
1

Michael Pradel
Software Lab – University of Stuttgart

Joint work with Aryaz Eghbali

DynaPyt:
A Dynamic Analysis
Framework for Python

2 - 1

Dynamic Analysis for Python

Python:

■ Extremely popular
■ Highly dynamic language
■ Underrepresented as a target

language in research

2 - 2

Dynamic Analysis for Python

Python:

■ Extremely popular
■ Highly dynamic language
■ Underrepresented as a target

language in research

2 - 3

Dynamic Analysis for Python

Python:

■ Extremely popular
■ Highly dynamic language
■ Underrepresented as a target

language in research

2 - 4

Dynamic Analysis for Python

Python:

■ Extremely popular
■ Highly dynamic language
■ Underrepresented as a target

language in research

Perfect target for dynamic analyses!

3 - 1

Implementing a Dynamic Analysis

■ Option 1: Implement from scratch

□ Custom source-level instrumentation

□ Custom bytecode-level instrumentation

■ Option 2: Built-in constructs

□ sys.settrace: Observe every line or opcode

3 - 2

Implementing a Dynamic Analysis

■ Option 1: Implement from scratch

□ Custom source-level instrumentation

□ Custom bytecode-level instrumentation

■ Option 2: Built-in constructs

□ sys.settrace: Observe every line or opcode

High engineering effort,
repeated for each analysis

3 - 3

Implementing a Dynamic Analysis

■ Option 1: Implement from scratch

□ Custom source-level instrumentation

□ Custom bytecode-level instrumentation

■ Option 2: Built-in constructs

□ sys.settrace: Observe every line or opcode

Abstraction mismatch, observation-only,
relatively high overhead

4

Dynamic Analysis Frameworks

Target language Analysis framework(s)

JavaScript Jalangi, NodeProf

WebAssembly Wasabi

Java DiSL, RoadRunner

x86 binaries Pin, Valgrind

Python ???

5

This Talk: DynaPyt

First general-purpose dynamic analysis
framework for Python

■ Hierarchy of runtime events

■ Pay-per-use principle

■ Observe and modify all runtime behavior

■ Six client analyses (and more coming)

6 - 1

Overview of DynaPyt

Source
code (.py)

Analysis (.py)

Instrumented
code (.py)

Instrumenter
Runtime
engine

calls

calls

6 - 2

Overview of DynaPyt

Source
code (.py)

Analysis (.py)

Original code
(.py.orig)

AST metadata
(.json)

Instrumented
code (.py)

Instrumenter
Runtime
engine

calls

calls

uses

7 - 1

Example 1: Branch Coverage

from collections import defaultdict

from .BaseAnalysis import BaseAnalysis

class BranchCoverage(BaseAnalysis):

def __init__(self):

self.branches = defaultdict(lambda: 0)

def enter_control_flow(self, ast, iid, condition):

self.branches[(iid, condition)] += 1

7 - 2

Example 1: Branch Coverage

from collections import defaultdict

from .BaseAnalysis import BaseAnalysis

class BranchCoverage(BaseAnalysis):

def __init__(self):

self.branches = defaultdict(lambda: 0)

def enter_control_flow(self, ast, iid, condition):

self.branches[(iid, condition)] += 1

Build upon base analysis

7 - 3

Example 1: Branch Coverage

from collections import defaultdict

from .BaseAnalysis import BaseAnalysis

class BranchCoverage(BaseAnalysis):

def __init__(self):

self.branches = defaultdict(lambda: 0)

def enter_control_flow(self, ast, iid, condition):

self.branches[(iid, condition)] += 1

Build upon base analysis

Register for all control flow events

7 - 4

Example 1: Branch Coverage

from collections import defaultdict

from .BaseAnalysis import BaseAnalysis

class BranchCoverage(BaseAnalysis):

def __init__(self):

self.branches = defaultdict(lambda: 0)

def enter_control_flow(self, ast, iid, condition):

self.branches[(iid, condition)] += 1

Build upon base analysis

Register for all control flow events

Initialize and update branch counts

8 - 1

Example 2: Key-in-List Anti-Pattern

d is the list of words read from a large file

queries is a list of words to check

for query in queries:

if query in d:

print(f’Found {query}’)

