DynaPyt:
A Dynamic Analysis
Framework for Python

Michael Pradel
Software Lab — University of Stuttgart
Joint work with Aryaz Eghbali

Dynamic Analysis for Python

Python:

= Extremely popular

= Highly dynamic language

= Underrepresented as a target
language In research

- 1

Dynamic Analysis for Python

Python:

= Extremely popular M

Dynamic Analysis for Python

Python:

= Extremely popular

= Highly dynamic language

= Underrepresented as a target
language In research

Dynamic Analysis for Python

Python:

= Extremely popular

= Highly dynamic language

= Underrepresented as a target
language In research

Perfect target for dynamic analyses!

Implementing a Dynamic Analysis

= Option 1: Implement from scratch

7 Custom source-level instrumentation

o Custom bytecode-level instrumentation

= Option 2: Built-in constructs

1 sys.settrace: Observe every line or opcode

- 1

Implementing a Dynamic Analysis

= Option 1: Implement from scratch

7 Custom source-level instrumentation

o Custom bytecode-level instrumentation

= Option 2: Built-in constructs

1 sys.settrace: Observe every line or opcode

~ High engineering effort,
repeated for each analysis

Implementing a Dynamic Analysis

= Option 1: Implement from scratch

7 Custom source-level instrumentation

o Custom bytecode-level instrumentation

= Option 2: Built-in constructs

—— 0 sys.settrace: Observe every line or opcode

~ Abstraction mismatch, observation-only,
relatively high overhead

Dynamic Analysis Frameworks

Target language Analysis framework(s)

JavaScript Jalangi, NodeProf
WebAssembly Wasabi

Java DiSL, RoadRunner
x86 binaries Pin, Valgrind

Python 222

This Talk: DynaPyt

First general-purpose dynamic analysis
framework for Python

m Hierarchy of runtime events
s Pay-per-use principle
m Observe and modify all runtime behavior

m Six client analyses (and more coming)

Overview of DynaPyt

Source Analysis (.py) «.--c2/ls....__
code (.py) :

y y

» Instrumentedcalls
code (.py)

Overview of DynaPyt

Source AnaIyS|s ¢ py) 4.-..9?!['? ______ :
code (.py) ' EEE -
Original code
(.py.orig)
M
AST metadata
» (.Json)
» Instrumentedcalls

code (.py)

Example 1: Branch Coverage

from collections import defaultdict
from .BaseAnalysis import BaseAnalysis

class BranchCoverage (BaseAnalysis) :
def init (self):
self.branches = defaultdict (lambda: 0)

def enter control flow(self, ast, iid, condition) :

self .branches[(iid, condition)] +=1

- 1

Example 1: Branch Coverage

Build upon base analysis

from collections import defaultdict
from .BaseAnalysis import BaseAnalysis <&

class BranchCoverage (BaseAnalysis) :
def init (self):
self.branches = defaultdict (lambda: 0)

def enter control flow(self, ast, iid, condition) :
self .branches[(iid, condition)] +=1

Example 1: Branch Coverage

Build upon base analysis

from collections import defaultdict
from .BaseAnalysis import BaseAnalysis <&

class BranchCoverage (BaseAnalysis) :
def init (self):
self.branches = defaultdict (lambda: 0)

——» def enter control flow(self, ast, iid, condition) :
self .branches[(iid, condition)] +=1

— Register for all control flow events

Example 1: Branch Coverage

Build upon base analysis

from collections import defaultdict
from .BaseAnalysis import BaseAnalysis <&

class BranchCoverage (BaseAnalysis) :
def init (self):
self.branches = defaultdict (lambda: 0) «

——» def enter control flow(self, ast, iid, condition) :
self.branches[(iid, condition)] +=1 <=

— Register for all control flow events

Initialize and update branch counts —.

