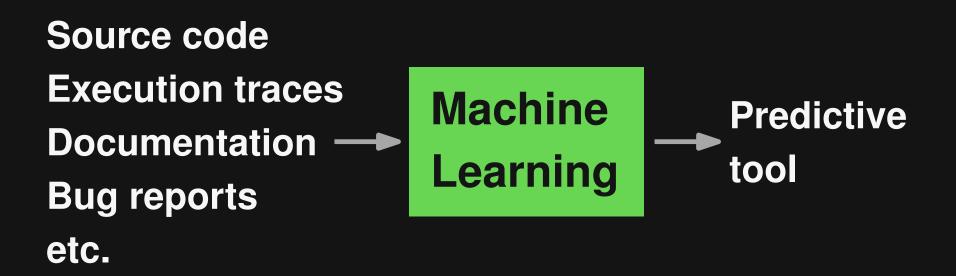
Developers vs. neural models of code

- Humans still (clearly) outperform models
- Partial agreement on what code to focus on
- Models ignore some tokens that developers deem important
- Human-model agreement correlates with prediction accuracy

Should try harder to mimic humans

Neural Software Analysis

Learning developer tools from large software corpora



Neural Software Analysis

Learning developer tools from large software corpora

Machine

Learning

New code, execution, etc. **Predictive** tool Information useful for developers

3 - 2

Neural Software Analysis, CACM'22

Common Tasks

Type prediction

Bug detection

Code summarization

Code completion

Program repair

Common Tasks

Type prediction

Bug detection

Code summarization

Code completion

Program repair

Humans could also do it. \rightarrow Added value: Automation

Understanding Models of Code

- Emphasis of most papers: Accuracy
- Mostly unclear: What do these models actually learn?
 - Intellectually unsatisfying
 - Risk of coincidental accuracy

Developers vs. Neural Models

Do neural models reason about code similarly to human developers?

- If yes: Good news
- If no: Should mimic developers more closely

Methodology

Idea: Compare Humans & Models

Same task

Same code examples

 Measure attention and effectiveness

Task 1: Code Summarization

```
{
    if (!prepared(state)) {
        return state.setStatus(MovementStatus.PREPPING);
    } else if (state.getStatus() == MovementStatus.PREPPING) {
        state.setStatus(MovementStatus.WAITING);
    }
    if (state.getStatus() == MovementStatus.WAITING) {
        state.setStatus(MovementStatus.RUNNING);
    }
    return state;
}
Input: Method body    Output: Method name
        updateState
```

Dataset: 250 methods from 10 Java projects *

* A Convolutional Attention Network for Extreme Summarization of Source Code, ICML'16

Task 2: Program Repair

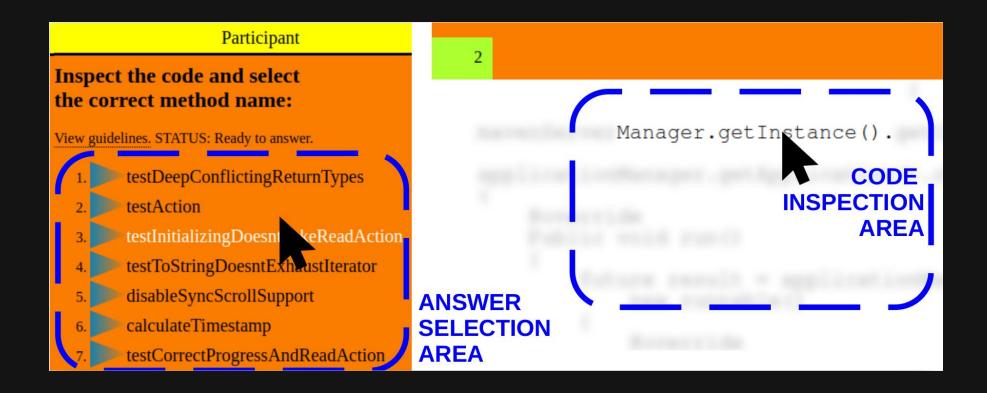
```
public double sqrt(double x, double epsilon) {
    double approx = x / 2d;
    while (Math.abs(x - approx) > epsilon) {
        approx = 0.5d * (approx + x / approx);
    }
    return approx;
}
Input: Method with a buggy line
    ↓
Output: Fixed line
    while (Math.abs(x - approx * approx) > epsilon) {
```