Performance anti-pattern:

8 - 2

Example 2: Key-in-List Anti-Pattern

d is the list of words read from a large file

queries is a list of words to check

for query in queries:

if query in d:

print(f’Found {query}’)

Performance anti-pattern:

Slow, because repeatedly
iterates through the list

8 - 3

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseAnalysis import BaseAnalysis

class KeyInListAnalysis(BaseAnalysis):
def __init__(self):

self.threshold = 100

def _in(self, ast, iid, left, right, result):
if (isinstance(right, list) and

len(right) > self.threshold):
print(’Performance warning’)

8 - 4

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseAnalysis import BaseAnalysis

class KeyInListAnalysis(BaseAnalysis):
def __init__(self):

self.threshold = 100

def _in(self, ast, iid, left, right, result):
if (isinstance(right, list) and

len(right) > self.threshold):
print(’Performance warning’)

Register for binary operator in

8 - 5

Example 2: Key-in-List Anti-Pattern

Analysis to find instances of this pattern:

from .BaseAnalysis import BaseAnalysis

class KeyInListAnalysis(BaseAnalysis):
def __init__(self):

self.threshold = 100

def _in(self, ast, iid, left, right, result):
if (isinstance(right, list) and

len(right) > self.threshold):
print(’Performance warning’)

Register for binary operator in

Warn when used on long lists

9 - 1

Event Hierarchy

■ Many different runtime events (97)

■ Instead of hard-coding an event
granularity:
Hierarchy of event APIs to register for

9 - 2

Event Hierarchy
runtime event

begin execution, end execution
uncaught exception
literal

integer, boolean, string, dictionary, ...(4 more)
operation

binary operation
augmented assign

bit and assign, add assign, ...(11 more)
add, divide, bit and, ...(12 more)

unary operation
bit invert, minus, not, plus

comparison
equal, greater than, in, is not, ...(6 more)

control flow event
conditional control flow

enter while, exit while, ...(4 more)
enter control flow

enter if, enter for, enter while
exit control flow

exit if, exit for, exit while
raise, enter try, pre call, continue, ...(6 more)
function exit

function exit, return, yield
memory access

read
read identifier, read subscript, read attribute

write, delete

9 - 3

Event Hierarchy

runtime event
control flow event

conditional control flow
enter while, exit while, ...(4 more)
enter control flow

enter if, enter for, enter while
exit control flow

exit if, exit for, exit while
raise, enter try, pre call, continue, ...(6 more)
function exit

function exit, return, yield

10

Source-to-Source Instrumentation

■ AST-based transformation rules

■ Modify expressions and statements to
inject calls into the runtime engine

11 - 1

Examples (1)

23

Evaluating an integer literal:

int(f, iid, 23)

f, iid, and opid are placeholders for
filename, instruction id, and operator id

11 - 2

Examples (1)

23

Evaluating an integer literal:

Notify runtime engine
about the literal_int_(f, iid, 23)

f, iid, and opid are placeholders for
filename, instruction id, and operator id

12 - 1

Examples (2)

For-in loops:

for x in coll:

stmts

for x in _gen_(f, iid, coll):

stmts

else:

_exit_for_(f, iid)

f, iid, and opid are placeholders for
filename, instruction id, and operator id

12 - 2

Examples (2)

For-in loops:
Indicate that generator
expression produces
another value

Indicate that loop
has terminated

for x in coll:

stmts

for x in _gen_(f, iid, coll):

stmts

else:

_exit_for_(f, iid)

f, iid, and opid are placeholders for
filename, instruction id, and operator id

13 - 1

Examples (3)

Complex expression and assignment:

c = a + b

c = _write_(f,

iid, _binary_op_(f, iid,

lambda: a, opid, lambda: b), [lambda: c])

f, iid, and opid are placeholders for
filename, instruction id, and operator id

13 - 2

Examples (3)

Complex expression and assignment:

