DynaPyt: A Dynamic Analysis Framework for Python

Aryaz Eghbali
aryaz.eghbali@iste.uni-stuttgart.de
University of Stuttgart
Stuttgart, Germany

ABSTRACT

Python is a widely used programming language that powers impor-
tant application domains such as machine learning, data analysis,
and web applications. For many programs in these domains it is
consequential to analyze aspects like security and performance, and
with Python’s dynamic nature, it is crucial to be able to dynamically
analyze Python programs. However, existing tools and frameworks
do not provide the means to implement dynamic analyses easily
and practitioners resort to implementing an ad-hoc dynamic analy-
sis for their own use case. This work presents DynaPyt, the first
general-purpose framework for heavy-weight dynamic analysis of
Python programs. Compared to existing tools for other program-
ming languages, our framework provides a wider range of analysis
hooks arranged in a hierarchical structure, which allows developers
to concisely implement analyses. DynaPyt features selective instru-
mentation and execution modification as well. We evaluate our
framework on test suites of 9 popular open-source Python projects,
1,268,545 lines of code in total, and show that it, by and large, pre-
serves the semantics of the original execution. The running time of
DynaPyt is between 1.2x and 16x times the original execution time,
which is in line with similar frameworks designed for other lan-
guages, and 5.6%—88.6% faster than analyses using a built-in tracing
API offered by Python. We also implement multiple analyses, show
the simplicity of implementing them and some potential use cases
of DynaPyt. Among the analyses implemented are: an analysis to
detect a memory blow up in Pytorch programs, a taint analysis
to detect SQL injections, and an analysis to warn about a runtime
performance anti-pattern.

CCS CONCEPTS

« General and reference — Cross-computing tools and techniques; +
Software and its engineering — Software maintenance tools.

KEYWORDS
dynamic analysis, python
ACM Reference Format:

Aryaz Eghbali and Michael Pradel. 2022. DynaPyt: A Dynamic Analysis
Framework for Python. In Proceedings of the 30th ACM Joint European

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °22, November 14—18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11...$15.00
https://doi.org/10.1145/3540250.3549126

Michael Pradel
michael@binaervarianz.de
University of Stuttgart
Stuttgart, Germany

Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE "22), November 14-18, 2022, Singapore, Singapore.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549126

1 INTRODUCTION

Python has evolved into one of the most important programming
languages. It is widely used across many application domains, e.g.,
machine learning, scientific computing, server-side web applica-
tions, game development, and natural language processing. In ad-
dition to serving as a language to develop glue code and scripts,
large-scale Python code bases are behind widely used websites and
apps used by billions of people. Moreover, highly popular frame-
works and libraries, such as pandas, numpy, Django, and Pytorch,
are implemented in Python. In 2019, Python has become the second-
most popular of all languages across code hosted at GitHub.!

The popularity of the language, combined with its dynamic lan-
guage features, such as the absence of statically declared types or
the ability to add and remove object attributes at runtime, make
Python a prime target for dynamic analysis. Indeed, several dynamic
analyses have been proposed, e.g., to detect bugs [36], to enforce
differential privacy [1], or to slice programs [6]. However, com-
pared to other popular dynamic languages, e.g., JavaScript, which
have seen a surge of dynamic analyses over the past few years [3],
dynamic analysis for Python has not yet become mainstream.

We argue that the sparsity of dynamic analyses for Python is,
at least partially, due to a lack of suitable frameworks to build on.
To ease the implementation of dynamic analyses, general-purpose
dynamic analysis frameworks have been created for other lan-
guages, e.g., Pin [18] and Valgrind [21] for native binaries, DiSL [20]
and RoadRunner [10] for Java, Jalangi [29] for JavaScript, and
Wasabi [17] for WebAssembly. These frameworks all share the
idea of providing to analysis developers an easy to implement in-
terface to observe events during a program’s execution, typically
in the form of callbacks or hooks an analysis implements. These
hooks are then invoked by the analysis framework during the pro-
gram’s execution, typically by instrumenting the program before
its execution. Yet, despite the importance of Python, there currently
is no such framework for Python, hindering the development of
dynamic analyses.

