
1

Michael Pradel
Software Lab – University of Stuttgart
Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

Metamorphic Testing of
Developer Tools



2 - 1

Developer Tools



2 - 2

Developer Tools

Compilers
Runtime
engines

Static analyzers

Version
control
systems

Bug trackers
Debuggers



2 - 3

Developer Tools

Compilers
Runtime
engines

Static analyzers

Version
control
systems

Bug trackers
Debuggers



3

Michael Pradel
Software Lab – University of Stuttgart
Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

Metamorphic Testing of
Developer Tools



4 - 1

Metamorphic Testing of
Developer Tools

Why
?



4 - 2

Metamorphic Testing of
Developer Tools

Why
?

Foundation of successful
software engineering

Buggy tools cause
■ Misbehaving programs

■ Confused developers



5

Michael Pradel
Software Lab – University of Stuttgart
Joint work with Daniel Lehmann, Matteo Paltenghi, and
Sandro Tolksdorf

Metamorphic Testing of
Developer Tools



6 - 1

Metamorphic Testing



6 - 2

Metamorphic Testing



6 - 3

Metamorphic Testing

x

y

sin(...)



6 - 4

Metamorphic Testing

x x+ 2π

y y

sin(...)



7 - 1

Metamorphic Testing
Why use

?



7 - 2

Metamorphic Testing
Why use

?

General answer:
Addresses oracle problem

Specific to developer tools:

■ Inputs (e.g., programs) have

well-defined semantics

■ Can design metamorphic

transformations on top



8

This Talk

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]



9

Motivating Example

Firefox bug # 1370648

Debugger pauses at a breakpoint
in dead code:



10

Testing of Debuggers

■ Inputs

□ Program-to-debug

□ Sequence of actions (e.g., set breakpoint)

■ Output

□ Debugging trace (e.g., pausing, program state)



11 - 1

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers



11 - 2

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers

Debugging actions
depend on program



11 - 3

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers

Pause at a breakpoint
on a comment line?



11 - 4

Goal & Challenges

Goal:
Automatically test interactive debuggers

Challenges:

■ Complex input

■ No well-defined oracle

■ Interactive nature of debuggers

Expected semantics of debugging
actions become clear only when
program executes



12

Overview



13 - 1

Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding



13 - 2

Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding
Adding a breakpoint at line l should
cause only additional pauses at l



13 - 3

Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding
Adding a breakpoint at line l should
cause only additional pauses at l

New breakpoint
⇒ Should pause



13 - 4

Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding
Adding a breakpoint at line l should
cause only additional pauses at l



13 - 5

Action Transformations

■ Add breakpoint and continue

■ Replace continue by step

■ Breakpoint sliding

Setting breakpoint at l, which slides to l′,
should be equal to directly setting it at l′



14 - 1

Program Transformations

■ Insert or remove dead code

■ Add parameter

■ Add no-op

■ Replace literal with expression



14 - 2

Program Transformations

■ Insert or remove dead code

■ Add parameter

■ Add no-op

■ Replace literal with expression

Should have no influence except
changed line numbers



14 - 3

Program Transformations

■ Insert or remove dead code

■ Add parameter

■ Add no-op

■ Replace literal with expression

Should show additional variable in program state



14 - 4

Program Transformations

■ Insert or remove dead code

■ Add parameter

■ Add no-op

■ Replace literal with expression

Should show additional variable in program state



15 - 1

Interactive Metamorphic Testing

Traditional metamorphic testing:

■ Apply transformations without executing the

program

Here:

■ Need to execute to know which transformations

are applicable



15 - 2

Interactive Metamorphic Testing

Traditional metamorphic testing:

■ Apply transformations without executing the

program

Here:

■ Need to execute to know which transformations

are applicable

E.g., knowing what line a breakpoint slides to



16

Evaluation

■ Target: JavaScript debugger of
Chromium

■ 47k JavaScript programs
□ Initial debugging actions:

Randomly created by DBDB [FSE’18]

□ One follow-up input for each program



17

Effectiveness



18 - 1

Examples

Fails to stop at breakpoint:

Chromium bug #889481



18 - 2

Examples

Incorrect program state:

Chromium bug #901811



19

This Talk

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]



20 - 1

Quantum Computing Stack

Platforms (e.g., IBM’s
Qiskit and Google’s Circ)

Algorithms

Quantum computers



20 - 2

Quantum Computing Stack

Our goal:
Test this

Platforms (e.g., IBM’s
Qiskit and Google’s Circ)

Algorithms

Quantum computers



21

Why Relevant?