Dataset: 16 bugs from QuixBugs (Java) *

* *QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the Quixey Challenge*, SPLASH'17 (Companion)

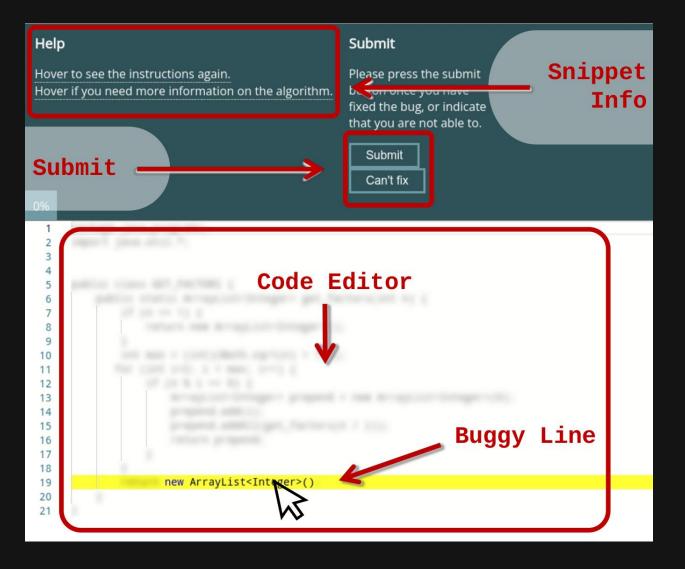
- Goal: Track human attention while performing the task
- Approach: Unbluring-based web interface
 - □ Initially, all code blurred
 - Moving mouse/cursor temporarily unblurs tokens

Task 1: Code Summarization



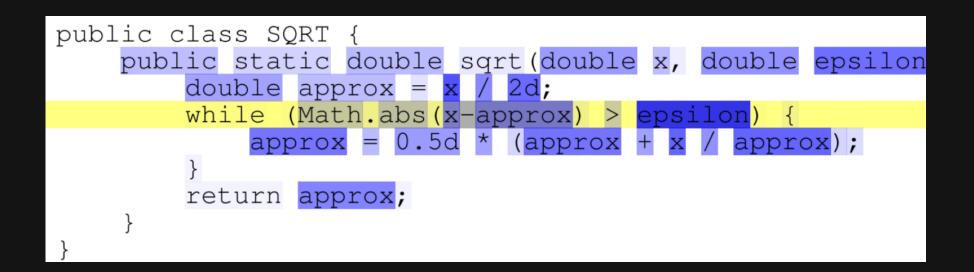
- 91 participants: Undergrads, graduate students, crowd workers
- 1,508 human attention records
- 5+ records for each of 250 methods
- On average per record:
 - 1,271 mouse-token events

Task 2: Program Repair



- 27 participants: Software engineers, graduate students
- 98 bug fixing records
- 5–7 records for each of 16 bugs
- On average per record: 983 unblur events and 13 edit events

Summarize fine-grained attention record into attention map:



Model Attention

Task 1: Code summarization

Convolutional sequence-to-sequence (CNN)

A Convolutional Attention Network for Extreme Summarization of Source Code, ICML'16

Transformer-based, sequence-to-sequence model A Transformer-based Approach for Source Code Summarization, ACL'20

Both models:

Regular attention and copy attention

Model Attention

Task 2: Program repair

LSTM-based, sequence-to-sequence:

SequenceR

SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair, TSE'21

Regular attention and copy attention

AST-based transformer: Recoder

A Syntax-Guided Edit Decoder for Neural Program Repair, FSE'21

Regular attention only

Results

Human-Model Agreement

Do developers and models focus on the same tokens?

