Semantic Bug Seeding:
A Learning-Based Approach
for Creating Realistic Bugs

Michael Pradel
Software Lab — University of Stuttgart

Joint work with Jibesh Patra



Why Seed Bugs?

Large set of known, realistic bugs

SN\

Benchmark for Training data for

= [est suites m Learning-based bug
= Bug detectors detectors

= Repair tools s Learning-based

repair tools



Idea: Imitate a Known Bug

Buggy
target

Known bug program

Buggy
target
program

SemSeed

Target
program



Example and Challenges

if (process.platform === "darwin")

* Known bug fix

if (process.platform !== "win32")

- 1



Example and Challenges

if (process.platform === "darwin")

.” * Seed bug

if (process.platform !== "win32")



Example and Challenges

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

Challenge 1: Where in the target
program to seed this kind of bug?



Example and Challenges

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

Challenge 2: How to adapt the
bug to the target program?



Example and Challenges

if (process.platform === "darwin")

. * Seed bug

if (process.platform !=

Challenge 3: How to handle
“unbound” tokens?



Step 1: Abstraction to Bug Pattern

if (process.platform === "darwin")
* Seed bug
if (process.platform !== "win32")

= Reduce to smallest AST subtree that
contains all changed tokens

s Abstract identifiers and literals

- 1



Step 1: Abstraction to Bug Pattern

process.platform === "darwin"
* Seed bug
process.platform !== "win32"

= Reduce to smallest AST subtree that
contains all changed tokens

s Abstract identifiers and literals



Step 1: Abstraction to Bug Pattern

idl.id2 === 1litl

* Seed bug

idl.id2 !== 1it2

= Reduce to smallest AST subtree that
contains all changed tokens

s Abstract identifiers and literals



Step 2: Semantic Matching

idl.id2 === 1litl
* Seed bug
idl.id2 !'== 1lit2

// Target program
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === '"x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings

- 1



Step 2: Semantic Matching

idl.id2 === 1litl

Seed bug
idl.id2 !'== 1lit2

// Target program
hasFailed = |item.errCode === -1
if (hasFailed &&|process.arch === "x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings



Step 2: Semantic Matching

process.platform === "darwin"
* Seed bug
process.platform !== "win32"

// Target program
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === '"x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings



Step 2: Semantic Matching

process.platform === "darwin" ﬁ

Seed bug

| =— epq n - - .
B e Semantically similar

= Seed bug here
// Target program
hasFailed = item.errCode === -1; J

if (hasFailed &&|process.arch === "x64")

= Syntactic matching

= Semantic matching based on
learned token embeddings



Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug

process.platform !== "win32"

hasFailed = item.errCode === -1;

if (hasFailed && process.arch === '"x64")
* Seed bug

hasFailed = item.errCode === -1;

if (hasFailed && process.arch !== ???)

- 1



Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug
process.platform !== "win32" What literal
to use?
hasFailed = item.errCode === -1;
if (hasFailed && process.arch === '"x64")
* Seed bug
hasFailed = item.errCode === -1;

if (hasFailed &&| process.arch !==



Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A

man

woman

King




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A

man

woman
queen

King




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A
® arch

platform
[

process
[

"win32” ®

»darwin” ® x64”




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

A
® arch

platform
[

process
[

o :

“darwin” ”’x64”




Step 3: Apply

Pattern

Bind unbound token

S via analogy

queries in token embedding space:

A

platfor

process
“win32”

“darwin”

arch
m




Step 3: Apply

Pattern

Bind unbound token

S via analogy

queries in token embedding space:

A

platfor

process
“win32”

“darwin”

arch
m




Step 3: Apply Pattern

Bind unbound tokens via analogy
queries in token embedding space:

arch
platform
process
o X86”
’win32”

“darwin”

A




Step 3: Apply Pattern

process.platform === "darwin"
* Seed bug

process.platform !== "win32"

hasFailed = item.errCode === -1;

if (hasFailed && process.arch === '"x64")
* Seed bug

hasFailed = item.errCode === -1
if (hasFailed && process.arch !== -

/7-10



Evaluation

= 3,600 bug fixes from 100 popular
JavaScript repositories

o Single-line changes with “bug”, “fix”, etc. In
commit message

= 2,201 bug seeding patterns

1 62% have at least one unbound token



Reproducing Real Bugs

= Seed 10 bugs per matching location
= Can reproduce held-out, real bugs?
1 SemSeed reproduces 47/53 bugs
0 Syntactic baseline: 16/53 bugs

« Main reason: Fails to guess unbound tokens



Learning Bug Detectors

Use seeded bugs as training data for
learning bug detectors [peepBugs, 00PSLA18]

10 1.0
0.8 0.8;
c
o | — i
g 0 = 06
< 8
q 0.41 0.4
0.2 Syntactic 0.0l Syntactic
0.0 . 0.0
0.5

Incorrect assighment bugs, corpus of 120K files.

Threshold for classifying a bug

Threshold for classifying a bug

Artificial seeds 1.1M bugs, SemSeed seeds 248K bugs.

10 -



Learning Bug Detectors

Use seeded bugs as training data for
learning bug detectors [peepBugs, 00PSLA18]

10 1.0;
0.8; 0.8
c
8 3
N o
5 0.4 -
0.2 Syntactic 0.0l Syntactic
0050 0.5 0 0.0 - - -
Threshold for classifying a bug Threshold for classifying a bug

Incorrect assighment bugs, corpus of 120K files.
Artificial seeds 1.1M bugs, SemSeed seeds 248K bugs.



Summary

Bug fix Abstraction
CHyliciCEl into bug pattern

Learned
tokens
: beddi
Target Semantic embeddings
program matching
Many

Apply
patterns

—» realistic
bugs

11



Comparison: Mutation Operators

= Comparison with 23 mutation
operators in Mutandis [icsT'13]

0 SemSeed supports 16/23 mutation operators

1 98.2% of SemSeed-generated bugs go beyond
the 23 operators

= Complementary to traditional
mutation operators

12