■ Quantum computing: Emerging field
with huge investments

■ Reliable platforms are crucial

■ Novel, quantum-specific bug patterns
[OOPSLA’22]



22 - 1

Background: Quantum Software

Quantum algorithm (in Qiskit):
Python program



22 - 2

Background: Quantum Software

Visual
representation



22 - 3

Background: Quantum Software

Output:
Probability
distribution



23 - 1

Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms



23 - 2

Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms

New and
emerging domain



23 - 3

Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms

Low-level operations with sometimes
counterintuitive semantics



23 - 4

Goal & Challenges

Goal:

Challenges:

■ Relatively few quantum programs

■ No well-defined oracle

■ Unreliable and difficult-to-access hardware

Automatically test quantum
computing platforms

Quantum noise induced by stray
electromagnetic fields or material defects



24

Overview of MorphQ



25 - 1

Generating Programs

■ Template- and grammar-based,
randomized algorithm

■ Guarantee: Produces non-crashing
program



25 - 2

Generating Programs

■ Template- and grammar-based,
randomized algorithm

■ Guarantee: Produces non-crashing
program



26 - 1

Metamorphic Transformations

1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution



26 - 2

Metamorphic Transformations

1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution



26 - 3

Metamorphic Transformations

1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution
Change qubit
order



26 - 4

Metamorphic Transformations

1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution

1) Circuit transformations

■ Change qubit order

■ Inject null-effect operation

■ Add quantum register

■ Inject parameters

■ Partitioned execution

Partitioned
execution



27 - 1

Metamorphic Transformations

2) Representation transformations

■ Roundtrip conversion via QASM

3) Execution transformations

■ Change of coupling map

■ Change of gate size

■ Change of optimization level

■ Change of backend



27 - 2

Metamorphic Transformations

2) Representation transformations

■ Roundtrip conversion via QASM

3) Execution transformations

■ Change of coupling map

■ Change of gate size

■ Change of optimization level

■ Change of backend



27 - 3

Metamorphic Transformations

2) Representation transformations

■ Roundtrip conversion via QASM

3) Execution transformations

■ Change of coupling map

■ Change of gate size

■ Change of optimization level

■ Change of backend

IBM Stuttgart,
Germany

IBM Melbourne,
Australia



28

Comparing Behavior

■ Expected output relationship:
Equivalence modulo changes in
distribution

□ E.g., changing qubit order will change

measured bitstrings

■ Two oracles

□ Crash vs. non-crash

□ Distribution differences

(via Kolmogorov-Smirnov test)



29

Evaluation

■ Target: IBM’s Qiskit quantum
computing platform

■ 48-hour run

□ 8,360 generated programs

□ Same number of follow-up programs

• 23.2% of follow-up programs crash

• 0.7% of non-crashing have distribution differences



30

Effectiveness

Bugs filed after

■ Automated clustering

of warnings

■ Delta-debugging to

reduce bug-triggering

program



31

Example

Detected by changing optimization level
and injecting null-effect operation



32

This Talk

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]



33 - 1

Lessons Learned

Key ingredient:
Metamorphic transformations

■ Inherently domain-specific

■ Relies on some “model” of the program-under-test

□ E.g., debuggers transform programs and debugging

actions into a debugging trace



33 - 2

Lessons Learned

Key ingredient:
Metamorphic transformations

■ Inherently domain-specific

■ Relies on some “model” of the program-under-test

□ E.g., debuggers transform programs and debugging

actions into a debugging trace

The better the transformations,
the more bugs you find



34 - 1

Lessons Learned (2)

Vaguely specified programs:
Difficult to define precise metamorphic
oracles
■ Negative example:

Testing git version control system

□ Many underspecified corner cases

□ Failed to effectively test it



34 - 2

Lessons Learned (2)

Vaguely specified programs:
Difficult to define precise metamorphic
oracles
■ Negative example:

Testing git version control system

□ Many underspecified corner cases

□ Failed to effectively test it

Make sure to know (at least parts of) the
program’s intended behavior



35 - 1

Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

■ Indended semantics are

(relatively) clearly defined

■ Can derive metamorphic relationships

from PL semantics



35 - 2

Lessons Learned (3)

Programs that operate on programs:
Excellent target for metamorphic testing

■ Indended semantics are

(relatively) clearly defined

■ Can derive metamorphic relationships

from PL semantics

More developer tools are waiting
to be tested



36

Open Challenges

■ False positives
□ Debugger testing: 29/59 warnings

□ MorphQ: All warnings due to distribution

differences

■ Automate creation of metamorphic
relationships
□ Initial evidence that ML-based prediction

may help *

* Code Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained
Language Models on Code (Bareiß et al., 2022)



37

Summary

■ Interactive Metamorphic Testing of
Debuggers [ISSTA’19]

■ MorphQ: Metamorphic Testing of the
Qiskit Quantum Computing Platform
[ICSE’23]

■ Lessons learned and open challenges
[ICSE’24, ’25, etc. ?]

Thanks!