Given for each code example

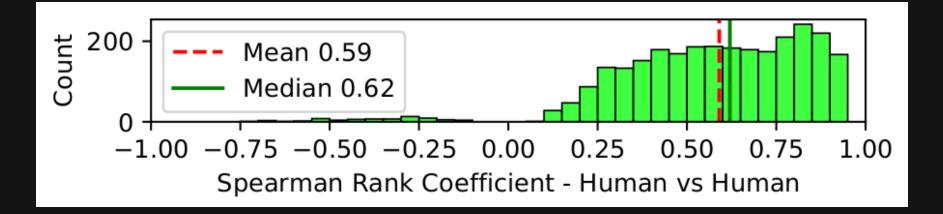
 \Box Human attention vector \vec{h}

Model attention vector \vec{m}

Measure agreement between them

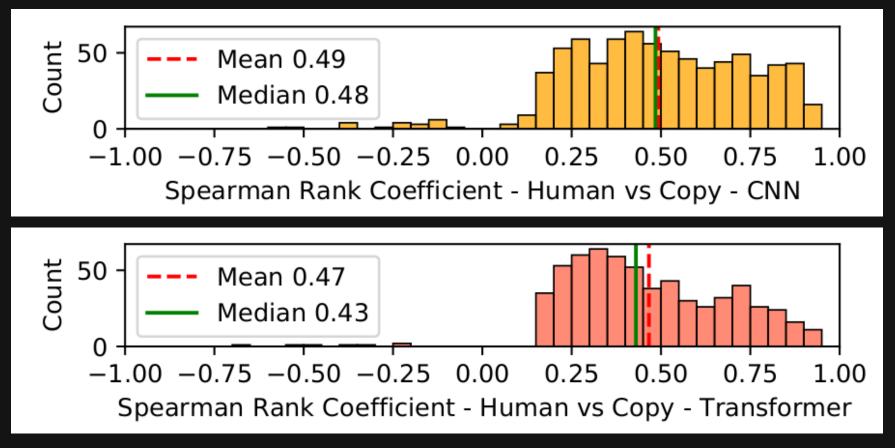
□ Spearman rank correlation: $\frac{cov(rg_{\vec{h}}, rg_{\vec{m}})}{\sigma_{rg_{\vec{i}}}, \sigma_{rg_{\vec{m}}}}$

Human-human agreement:



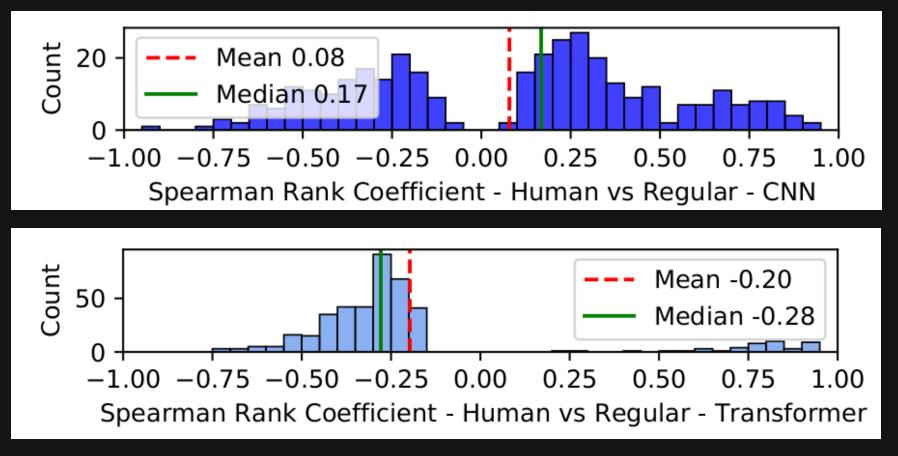
Developers mostly agree on what code matters most

Human vs. copy attention:



Empirical justification for copy attention

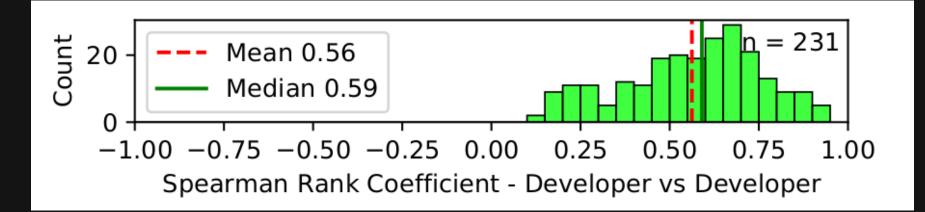
Humans vs. regular attention:



Lots of room for improvement!