Example 2: Key-in-List Anti-Pattern

Performance anti-pattern:

d is the list of words read from a large file
queries is a list of words to check
for query in queries:
if query in d:
print (£'Found {query}’)

- 1

Example 2: Key-in-List Anti-Pattern

Performance anti-pattern:

d is the list of words read from a large file

queries is a list of words to check

for query in queries:
if |query in d:

<V print (£’Found {query}’)

Slow, because repeatedly
iterates through the list

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseBAnalysis import BaseBAnalysis

class KeyInListAnalysis (BaseAnalysis) :
def init (self):
self.threshold = 100

def _in(self, ast, iid, left, right, result):
if (isinstance(right, list) and
len(right) > self.threshold) :
print ('Performance warning’)

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseBAnalysis import BaseBAnalysis

class KeyInListAnalysis (BaseAnalysis) :
def init (self):
self.threshold = 100

—» def in(self, ast, iid, left, right, result):
if (isinstance(right, list) and
len(right) > self.threshold) :
print ('Performance warning’)

— Register for binary operator in

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseBAnalysis import BaseBAnalysis

class KeyInListAnalysis (BaseAnalysis) :
def init (self):
self.threshold = 100

—» def in(self, ast, iid, left, right, result):
if (isinstance(right, list) and
len(right) > self.threshold) :
print (' Performance warning’) <

— Register for binary operator in

Warn when used on long lists —
8-5

Event Hierarchy

= Many different runtime events (97)

= Instead of hard-coding an event
granularity:
Hierarchy of event APIs to register for

- 1

Event Hierarchy

runtime_event

E begin_execution, end_execution
uncaught_exception
literal
L integer, boolean, string, dictionary, ...(4 more)
=— operation
binary_operation
augmented_assign
L bit.and_assign, add_assign, ...(11 more)
add, divide, bit.and, ...(12 more)
+— unary_operation
bit_invert, minus, not, plus
=— comparison
L equal, greater_than, in, is_not, ...(6 more)
=— control_flow_event
L conditional_control_flow
enter_while, exit_while, ...(4 more)
enter_control_flow
L enter_if, enter_for, enter_while
exit_control_flow
L exit_if, exit_for, exit_.while
raise, enter_try, pre_call, continue, ...(6 more)
function_exit

L function_exit, return, yield
L memory_access
read

L read.identifier, read_subscript, read_attribute
write, delete

Event Hierarchy

runtlme _event

col_rol_flow event
conditional_control_flow
enter_while, exit_while, ...(4 more)
erltEr_controI_row
enter_if, enter_for, enter_while
exlicontrol_flow
exit_if, exit_for, exit_while
— raise, enter_try, pre_call, continue, ...(6 more)
— fu[Etion_exit
function_exit, return, yield

Source-to-Source Instrumentation

s AST-based transformation rules

= Modify expressions and statements to
inject calls into the runtime engine

10

Examples (1)

Evaluating an integer literal:

23

l

_int (£, iid, 23)

f, 1id, and opid are placeholders for
filename, instruction id, and operator id

1 -

Examples (1)

Evaluating an integer literal:

23

!

Notify runtime engine
about the literal

_int (£, iid, 23)

f, 1id, and opid are placeholders for

filename, instruction id, and operator id 110

Examples (2)

For-in loops:

for x in coll:
stmts

'

for x in _gen (f, iid, coll):

stmts

else:
_exit for (£, iid)

f, 1id, and opid are placeholders for
filename, instruction id, and operator id

12 -

1

Examples (2)

For-in loops:
Fore s A @eilile Indlcatelthat generator
stmts expression produces
l another value

[

for x in|_gen (f, iid, coll) 1
stmts

else:
_exit for (£, iid)

Indicate that loop
has terminated

f, 1id, and opid are placeholders for
filename, instruction id, and operator id

12 -

Examples (3)

Complex expression and assighnment:

c=a-+b

v
c = write (f,
iid, _binary op (£, iid,
lambda: a, opid, lambda: b),

f, 1id, and opid are placeholders for
filename, instruction id, and operator id

[lambda: c])

13 -

1

Examples (3)

Complex expression and assighnment:

c=a+b s Wrap subexpressions into a lambda
functions to delay evaluation

= Runtime engine controls when to

evaluate each expression

= Analysis may change values

iid, binary ép (f, iid, ‘
lambda: aj opid, |lambda: b1, [lambda: c])

f, 1id, and opid are placeholders for

filename, instruction id, and operator id 13-

Examples (3)