This paper presents DynaPyt, the first general-purpose dynamic
analysis framework for Python. From the perspective of an analysis
developer, the framework offers a set of hooks into specific kinds
of runtime events, such as function calls, writes of object attributes,
and control flow decisions. Given an analysis that implements some
of these hooks and a program to analyze, DynaPyt instruments the
program’s code via source-to-source transformation. The instru-
mentation code wraps the existing code with calls into the DynaPyt

Uhttps://octoverse.github.com/#top-languages-over-the-years

https://doi.org/10.1145/3540250.3549126
https://doi.org/10.1145/3540250.3549126
https://octoverse.github.com/#top-languages-over-the-years

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 1: Comparison of general-purpose dynamic analysis
frameworks.

Framework Target igz, Nb. of Hierarchy iea};i;flz-
language hooks of hooks .
use tion
Jalangi2 JavaScript v 28 X v
Wasabi WebAssembly v/ 23 X X
sys.settrace Python X 1 X X
DynaPyt Python v 97 v v

runtime engine, which dispatches the runtime events to the corre-
sponding analysis hooks. By default, the instrumentation preserves
all behavior of the original program. However, DynaPyt also allows
analyses to manipulate the behavior, e.g., to modify the value that
gets written into an object attribute or to flip the outcome of a
control flow decision.

DynaPyt addresses several challenges that prior dynamic analy-
sis frameworks handle only partially or not at all. One of them is
the fact that there are many different runtime events of potential
interest. For example, there are nine kinds of memory accesses,
eleven different control flow events, and 15 kinds of binary opera-
tions. To enable an analysis writer to easily select events of interest,
DynaPyt arranges a total of 97 events into an event hierarchy and
allows the analysis writer to select events at an appropriate level
of abstraction. Another challenge is to impose as little overhead
as needed to perform a specific analysis. To this end, DynaPyt
follows a pay-per-use principle, which adds instrumentation code
only when needed to keep track of exactly those runtime events an
analysis is interested in. As a result, the runtime overhead imposed
by the framework scales with the complexity of the analysis.

To put DynaPyt’s contributions in perspective, Table 1 compares
existing dynamic analysis frameworks and our work. Jalangi [29]
and Wasabi [17] are two frameworks for other languages, which
have inspired our design. Both lack the event hierarchy that Dy-
naPyt offers, but instead offer only a “flat” set of 23 and 28 hooks
for analyses to implement, respectively. The only other technique
available for Python is sys.settrace, a built-in function offered by
the CPython implementation of the language. It allows for observ-
ing every executed opcode, but does not follow the pay-per-use
principle. Moreover, it focuses only on observing behavior, but in
contrast to DynaPyt lacks the ability to manipulate an execution.
We empirically compare with sys. settrace in Section 3 and provide
a detailed discussion of it in Section 4.

In addition to language-agnostic challenges, DynaPyt needs to
address unique challenges due to specific features of Python and
the characteristics of their semantics. For example, these challenges
include the way self and super() are resolved, which can easily
lead to undefined references in instrumentation code, constraints
on the order of imports, which must be considered when adding
imports of the DynaPyt runtime engine, and name mangling, which
implicitly modifies the names of “private” class attribute.

Our evaluation applies DynaPyt to 9 popular Python projects
and other real-world code. We show that the instrumentation does
not change the semantics of a program but is faithful to the original

Eghbali and Pradel

Source code

-py
Analysis
-t
-py
g
uses é
@
L—» Instrumenter 2
&
©
8§
Original code
> <
.py.orig
AST Metadata 2o
Ec
» - o
json > LE
L7 / ez
Instrumented
o | COde
> - -
Calls instrumentation
Py hooks
L 7
Instrumentation Execution

Figure 1: Overview of the DynaPyt’s framework.

execution. Evaluating the performance of the instrumented code,
we show that the pay-per-use principle leads to an overhead that
scales with the runtime events an analysis is interested in, and
that DynaPyt is significantly faster than sys.settrace. We also
implement several analyses on top of DynaPyt: a branch coverage
and a call graph analysis, which each take only a few lines of
code; a dynamic bug detector that identifies shape mismatches in
deep learning code; and a taint analysis that reveals real-world
vulnerabilities.
In summary, this paper contributes the following:

o The first general-purpose dynamic analysis framework for
Python.

e An event hierarchy that allows client analyses to register for
selected events of interest while adding runtime overhead
only for those events (“pay-per-use”).

e 6 client analyses that showcase the usefulness of DynaPyt.

e Empirical evidence that the framework allows for analyzing
real-world Python code, while preserving the original pro-
gram semantics and imposing overhead proportional to the
selected events of interest.