Results: Program Repair

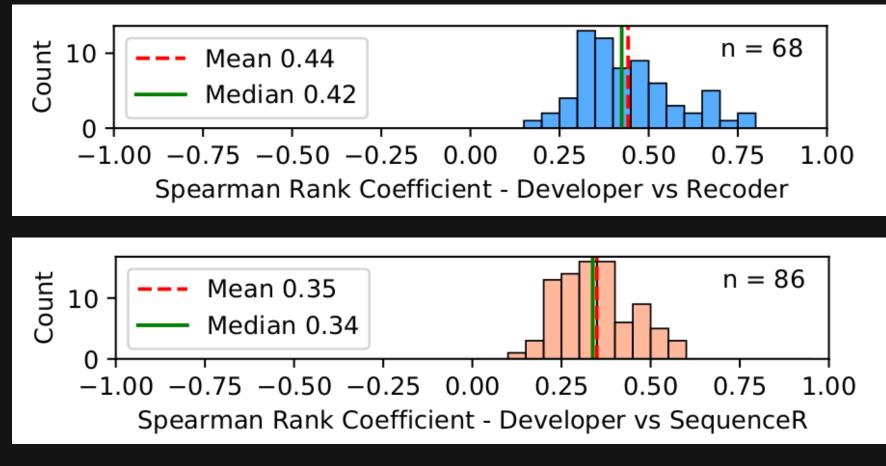
Human-human agreement:



Developers mostly agree on what code matters most

Results: Program Repair

Human-model agreement:

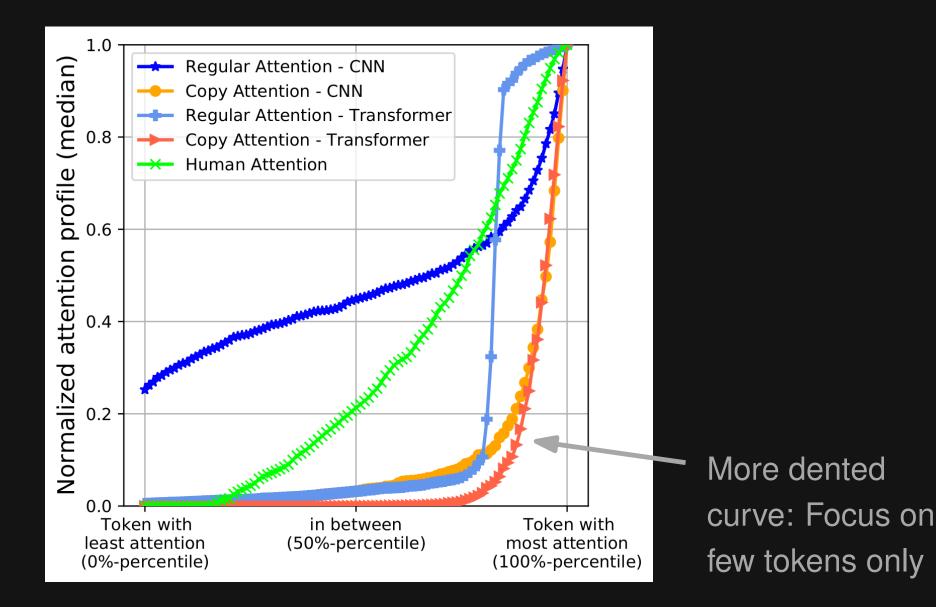


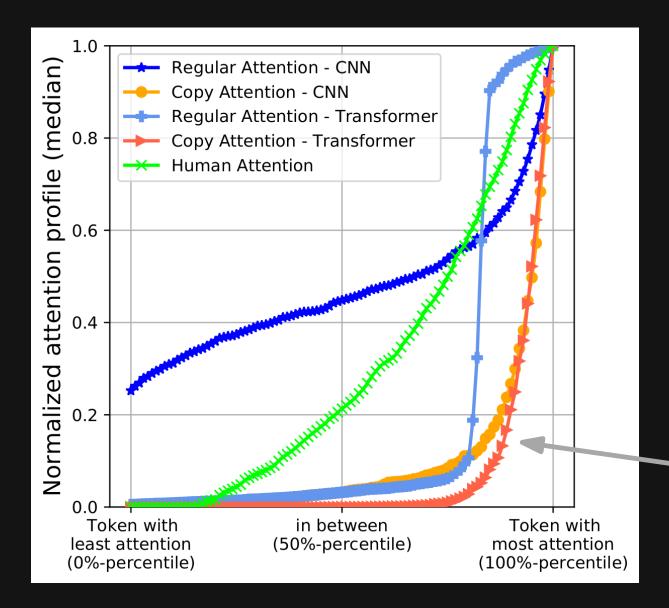
Some room for improvement

Divided vs. Selective Attention

How to distribute attention over the given code?

