
1

Michael Pradel, University of Stuttgart
Joint work with Masudul Hasan Masud Bhuiyan, Adithya Srinivas
Parthasarathy, Nikos Vasilakis, and Cristian-Alexandru Staicu

SecBench.js
An Executable Security Benchmark Suite
for Server-Side JavaScript

2

Why Do We Want Benchmarks?

■ Fuels progress in a research community

□ E.g., MNIST in machine learning, SPEC CPU in compilers

■ Avoids duplicate work

□ Gathering and setting up a dataset takes time

■ Makes approaches comparable

□ Head-to-head comparison, instead of “we believe we are better

because ...”

3

Focus: JavaScript Vulnerabilities

■ Scope

□ JavaScript packages on npm

□ Server-side code

□ Vulnerable (not malicious) code

■ Importance

□ > 2 million npm packages

□ Thousands of vulnerabilities

□ Dozens of new vulnerability-related techniques each year

4 - 1

Example: Command Injection

const command = ‘zip --quiet --recurse-paths ${

options.destination

} ${sources}‘;

const zipProcess = cp.exec(command, {

stdio: "inherit",

cwd: options.cwd

});

Vulnerable code (bestzip package):
Untrusted string
becomes part of an
OS-level command

4 - 2

Example: Command Injection

const command = ‘zip --quiet --recurse-paths ${

options.destination

} ${sources}‘;

const zipProcess = cp.exec(command, {

stdio: "inherit",

cwd: options.cwd

});

Vulnerable code (bestzip package):

zip({

source: "",

destination: "./; touch bestzip",

})

Attack code:

Untrusted string
becomes part of an
OS-level command

Attacker can
execute arbitrary
commands

5 - 1

Desired Properties of a Benchmark

■ Realistic

■ Executable

■ Two-sided

■ Vetted

5 - 2

Desired Properties of a Benchmark

■ Realistic

■ Executable

■ Two-sided

■ Vetted

■ Diverse, real-world software

■ Unmodified code

■ Why?
□ Success on benchmark

⇒ Success on reality

5 - 3

Desired Properties of a Benchmark

■ Realistic

■ Executable

■ Two-sided

■ Vetted

■ Proof-of-concept attack that

exploits the vulnerability

■ Why?

□ Evidence that exploitable

□ Basis for evaluating mitigation

techniques

5 - 4

Desired Properties of a Benchmark

■ Realistic

■ Executable

■ Two-sided

■ Vetted
■ Both vulnerable and fixed code

■ Why?

□ Evaluate false positives

□ Study and learn from fixes

5 - 5

Desired Properties of a Benchmark

■ Realistic

■ Executable

■ Two-sided

■ Vetted ■ Manually checked

■ Why?

□ Avoid noise of large-scale,

automated data gathering

6 - 1

Existing Benchmarks

Benchmark/dataset Language Vulns. Realistic Exec. exploits Two-sided Vetted

CGC C 590 ✗ ✓ ✗ ✓

Juliet C/C++, Java, C# 121,922 ✗ ✓ ✓ ✓

LAVA-M C 2,265 ✗ ✓ ✓ ✗

BigVul C/C++ 3,745 ✓ ✗ ✓ ✗

Ferenc et al. ’19 JavaScript 1,496 ✓ ✗ ✓ ✗

VulinOSS various 17,738 ✓ ✗ ✗ ✗

Magma C 118 ✓ ✗ ✓ ✓

Ghera Java/Android 25 ✓ ✓ ✗ ✓

Ponta et al. Java 624 ✓ ✗ ✓ ✓

SecBench.js JavaScript 600 ✓ ✓ ✓ ✓

6 - 2

Existing Benchmarks

Benchmark/dataset Language Vulns. Realistic Exec. exploits Two-sided Vetted

CGC C 590 ✗ ✓ ✗ ✓

Juliet C/C++, Java, C# 121,922 ✗ ✓ ✓ ✓

LAVA-M C 2,265 ✗ ✓ ✓ ✗

BigVul C/C++ 3,745 ✓ ✗ ✓ ✗

Ferenc et al. ’19 JavaScript 1,496 ✓ ✗ ✓ ✗

VulinOSS various 17,738 ✓ ✗ ✗ ✗

Magma C 118 ✓ ✗ ✓ ✓

Ghera Java/Android 25 ✓ ✓ ✗ ✓

Ponta et al. Java 624 ✓ ✗ ✓ ✓

SecBench.js JavaScript 600 ✓ ✓ ✓ ✓

7

SecBench.js

■ 600 JavaScript vulnerabilities

□ Code injection

□ Command injection

□ Path traversal

□ Prototype pollution

□ ReDoS

■ Three applications
See ICSE’23 paper and https://github.com/cristianstaicu/SecBench.js