2 APPROACH

2.1 Overview

Figure 1 gives an overview of the DynaPyt framework. The ap-
proach consists of two phases: instrumentation and execution. In
the instrumentation phase, an instrumenter augments the original
source code with code to observe and manipulate the program’s
execution. The instrumented code calls instrumentation hooks, i.e.,
functions provided by the runtime engine of DynaPyt, to notify the
engine about specific runtime events. Besides the original code, the

DynaPyt: A Dynamic Analysis Framework for Python

instrumenter also takes the analysis written by a user as an input,
to instrument only those parts of the code that are of interest to the
analysis. In addition to the instrumented code, the instrumenter
stores the original code and a JSON file with information on the
transformed code, both of which may be later used by the analysis.

In the execution phase, the dynamic analysis is performed along-
side the program’s execution. Whenever the instrumented code
notifies the runtime engine about a runtime event, the engine dis-
patches the event to the analysis. To this end, the engine calls
analysis hooks, i.e., API functions implemented by the analysis.
Whenever an analysis hook gets called, the analysis can observe,
and optionally also manipulate, the corresponding runtime behav-
ior.

The remainder of this section presents the analysis hooks (Sec-
tion 2.2), the instrumentation (Section 2.3), and the runtime engine
(Section 2.4) in detail.

2.2 Hierarchy of Runtime Events

2.2.1 Motivation. One of our key contributions is to arrange the
analysis hooks an analysis can implement into a hierarchy of run-
time events. The motivation for this event hierarchy is twofold.
First, it enables the analysis writer to precisely specify the run-
time events of interest. Previous frameworks provide a fixed set
of hooks at a fixed level of granularity, and the burden of match-
ing the framework to the analysis lies on the analysis writer. For
example, implementing an analysis interested only in for-loops in
Jalangi [29] requires to observe all control flow statements and to
check each for whether it is a for-loop. Second, precisely knowing
what runtime events an analysis cares about is a prerequisite for
limiting the analysis overhead to what is needed by the analysis.

2.2.2 Design. Instead of offering a fixed set of analysis hooks at
a fixed level of granularity, DynaPyt provides fine-grained hooks
in addition to multiple layers of abstraction that combine related
subsets of those hooks. The basic idea is to arrange the analysis
hooks into a hierarchy. The root of this hierarchy is a generic
“runtime event” hook that captures all events DynaPyt supports.
The leaves of the hierarchy are specific kinds of runtime events, such
as entering a for-loop, performing a bitwise left-shift operation, or
writing an object attribute. Figure 2 shows the complete hierarchy
of analysis hooks available to be implemented by an analysis. Hooks
that share their name with a keyword in Python are prepended by
an underscore (i.e. the analysis hook for raise is _raise). Overall,
there are 97 analysis hooks that cover different kinds of operations,
control flow events, memory accesses, and special events, such as
the beginning and end of the execution.

All analysis hooks, except begin_execution, end_execution, and
uncaught_exception, receive at least two parameters. The first pa-
rameter is the path to the original source code, and the second
parameter is an integer identifier that specifies the location of
the relevant code in the original source. In addition, each analy-
sis hook receives parameters specific to itself. For example, the
binary_operation hook receives the operator, the operands, and
the result of the operation. For analysis hooks higher up in the
hierarchy, the parameters are those relevant to all runtime events
captured by the hook. For example, the operation hook, which

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

runtime_event
begin_execution, end_execution
uncaught_exception
literal
L integer, boolean, string, dictionary, ...(4 more)
operation
| _binary_operation
augmented_assign
Lbitfandfassign, add_assign, ...(11 more)
add, divide, bit_and, ...(12 more)
| unary_operation

L bit_invert, minus, not, plus

| comparison
equal, greater_than, in, is_not, ...(6 more)
| control flow_event
L conditional_control_flow
enter_while, exit_while, ...(4 more)
enter_control_flow
L enter if, enter_for, enter while
exit_control_flow
L exit_if, exit_for, exit_while
| raise, enter_try, pre_call, continue, ...(6 more)
| function_exit

L function_exit, return, yield

| _memory_access
| read

L read_identifier, read_subscript, read_attribute

| write, delete

Figure 2: Hierarchy of analysis hooks.