- One extreme: Equally distribute over all tokens
- Other extreme: Focus on a few tokens only





No model closely matches developers Overspecialization to a few tokens

More dented curve: Focus on few tokens only

Results: Program Repair

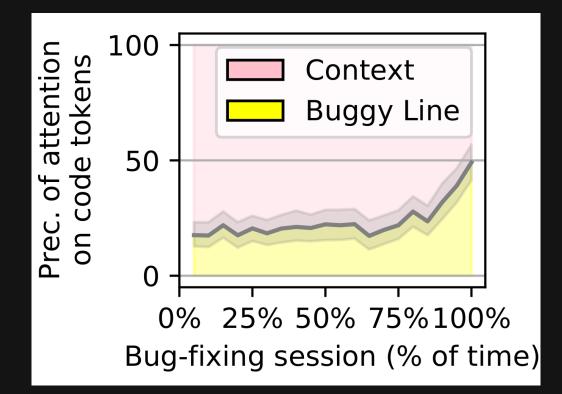
Focus on buggy line vs. code context:

	Buggy line	Context
Developers	37%	63%
SequenceR	67%	33%
Recoder	13%	87%

Again, no model closely matches developers

Results: Program Repair

Human attention evolves over time:



Models could mimic human behavior: First understand, then fix

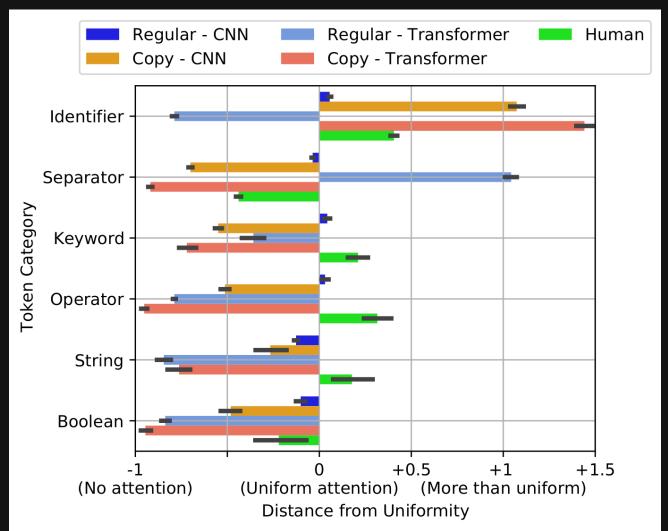
22 - 2

Tokens to Focus On

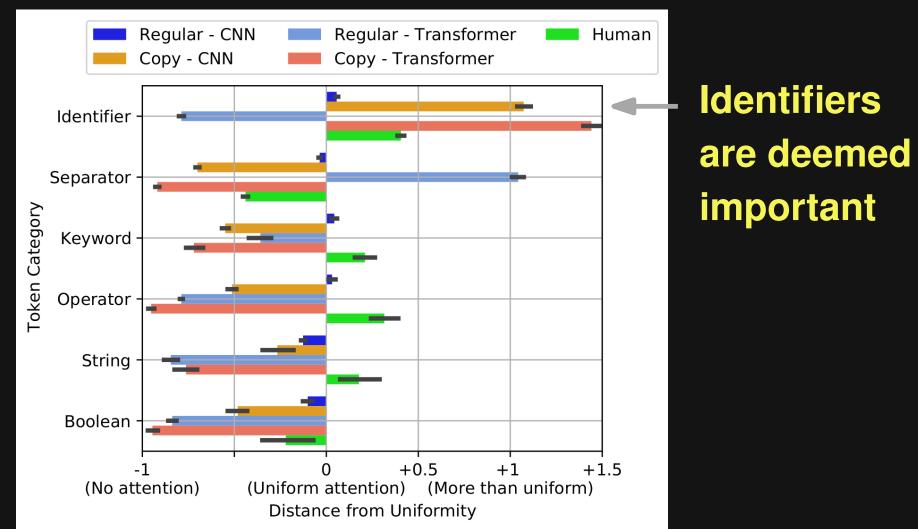
What kind of tokens to focus on?