8

Methodology

Three data sources:
Snyk, GitHub Advisories, Huntr.dev

Filter: Available, installable, reproducible

Create exploits

Search for CVE and fixing commit

9 - 1

Creating Exploits

■ Validate that code is vulnerable and can be exploited

■ Two steps:
1) Perform security-relevant action

2) Check success with exploit oracle

9 - 2

Creating Exploits

■ Validate that code is vulnerable and can be exploited

■ Two steps:
1) Perform security-relevant action

2) Check success with exploit oracle

Example: Code and command injection
1) Create file
2) Check whether file exists

9 - 3

Creating Exploits

■ Validate that code is vulnerable and can be exploited

■ Two steps:
1) Perform security-relevant action

2) Check success with exploit oracle

Example: ReDoS
1) Trigger expensive regexp matching
2) Check that processing time > threshold

9 - 4

Creating Exploits

■ Validate that code is vulnerable and can be exploited

■ Two steps:
1) Perform security-relevant action

2) Check success with exploit oracle

Example: Prototype polution
1) Add special property to prototype of all objects
2) Check that property exists

10

Example: Prototype Pollution

test("prototype pollution in lodash", () => {
// setup
const mergeF = require("lodash").defaultsDeep;
const payload = ’{"constructor": {"prototype": {"polluted": "yes"}}}’;
// sanity check
expect({}.polluted).toBe(undefined);
// exploit
mergeF({}, JSON.parse(payload));
// oracle check
expect({}.polluted).toBe("yes");
// cleanup
delete Object.prototype.polluted;

});

11

Overview of Benchmark

Type of vulnerability Nb. exploits Has fix Has CVE

Code injection 40 21 20
Command injection 101 41 90
Path traversal 169 19 80
Prototype pollution 192 126 158
ReDoS 98 78 59

Total 600 285 407

12

Installation and Execution

■ One folder per vulnerability

□ package.json to install vulnerable package and its dependencies

□ Executable exploit as a test case

□ JSON file with meta-data

■ 12 minutes to install entire benchmark

■ 13 minutes to execute all exploits

13

Applications

■ Finding mislabeled vulnerable versions

■ Finding flawed fixes

■ Localizing sink calls (see paper)

■ Evaluate detection and mitigation techniques

14

Finding Vulnerable Versions

■ Which versions of a package are affected?

■ For each version of the vulnerable package

□ Install package in this version

□ Try to run exploit

15 - 1

Number of Vulnerable Versions

15 - 2

Number of Vulnerable Versions

Some vulnerabilities
affect only a few versions

Others affect many versions
(maximum: 1,487)

16

Mislabeled Version Ranges

■ Vulnerability databases
indicate range of affected
versions

□ Basis, e.g., for npm’s security

warnings

■ Are these ranges correct?

□ 168 versions in 19 packages are incorrectly labeled as

non-vulnerable

17 - 1

Examples

17 - 2

Examples

Mislabeled as
non-vulnerable,
but actually can
be exploited!

17 - 3

Examples

Affects legacy
versions

17 - 4

Examples

Affects the
latest available
version:
Zero-day!

18

Finding Flawed Fixes

■ Fix may overfit to a proof-of-concept attack

■ E.g., prototype pollution

□ Can inject properties via obj. proto and

obj.constructor.prototype

■ For each vulnerability

□ Update to latest version

□ If exploit not successful:

Check if simple mutations of exploit work

19

Results

■ 18 successful exploits of “fixed” versions

□ Twelve new CVEs

■ Surprisingly simple way of finding zero-day
vulnerabilities

20 - 1

Example

“Fixed” version of Mozilla’s convict package:
const path = k.split(’.’)
const childKey = path.pop()
const pKey = path.join(’.’)
if (!(pKey == ’__proto__’ ||

pKey == ’constructor’ ||
pKey == ’prototype’)) {

const parent = walk(this._instance, pKey, true)
parent[childKey] = v
}

20 - 2

Example

“Fixed” version of Mozilla’s convict package:
const path = k.split(’.’)
const childKey = path.pop()
const pKey = path.join(’.’)
if (!(pKey == ’__proto__’ ||

pKey == ’constructor’ ||
pKey == ’prototype’)) {

const parent = walk(this._instance, pKey, true)
parent[childKey] = v
}

Works for the original exploit, but
fails to prevent writes to, e.g.,
constructor.prototype.x

21

Other Applications of SecBench.js

■ Evaluation of vulnerability detection techniques

□ How many of all vulnerabilities can they find?

□ E.g. evaluation of “Bimodal Taint Analysis” (ISSTA’23)

■ Evaluation of mitigation techniques

□ How many of all exploits can they prevent?

■ Empirical studies
□ Static and dynamic properties of vulnerabilities, exploits, and fixes

22

SecBench.js – Conclusion

■ First benchmark of JavaScript vulnerabilities that is

□ Realistic

□ Executable

□ Two-sided

□ Vetted

■ Side product: 20 zero-day vulnerabilities

See ICSE’23 paper and https://github.com/cristianstaicu/SecBench.js

