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Metamorphic Testing of
Developer Tools

Why
?

Foundation of successful
software engineering

Buggy tools cause
■ Misbehaving programs

■ Confused developers
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Metamorphic Testing
Why use

?

General answer:
Addresses oracle problem

Specific to developer tools:

■ Inputs (e.g., programs) have

well-defined semantics

■ Can design metamorphic

transformations on top
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This Talk

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]
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Motivating Example

Firefox bug # 1370648

Debugger pauses at a breakpoint
in dead code:
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Testing of Debuggers

■ Inputs

□ Program-to-debug

□ Sequence of actions (e.g., set breakpoint)

■ Output

□ Debugging trace (e.g., pausing, program state)
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Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers

Pause at a breakpoint
on a comment line?



11 - 4

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers

Expected semantics of debugging
actions become clear only when
program executes
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Overview
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Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding

Setting breakpoint at l, which slides to l′,
should be equal to directly setting it at l′
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changed line numbers
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Interactive Metamorphic Testing

Traditional metamorphic testing:

■ Apply transformations without executing the

program

Here:

■ Need to execute to know which transformations

are applicable

E.g., knowing what line a breakpoint slides to
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Evaluation

■ Target: JavaScript debugger of
Chromium

■ 47k JavaScript programs
□ Initial debugging actions:

Randomly created by DBDB [FSE’18]

□ One follow-up input for each program
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Effectiveness
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Examples

Fails to stop at breakpoint:

Chromium bug #889481
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Examples

Incorrect program state:

Chromium bug #901811
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This Talk

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]
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Quantum Computing Stack

Our goal:
Test this

Platforms (e.g., IBM’s
Qiskit and Google’s Circ)

Algorithms

Quantum computers
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Why Relevant?

■ Quantum computing: Emerging field
with huge investments

■ Reliable platforms are crucial

■ Novel, quantum-specific bug patterns
[OOPSLA’22]
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Background: Quantum Software

Quantum algorithm (in Qiskit):
Python program
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Background: Quantum Software

Visual
representation
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Background: Quantum Software

Output:
Probability
distribution
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Automatically test quantum
computing platforms

New and
emerging domain
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Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms

Low-level operations with sometimes
counterintuitive semantics
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Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms

Quantum noise induced by stray
electromagnetic fields or material defects
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Overview of MorphQ
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■ Guarantee: Produces non-crashing
program
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1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution

Partitioned
execution
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3) Execution transformations

■ Change of coupling map

■ Change of gate size

■ Change of optimization level

■ Change of backend
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Metamorphic Transformations

2) Representation transformations

■ Roundtrip conversion via QASM

3) Execution transformations

■ Change of coupling map

■ Change of gate size

■ Change of optimization level

■ Change of backend

IBM Stuttgart,
Germany

IBM Melbourne,
Australia
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Comparing Behavior

■ Expected output relationship:
Equivalence modulo changes in
distribution

□ E.g., changing qubit order will change

measured bitstrings

■ Two oracles

□ Crash vs. non-crash

□ Distribution differences

(via Kolmogorov-Smirnov test)
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Evaluation

■ Target: IBM’s Qiskit quantum
computing platform

■ 48-hour run

□ 8,360 generated programs

□ Same number of follow-up programs

• 23.2% of follow-up programs crash

• 0.7% of non-crashing have distribution differences
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Effectiveness

Bugs filed after

■ Automated clustering

of warnings

■ Delta-debugging to

reduce bug-triggering

program
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Example

Detected by changing optimization level
and injecting null-effect operation
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■ MorphQ: Metamorphic Testing of the
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■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]
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■ Inherently domain-specific

■ Relies on some “model” of the program-under-test

□ E.g., debuggers transform programs and debugging

actions into a debugging trace
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Lessons Learned

Key ingredient:
Metamorphic transformations

■ Inherently domain-specific

■ Relies on some “model” of the program-under-test

□ E.g., debuggers transform programs and debugging

actions into a debugging trace

The better the transformations,
the more bugs you find
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Vaguely specified programs:
Difficult to define precise metamorphic
oracles
■ Negative example:

Testing git version control system

□ Many underspecified corner cases

□ Failed to effectively test it
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Lessons Learned (2)

Vaguely specified programs:
Difficult to define precise metamorphic
oracles
■ Negative example:

Testing git version control system

□ Many underspecified corner cases

□ Failed to effectively test it

Make sure to know (at least parts of) the
program’s intended behavior
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Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

■ Indended semantics are

(relatively) clearly defined

■ Can derive metamorphic relationships

from PL semantics
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Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

■ Indended semantics are

(relatively) clearly defined

■ Can derive metamorphic relationships

from PL semantics

More developer tools are waiting
to be tested
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Open Challenges

■ False positives
□ Debugger testing: 29/59 warnings

□ MorphQ: All warnings due to distribution

differences

■ Automate creation of metamorphic
relationships
□ Initial evidence that ML-based prediction

may help *

* Code Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained
Language Models on Code (Bareiß et al., 2022)
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Summary

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]

Thanks!