- Different kinds: Identifiers, separators, etc.
- For each kind, compute distance from uniformity
 - $\Box = 0$ means uniform attention
 - \Box -1 means no attention at all
 - $\Box > 0$ means more than uniform attention

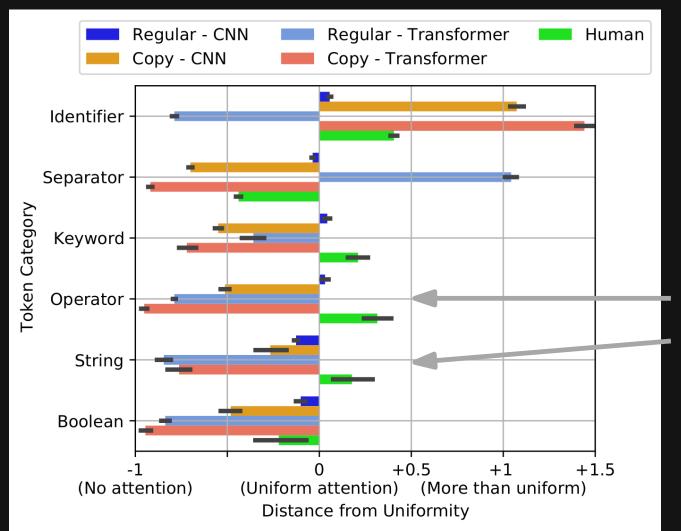
Distance from uniformity:



Distance from uniformity:



Distance from uniformity:

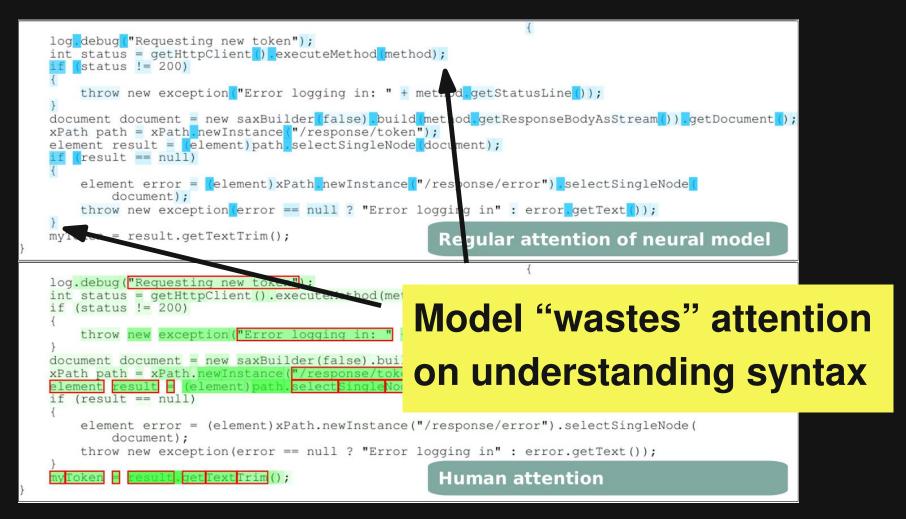


Models mostly ignore some kinds of tokens

Example from Transformer model:

```
log.debug("Requesting new token");
int status = getHttpClient().executeMethod(method);
if (status != 200)
    throw new exception ("Error logging in: " + method.getStatusLine());
document document = new saxBuilder [false], build (method, getResponseBodyAsStream()), getDocument ();
xPath path = xPath.newInstance("/response/token");
element result = (element)path.selectSingleNode(document);
  (result == null)
    element error = (element) xPath.newInstance("/response/error").selectSingleNode(
        document);
   throw new exception (error == null ? "Error logging in" : error.getText());
myToken = result.getTextTrim();
                                                  Regular attention of neural model
log.debug("Requesting new token");
int status = getHttpClient().executeMethod(method);
if (status != 200)
    throw new exception ("Error logging in: " + method.getStatusLine());
document document = new saxBuilder(false).build(method.getResponseBodyAsStream()).getDocument();
xPath path = xPath.newInstance ("/response/token");
element result = (element) path.select
                                                (document);
if (result == null)
    element error = (element) xPath.newInstance("/response/error").selectSingleNode(
        document);
    throw new exception (error == null ? "Error logging in" : error.getText());
                                                  Human attention
                     extTrim();
```