■ Wrap subexpressions into a lambda

functions to delay evaluation

■ Runtime engine controls when to

evaluate each expression

■ Analysis may change values

c = a + b

c = _write_(f,

iid, _binary_op_(f, iid,

lambda: a, opid, lambda: b), [lambda: c])

f, iid, and opid are placeholders for
filename, instruction id, and operator id

13 - 3

Examples (3)

Complex expression and assignment:

c = a + b

c = _write_(f,

iid, _binary_op_(f, iid,

lambda: a, opid, lambda: b), [lambda: c])

f, iid, and opid are placeholders for
filename, instruction id, and operator id

Analysis interested in writes
can see old and new value

14

Pay-per-Use Principle

■ Selective instrumentation

■ Inject only those calls needed for the
analysis

15

Evaluation

■ Benchmarks

□ 9 popular open-source projects

□ 1.3 MLoC, 153k test cases

■ Research questions

□ Efficiency of instrumentation

□ Faithfulness to original semantics

□ Complexity of client analyses

□ Runtime overhead

16 - 1

Efficiency of Instrumentation

Repository Instrument time Python Lines
(mm:ss) files of code

ansible/ansible 06:59 2,188 176,173
django/django 14:07 3,603 318,602
keras-team/keras 05:41 678 155,407
pandas-dev/pandas 12:32 2,727 358,195
psf/requests 00:16 54 6,370
Textualize/rich 00:57 178 24,362
scikit-learn/scikit-learn 06:52 1,419 180,185
scrapy/scrapy 01:49 505 37,181
nvbn/thefuck 01:21 620 12,070

16 - 2

Efficiency of Instrumentation

Repository Instrument time Python Lines
(mm:ss) files of code

ansible/ansible 06:59 2,188 176,173
django/django 14:07 3,603 318,602
keras-team/keras 05:41 678 155,407
pandas-dev/pandas 12:32 2,727 358,195
psf/requests 00:16 54 6,370
Textualize/rich 00:57 178 24,362
scikit-learn/scikit-learn 06:52 1,419 180,185
scrapy/scrapy 01:49 505 37,181
nvbn/thefuck 01:21 620 12,070

2.4 seconds per 1,000 LoC

17 - 1

Faithfulness to Original Semantics

without instrum. % after instrum.

1,651 93.4%
189 98.4%
402 99.8%

136,898 99.8%
39 100.0%

568 99.5%
9,400 97.8%
1,841 99.6%
1,798 100.0%

Passing test cases:

17 - 2

Faithfulness to Original Semantics

without instrum. % after instrum.

1,651 93.4%
189 98.4%
402 99.8%

136,898 99.8%
39 100.0%

568 99.5%
9,400 97.8%
1,841 99.6%
1,798 100.0%

Passing test cases:

Reasons why
not yet 100%

■ Assertions that

inspect the stack

■ Two known and

to-be-fixed bugs in

the instrumenter

18

Example Analyses

Name Description Analysis LoC
hooks

BranchCoverage Measures how often each
branch gets covered

1 6

CallGraph Computes a dynamic call graph 1 19
KeyInList Warns about performance

anti-pattern of linearly search
through a list

2 10

MLMemory Warns about memory leak is-
sues in deep learning code

4 29

SimpleTaint Taint analysis useful to, e.g.,
detect SQL injections

7 53

AllEvents Implements the
runtime event analysis hook
to trace all events

1 4

19 - 1

Runtime Overhead

19 - 2

Runtime Overhead

Trace all events: Most expensive analysis

19 - 3

Runtime Overhead

All control flow branching points

19 - 4

Runtime Overhead

All “plus” operations

19 - 5

Runtime Overhead

Built-in Python API

DynaPyt is 6%–87% faster
for lightweight analyses

20

Conclusions

■ DynaPyt: First dynamic analysis
framework for Python

□ Event hierarchy

□ Pay-per-use principle

■ More details:

□ Upcoming FSE’22 paper

□ https://github.com/sola-st/DynaPyt

Talk to me about analysis ideas!

