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Why Seed Bugs?

Large set of known, realistic bugs
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Idea: Imitate a Known Bug
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Example and Challenges

if (process.platform === "darwin")

* Known bug fix

if (process.platform !== "win32")
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Example and Challenges

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

Challenge 1: Where in the target
program to seed this kind of bug?



Example and Challenges

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

Challenge 2: How to adapt the
bug to the target program?



Example and Challenges

if (process.platform === "darwin")

. * Seed bug

if (process.platform !=

Challenge 3: How to handle
“unbound” tokens?



Step 1: Abstraction to Bug Pattern

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

= Reduce to smallest AST subtree that
contains all changed tokens

s Abstract identifiers and literals
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Step 1: Abstraction to Bug Pattern

idl.id2 === 1litl

* Seed bug

idl.id2 !== 1it2

= Reduce to smallest AST subtree that
contains all changed tokens

s Abstract identifiers and literals



Step 2: Semantic Matching

idl.id2 === 1litl
* Seed bug
idl.id2 !'== 1lit2

// Target program
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === '"x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings
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Step 2: Semantic Matching

process.platform === "darwin" ﬁ

Seed bug

| =— epq n - - .
B e Semantically similar

= Seed bug here
// Target program
hasFailed = item.errCode === -1; J

if (hasFailed &&|process.arch === "x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings



Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug

process.platform !== "win32"

hasFailed = item.errCode === -1;

if (hasFailed && process.arch === '"x64")
* Seed bug

hasFailed = item.errCode === -1;

if (hasFailed && process.arch !== ???)
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Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug
process.platform !== "win32" What literal
to use?
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === '"x64")
* Seed bug
hasFailed = item.errCode === -1;

if (hasFailed &&| process.arch !==



Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A

man

woman

King




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A

man

woman
queen

King




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A
® arch

platform
[

process
[

"win32” ®

»darwin” ® x64”




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A
® arch

platform
[

process
[

o :

“darwin” ”’x64”




Step 3: Apply

Pattern

Bind unbound token

S via analogy

queries in token embedding space:

A

platfor

process
“win32”

“darwin”

arch
m




Step 3: Apply

Pattern

Bind unbound token

S via analogy

queries in token embedding space:

A

platfor

process
“win32”

“darwin”

arch
m




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:
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Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug

process.platform !== "win32"

hasFailed = item.errCode === -1;

if (hasFailed && process.arch === '"x64")
* Seed bug

hasFailed = item.errCode === -1
if (hasFailed && process.arch !== -
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Evaluation

= 3,600 bug fixes from 100 popular
JavaScript repositories

o Single-line changes with “bug”, “fix”, etc. In
commit message

= 2,201 bug seeding patterns

1 62% have at least one unbound token



Reproducing Real Bugs

= Seed 10 bugs per matching location
= Can reproduce held-out, real bugs?
1 SemSeed reproduces 47/53 bugs
0 Syntactic baseline: 16/53 bugs

« Main reason: Fails to guess unbound tokens



Learning Bug Detectors

Use seeded bugs as training data for
learning bug detectors [peepBugs, 00PSLA18]
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Artificial seeds 1.1M bugs, SemSeed seeds 248K bugs.
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Learning Bug Detectors

Use seeded bugs as training data for
learning bug detectors [peepBugs, 00PSLA18]
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Incorrect assighment bugs, corpus of 120K files.
Artificial seeds 1.1M bugs, SemSeed seeds 248K bugs.



Summary
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Comparison: Mutation Operators

= Comparison with 23 mutation
operators in Mutandis [icsT'13]

0 SemSeed supports 16/23 mutation operators

1 98.2% of SemSeed-generated bugs go beyond
the 23 operators

= Complementary to traditional
mutation operators
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