
1

Michael Pradel (University of Stuttgart)

Based on joint work with Aryaz Eghbali, Islem Bouzenia,
Luca Di Grazia, and Wai Chow

Does AI Replace
Software Developers?



2 - 1



2 - 2



2 - 3



2 - 4



3

This Talk

1) Overview of state-of-the-art

2) My answer to the question

3) Peek into the future



4 - 1

Timeline
Work on AI-based
software dev. tools *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020



4 - 2

Timeline
Work on AI-based
software dev. tools *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

TabNine ChatGPTCopilot

Today: ≈ 50% of
papers at top SE
conferences



4 - 3

Timeline
Work on AI-based
software dev. tools *

Year

* Estimate based on Neural Software Analysis, Pradel & Chandra, CACM’22

2015 2020

TabNine ChatGPTCopilot

Today: ≈ 50% of
papers at top SE
conferences

Our first publication
(“Deep Learning to
Find Bugs”)



5 - 1

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs



5 - 2

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs

■ Code completion

■ Neural bug
detection

■ Automated
program repair



6

Code Completion

■ [Copilot demo]



7 - 1

Problem Solved?

Useful, but many unsolved questions

■ Challenge 1: Project-specific APIs

■ Challenge 2: Prioritizing context



7 - 2

Problem Solved?

Useful, but many unsolved questions

■ Challenge 1: Project-specific APIs

■ Challenge 2: Prioritizing context

Code used
for training

AI



7 - 3

Problem Solved?

Useful, but many unsolved questions

■ Challenge 1: Project-specific APIs

■ Challenge 2: Prioritizing context

Code used
for training

Your
project

AI
???



7 - 4

Problem Solved?

Useful, but many unsolved questions

■ Challenge 1: Project-specific APIs

■ Challenge 2: Prioritizing context

<

Prompt size
of models:

Size of real-world projects:



8 - 1

An API somewhere in our project:

Code we want to complete:



8 - 2

An API somewhere in our project:

Code we want to complete:

Prediction by CodeGen model



8 - 3

An API somewhere in our project:

Code we want to complete:

Prediction by ChatGPT’s model



8 - 4

An API somewhere in our project:

Code we want to complete:

Prediction by ChatGPT’s model

Problem: Hallucination



9

De-Hallucinator



10 - 1

An API somewhere in our project:

Code we want to complete:



10 - 2

An API somewhere in our project:

Code we want to complete:



10 - 3

An API somewhere in our project:

Code we want to complete:

Augmented prompt:



10 - 4

An API somewhere in our project:

Code we want to complete:

Augmented prompt:



11 - 1

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs



11 - 2

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs

Does AI replace software developers?

Powerful tool, but (so far) only for
small-scale code completion



12 - 1

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

Example 1:

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23



12 - 2

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

Example 1: Always True
Doesn’t
match the
message

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23



12 - 3

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

if n2 > n1 :

raise ValueError(’Total internal reflection

impossible for n1 > n2’)

Example 1:

Example 2:

Always True
Doesn’t
match the
message

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23



12 - 4

Motivation

if len(bits) != 4 or len(bits) != 6:

raise template.TemplateSyntaxError("%r takes

exactly four or six arguments (second argument

must be ’as’)" % str(bits[0]))

if n2 > n1 :

raise ValueError(’Total internal reflection

impossible for n1 > n2’)

Example 1:

Example 2:

Always True
Doesn’t
match the
message

Condition and
message are
inconsistent

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23



13

CMI-Finder

Goal:
Detect condition-message inconsistencies

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

■ Why?
□ Incorrect conditions may raise unnecessary

warnings or suppress expected warnings
□ Incorrect messages make debugging

unnecessarily hard

■ Hard problem!
□ Must understand both NL and PL



14

Overview of CMI-Finder

Code corpus Code to analyze

Message-condition
pairs

Training Prediction

Warnings about
inconsistencies

Data extraction

Neural model

Preprocessing
& embedding

Generate
inconsistent
examples

6x



15 - 1

Does It Work?