1 from collections import defaultdict
2 from .BaseAnalysis import BaseAnalysis

1+ class BranchCoverage(BaseAnalysis):
5 def __init__(self):

6 self.branches = defaultdict(lambda: 0)

7

8 def enter_control_flow(self, f, iid, condition):
9 self.branches[(iid, condition)] += 1

Listing 1: Branch coverage analysis.

captures all binary operations, unary operations, and comparisons,
receives an operator argument and a list of operands.

2.2.3 Examples of Analyses. This hierarchy of analysis hooks al-
lows analysis writers to choose the exact subset of events they
are interested in, and to implement the analysis at an appropriate
abstraction level. For example, Listing 1 shows a branch cover-
age analysis implemented with DynaPyt in only nine lines. The
analysis imports and extends the BaseAnalysis class, and then im-
plements the enter_control_flow analysis hook, which is called on

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

1 from .BaseAnalysis import BaseAnalysis
3 class KeyInListAnalysis(BaseAnalysis):
4 def __init__(self):

5 self.threshold = 100

7 def _in(self, f, iid, left, right, result):

5 if (isinstance(right, list) and

9 len(right) > self.threshold):

10 print('Performance warning')

11

12 def not_in(self, f, iid, left, right, result):
13 if (isinstance(right, list) and

14 len(right) > self.threshold):

15 print('Performance warning')

Listing 2: Analysis to detect the performance anti-pattern of
searching a key inside a long list.

1 from .BaseAnalysis import BaseAnalysis
2
5 class ManipulateExec(BaseAnalysis):

4 def enter_if(self, f, iid, cond_value):

5 if random() < 0.5:

6 return not cond_value

7

8 def write(self, f, iid, old_val, new_val):
9 if new_val == 23:

10 return 42

Listing 3: Analysis to detect the performance anti-pattern of
searching a key inside a long list.

any branch. Whenever a branching decision is made in the program
execution, the analysis updates its branches dictionary, which maps
the code location of the branch and the outcome of the branch-
ing decision to the number of times this combination has been
observed.

Listing 2 shows another example analysis. It detects instances
of a performance anti-pattern caused by searching a key in a list
instead of a dictionary or set’. The analysis uses only the _in hook,
which is invoked whenever the program checks whether a value is
an element of a data structure, e.g., when checking val in myList.If
the right-hand operand of in is larger than a threshold, the analysis
reports a warning about the inefficient operation.

As a third example, Listing 3 illustrates two ways of how an anal-
ysis can manipulate executions of a program. First, the enter_if
hook randomly flips the outcome of any conditional evaluated in
an if branch. Instead of randomly flipping conditionals, a more
sophisticated version of this analysis could systematically change
conditionals, e.g., to implement concolic execution [12, 30] or forced

YInspired by https://docs.quantifiedcode.com/python-anti-patterns/performance/
using_key_in_list_to_check_if key_is_contained_in_a_list.html

Eghbali and Pradel

execution [16, 23]. Second, the write hook manipulates values writ-
ten into variables by replacing any value 23 with the value 42. A
more sophisticated version of this analysis could systematically
inject failures into a program or test robustness against adversarial
inputs.

2.3 Source-to-Source Instrumentation

In this section we describe the instrumentation performed of Dy-
naPyt, which wraps code fragments in the given source code into
calls to instrumentation hooks. We describe interesting aspects
of the instrumentation based on a relevant subset of the Python
language (Section 2.3.1) and a selection of transformation rules
(Section 2.3.2). These rules are applied by selectively rewriting
those parts of the AST of the code that are relevant for the analysis
(Section 2.3.3).

2.3.1 Grammar. While our implementation covers the full Python
language, we focus on a subset of Python, called Mini-Python, in the
paper. Figure 3 shows the grammar of Mini-Python, which covers
the basic features of the language and specific features that pose
interesting challenges for the instrumentation.

2.3.2 Code Transformation Rules. The instrumenter modifies state-
ments and expressions of the given source code through a series of
code transformation rules. Table 2 presents some of these transfor-
mation rules, with minor simplifications to ease the presentation.
Each rule injects one or more calls of instrumentation hooks, i.e.,
calls that inform the runtime engine about particular runtime events.
For example, Rule 1 adds a call of the _int_ instrumentation hook,
which notifies the runtime engine that an integer literal gets evalu-
ated. As another example, Rule 5 adds calls of two instrumentation
hooks related to for-in-loops: the _gen_ hook, which indicates that
a generator expression produces another value, and the _exit_for_
hook, which indicates that the loop has terminated.