Example from Transformer model:



Example from Transformer model:

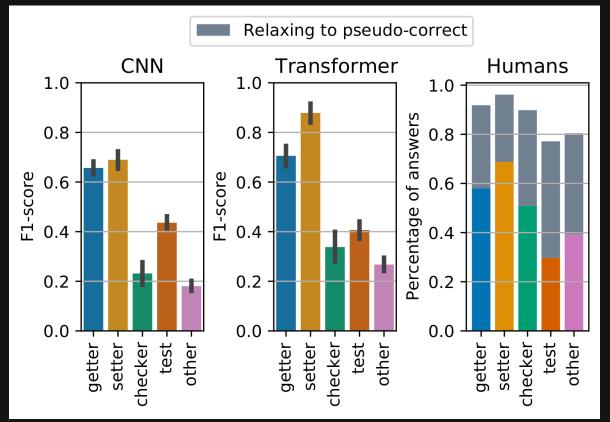
```
log.debug("Requesting new token");
int status = getHttpClient().executeMethod(method);
  (status != 200)
    throw new exception ("Error logging in: " + method.getStatusLine());
document document = new saxBuilder false, build (method.getResponseBodyAsStream()).getDocument();
xPath path = xPath,newInstance("/response token");
element result = (element)path.selectSingleNode(document);
   (result == null)
    element error = [element) xPath, newInstance("/response/error"), selectSingleNode
        document);
    throw new exception (error == null ? "Error
                                                  Model ignores tokens
myToken = result.getTextTrim();
                                                  important to developers
log.debug("Requesting new token");
int status = getHttpClient().executeMethod(meth
if (status != 200)
    throw new exception ("Error logging in:
                                           " + method.getStatusLine());
document document = new saxBuilder(false).build(method.getResponseBodyAsStream()).getDocument();
xPath path = xPath.newInstance(["/response/token"]);
element result = (element) path
                                                document);
if (result == null)
    element error = (element) xPath.newInstance("/response/error").selectSingleNode(
        document);
    throw new exception (error == null ? "Error logging in" : error.getText());
                                                  Human attention
```

Effectiveness

Comparing developers and models w.r.t. their effectiveness at solving the task

- Strengths and weaknesses?
- Can current models compete with developers?

Comparing different kinds of methods:



Models underperform on non-trivial methods

Results: Program Repair

Success rate during program repair:

	Plausible patch ratio		
	Top-5	Top-100	
SequenceR	2/80 (2.5%)	17/1395 (1.2%)	
Recoder	2/80 (2.5%)	10/908 (1.1%)	

Results: Program Repair

Success rate during program repair:

	Plausible patch ratio		
	Top-5	Top-100	
SequenceR Recoder	2/80 (2.5%) 2/80 (2.5%)	17/1395 (1.2%) 10/908 (1.1%)	
	5-7 developers/bug		
Developers	68/98 (69.4%)		

Models are far from human effectiveness

Effectiveness vs. Agreement

Are models more effective when they agree more with developers?

Human-model agreement for all vs. accurate predictions:

	Spearman rank correl.	
	All	Methods with
	methods	$F1 \ge 0.5$
CNN (regular)	80.0	0.24
CNN (copy)	0.49	0.55
Transformer (reg.)	-0.20	0.02
Transformer (copy)	0.47	0.55

More human-like predictions are more accurate

Implications

Direct human-model comparison

Helps understand why models (do not) work

Should create models that mimic humans

- Use human attention during training
- Design models that address current weaknesses
 - E.g., understanding string literals

Conclusions

Available for future research:

- □ Interface for capturing human attention
- Datasets of human attention records

More details:

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE'21