■ 78% precision and 72% recall
on historic bugs

■ 50 new inconsistencies in previously
unseen projects

■ Complements traditional linters

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23



15 - 2

Does It Work?

■ 78% precision and 72% recall
on historic bugs

■ 50 new inconsistencies in previously
unseen projects

■ Complements traditional linters

When to Say What: Learning to Find Condition-Message Inconsistencies, ICSE’23

But: Limited to a specific kind of bug



16 - 1

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs



16 - 2

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs

Does AI replace software developers?

Makes bug detection easier, but human
judgement still required



17 - 1

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

def f(x, y):
s = x + y
if (s % 2) == 0:
return True

Typical evolution of a Python project:

time

Code without
type annotations



17 - 2

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> bool:
s: int = x + y
if (s % 2) == 0:
return True

Partially annotated code



17 - 3

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> bool:
s: int = x + y
if (s % 2) == 0:
return True

Partially annotated code

Type error!



17 - 4

Types in Python

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22

Typical evolution of a Python project:

time

def f(x: int, y) -> Optional[bool]:
s: int = x + y
if (s % 2) == 0:
return True

Fixed type error



18

Too Many Type Errors

■ Most existing Python code bases:
Plenty of static type errors

■ Easy to detect by gradual type checker

■ But: No time to fix them all

The Evolution of Type Annotations in Python: An Empirical Study, FSE’22



19

PyTy: Approach

Commits with
type error fixes

Dataset of
isolated fixes

Pre-trained
TFix model

Candidate
fix

Code with
type errors

Fixed code

PyTy model

Type checking
for validation

Type checking &
delta debugging

Fine-tuning



20

Does It Work?

Samples Effectiveness of PyTy

Classes of type errors (test set) Error Exact
removal match

Incompatible variable type 821 (83) 90.4% 65.1%
Incompatible parameter type 600 (60) 80.0% 36.7%
Incompatible return type 296 (30) 73.3% 43.3%
Invalid type 291 (30) 100.0% 83.3%
Unbound name 258 (26) 76.9% 42.3%
Incompatible attribute type 258 (26) 92.3% 73.1%
Unsupported operand 124 (13) 76.9% 38.5%
Strengthened precondition 59 (6) 83.3% 50.0%
Weakened postcondition 51 (6) 50.0% 0.0%
Call error 8 (1) 100.0% 100.0%

Total 2,766 (281) 85.4% 54.4%



21 - 1

Examples

PyTy finds exactly the developer fix:
vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {’yes’ if constraint > 0
else (’no’ if constraint == 0 else ’check stack’)}")

Code with type error:
vprint(f"{prefix} {lineno}: {action_name}
Constrain Mouse: {’yes’ if constraint > 0
else (’no’ if constrained == 0 else ’check stack’)}")

Unbound name



21 - 2

Examples

Developer fix (semantically equivalent):
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, _fmt(string)

)

PyTy finds a valid fix:
byte_string = _fmt(string)
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, byte_string

)

Code with type error:
string = _fmt(string)
return lib.TCOD_console_get_height_rect_fmt(
self.console_c, x, y, width, height, string

)

Declared to have type str

but used as bytes



22 - 1

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs



22 - 2

Three Examples

Software development activities
(traditionally done by hand):

■ Write code

■ Search for bugs

■ Fix bugs

Does AI replace software developers?

Successfully automates bug fixing for a
specific class of bugs



23

What’s Next?

Current AI-based development tools are
only the beginning!

■ Autonomous software development
agents

■ Neuro-symbolic program analysis

λ AI

AI AI

Web
search

Code
editor



24 - 1

Big Picture

Key feature of humans:
Ability to develop tools

Software
development
tools



24 - 2

Big Picture

Key feature of humans:
Ability to develop tools

Software
development
tools

Traditionally:
Compilers and
hand-crafted
program analyses

Now:
Learning-based
tools



25 - 1

Does AI replace
software developers?



25 - 2

Does AI replace
software developers?

Yes, but only those
who don’t adapt