All instrumentation hooks take at least two arguments. The first
argument is the path to the file with the original source code, which
is useful to extract the AST at runtime. The second argument speci-
fies the location of the instrumented statement or expression, called
instruction id or short iid, which is used to locate the appropriate
node of the AST at runtime. These two arguments are provided as
utilities for the implementation of analyses, and are not used by the
runtime engine. For a compact presentation, Table 2 shows these
two arguments as f and iid.

The following discusses in more detail some of the transforma-
tion rules and other specific language features that DynaPyt must
handle.

Delayed evaluation of expressions. Whenever an expression gets
evaluated in the program, DynaPyt wants to not only give an anal-
ysis the opportunity to observe this event, but also to modify the
result of the evaluation. To this end, the instrumentation wraps each
expression into a lambda function that, when invoked, evaluates
the expression and returns its result. Rule 2 shows a simple example,
where the original code reads the value referred to by a name, e.g.,
a local variable. The instrumented code replaces the name with
a call of the _read_ instrumentation hook, and passes a lambda
function into the hook, which reads and returns the name. The
runtime engine hence can decide when to evaluate the expression,

https://docs.quantifiedcode.com/python-anti-patterns/performance/using_key_in_list_to_check_if_key_is_contained_in_a_list.html
https://docs.quantifiedcode.com/python-anti-patterns/performance/using_key_in_list_to_check_if_key_is_contained_in_a_list.html

DynaPyt: A Dynamic Analysis Framework for Python

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 2: Examples of code transformations rules applied during instrumentation.

Id Original code Instrumented code

Explanation

1 IntLiteral _int_(f, iid, IntLiteral)

Evaluating an integer literal. Similar for
other literals.

2 Name

read(f, iid, lambda: Name)

Reading the value referred to by a name.

3 del Name
else globals(), " Name ")1)

delete(f, iid, [(locals() if " Name" in locals()

Deleting a variable. Checks if the variable
to be deleted is local or global, and then
passes the appropriate dictionary for dele-
tion.

4 del Expression . Name

delete(f, iid, [(Expression, " Name")1)

Deleting an attribute. _delete_ takes a list
of tuples as the targets to delete for sup-
porting multiple delete targets.

5 for Name in Expression :

for Name in _gen_(f, iid, Expression):

The _gen_ method yields the values gen-

Statement+ Statement+ erated by the Expression. It also calls the
else: _enter_for_ internally.
_exit_for_(f, iid)
6 break if _break_(f, iid): Wrapping into an if-statement allows the
break analysis to modify the control flow deci-
sion.
7 Name0O (Expression0 , _call_(f, iid, lambda: NameO , [Expression0], {" The arguments of a function call are split

Namel = Expressionl) Namel ": Expressionl })

into positional arguments, passed as a list,
and keyword arguments, passed in a dic-

tionary.
8 Expression0 and Expres- _binary_op_(f, 1iid, lambda: Expression0 , 13, Binary expression. Each operator is
sionl lambda: Expression1) mapped to a number (13 for and).
. class X: behave the same when called from a different call site. For exam-
s a=o0 ple, super (), which resolves to the parent class, would fail if called
s b = a+] inside the runtime engine. To remedy this problem, the instrumen-

Listing 4: Example for special case of delayed evaluation
expressions.

and an analysis can overwrite the original result of the evaluation,
which will then be returned by _read_.

Accessing attribute names in class methods. Class methods in
Python can only access the attributes of an object instance if the
first argument of the method is the object instance itself, referred to
as self. Naively delaying accesses of object attributes using lambda
functions as described above would cause NameErrors. DynaPyt
avoids this problem by adding the names used in the lambda func-
tion as parameters with default values. Listing 4 shows an example
of this situation, where the binary operation on line 3 is trans-
formed to _bin_op_(f, iid, lambda a=a: a, 0, lambda: 1). The
instrumentation performs this transformation only for accesses of
names with class scope.

Resolving super. As illustrated by Rule 7, DynaPyt wraps func-
tion calls into the _call_ instrumentation hook and then performs
the call in the runtime engine. However, some functions do not

tation add arguments to calls of super, turning the call into super(C,
self), where C is the enclosing class, and self is the object instance
itself.

Special functions. Other functions, e.g., exec, eval, local, and
global, would also behave abnormally if called from the runtime
engine. The reason is that these functions rely on the current stack
frame, which depend on the call site. For built-in functions, we
evaluate the function at the call site and pass the resulting value
to the runtime engine. Therefore, for these functions, the pre_call
hook is not called and only the post_call hook is executed.