Complex expression and assighnment:

c=a-+b
Analysis interested in writes
can see old and new value
\ /
c = _write (f,
iid| binary op (£, iid,

lambda: a, opid, lambda: b)

[lambda: c] »

f, 1id, and opid are placeholders for
filename, instruction id, and operator id

Pay-per-Use Principle

s Selective instrumentation

= Inject only those calls needed for the
analysis

14

Evaluation

= Benchmarks
1 9 popular open-source projects
o 1.3 MLoC, 153k test cases
= Research questions
o Efficiency of instrumentation
o Faithfulness to original semantics
o Complexity of client analyses

5 Runtime overhead

15

Efficiency of Instrumentation

Repository Instrument time Python Lines

(mm:ss) files of code
ansible/ansible 06:59 2,188 176,173
django/django 14:07 3,603 318,602
keras-team/keras 05:41 678 155,407
pandas-dev/pandas 12:32 2,727 358,195
psf/requests 00:16 54 6,370
Textualize/rich 00:57 178 24,362
scikit-learn/scikit-learn 06:52 1,419 180,185
scrapy/scrapy 01:49 505 37,181
nvbn/thefuck 01:21 620 12,070

16 -

1

Efficiency of Instrumentation

Repository Instrument time Python Lines

(mm:ss) files of code
ansible/ansible 06:59 2,188 176,173
django/django 14:07 3,603 318,602
keras-team/keras 05:41 678 155,407
pandas-dev/pandas 12:32 2,727 358,195
psf/requests 00:16 54 6,370
Textualize/rich 00:57 178 24,362
scikit-learn/scikit-learn 06:52 1,419 180,185
scrapy/scrapy 01:49 505 37,181
nvbn/thefuck 01:21 620 12,070

2.4 seconds per 1,000 LoC

16 -

Faithfulness to Original Semantics

Passing test cases:

without instrum. % after instrum.

1,651
189

402
136,898
39

068
9,400
1,841
1,798

93.4%
98.4%
99.8%
99.8%
100.0%
99.5%
97.8%
99.6%
100.0%

17 -

1

Faithfulness to Original Semantics

Passing test cases:

without instrum. % after instrum.

1,651 93.4% Reasons why
189 98.4% 1 not yet 100%
402 99.8% D
136,898 99.8% m Assertions that
39 100.0% Inspect the stack
568 99.5% = [wo known and
9,400 97.8% . _
1,798 100.0% the instrumenter

17 -

Example Analyses

Name Description Analysis LoC
hooks

BranchCoverage Measures how often each 1 6
branch gets covered

CallGraph Computes a dynamic call graph 1 19

KeylnList Warns about performance 2 10
anti-pattern of linearly search
through a list

MLMemory Warns about memory leak is- 4 29
sues in deep learning code

SimpleTaint Taint analysis useful to, e.g., 7 53
detect SQL injections

AllEvents Implements the 1 4,

runtime event analysis hook
to trace all events

18

Runtime Overhead

B TraceAll W BranchCoverage OnlyAdd M settrace

—
Q
-—
&)
I
T
@
0}
e
[
)]
>
@)

Project #

Runtime Overhead

Trace all events: Most expensive analysis
|

B TraceAll W BranchCoverage OnlyAdd M settrace

—
Q
-—
&)
I
T
@
0}
e
[
)]
>
@)

5

Project #

Runtime Overhead

All control flow branching points
|

B TraceAll W BranchCoverage OnlyAdd M settrace

—
Q
-—
&)
I
T
@
0}
e
[
)]
>
@)

5

Project #

Runtime Overhead

All “plus™ operations
|

B TraceAll W BranchCoverage OnlyAdd M settrace

—
Q
-—
&)
I
T
@
0}
e
[
)]
>
@)

5

Project #

Runtime Overhead

Built-in Python API
I

B TraceAll W BranchCoverage OnlyAdd M settrace

Project #

DynaPyt is 6%—87% faster
for lightweight analyses

Conclusions

= DynaPyt: First dynamic analysis
framework for Python

o Event hierarchy
o Pay-per-use principle
= More details:
0 Upcoming FSE’22 paper
0 https://github.com/sola-st/DynaPyt

Talk to me about analysis ideas!

20