The __future__ imports. Import statements in Python can appear
anywhere in the code. However, __future__ imports are an excep-
tion to this rule, as they can appear only at the top of the module,
before any other code. As DynaPyt’s instrumenter wraps the whole
file in a try statement to capture any uncaught exceptions, these
imports must be left outside of this try block.

Formatted strings. In Python, string literals that are preceded by f
can use expressions inside curly brackets, which will be evaluated to
string values at runtime. For example, f"{2+3} is 5" will evaluate to
"5is 5". As formatted strings themselves are also expressions, or can
be part of more complex expressions, Python programs can have

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Program: Statement™

Statement: SimpleStmt | CompoundStmt

SimpleStmt: AssignmentStmt | DeleteStmt | BreakStmt |
ContinueStmt | ReturnStmt

CompoundStmt: IfStmt | ForInStmt | WhileStmt | TryStmt
| FunctionDefStmt

Expression: Literal | Call | Access | BinaryOp | UnaryOp |
ComparisonOp

AssignmentStmt: AssignTargets “=” Expression

Access: Name | Attribute | Subscript

AssignTargets: Access [“=" Access]*

Attribute: Expression “.” Name

Subscript: Expression “[” Slice [¢,” Slice]* “1”

Literal: IntLiteral | FloatLiteral | ImaginaryLiteral |
StringLiteral | BooleanLiteral

DeleteStmt: “del” Access [“,” Access]*

Call: Access “(” [[Name “="]? Expression]? [“,” [Name
“="]? Expression]* “)”

BinaryOp: Expression BinaryOperator Expression
UnaryOp: UnaryOperator Expression

ComparisonOp: Expression [Comparator Expression]+

«

IfStmt: “if” Expression “:” Statement+
[“elif” Expression “:” Statement+]* [“else:” Statement+]?

ForInStmt: “for” Access “in” Expression “:” Statement+
[“else:” Statement+]?

« 2

WhileStmt: “while” Expression Statement+ [“else:”

Statement+]?
BreakStmt: “break”
ContinueStmt: “continue”

FunctionDefStmt: “def” Name “(” [Name [“=" Literal]?]*
“Y:” DocString? Statement+

ReturnStmt: “return” Expression?

»

TryStmt: “try:” Statement+ “except” [Name [“as
Name]?]? “:” Statement+ [“finally:” Statement+]?

Figure 3: Grammar of Mini-Python. Non-terminals are rep-
resented with the regular font, terminals in italic font, and
code tokens are show in “quotations and typeset font”

arbitrarily deeply nested formatted strings. However, there are only
two symbols to specify strings, namely single and double quotations.
Since some of our instrumentation depends on passing string literals
to the runtime engine, naively wrapping nested formatted strings
into instrumentation hooks would yield syntactically invalid code.
To avoid this problem, DynaPyt instruments only the expressions
on the first level of formatted strings and leaves nested formatted
strings uninstrumented.

Eghbali and Pradel

Docstrings. Docstrings are string literals that appear at the top
of the body of a module, class, or function, and are used mostly for
documentation purposes. However, the docstrings are stored in the
__doc__ attribute of the corresponding module, class, or function
during runtime. Modules like doctest use the docstring attributes to
test functions. To avoid disrupting the functionality that depends
on these strings, DynaPyt’s instrumenter ignores these literal.

2.3.3 Selective Instrumentation. DynaPyt applies all code trans-
formation rules via AST-based code rewriting. The instrumenter
parses each source code file into an AST and then visits each node
in the order in which its tokens appear in the source code. Each
transformation rule applies to a specific kind of AST node, and
DynaPyt applies transformations upon leaving the node. Our im-
plementation is based on the LibCST library and its Transformer
class.?

Following the pay-per-use principle, an important property of
DynaPyt is to not necessarily instrument all AST nodes. Instead,
DynaPyt’s instrumenter first determines the set of instrumentation
hooks that are required for a given analysis based on the hierarchy
of analysis hooks. Then, it performs a selective instrumentation
of those instrumentation hooks. As we show in the evaluation, for
analyses that only trace a subset of all possible runtime events,
selective instrumentation has a significant impact on execution
time.

For example, recall the example analysis in Listing 1, which im-
plements only the enter_control_flow analysis hook for tracking
branches. Given this analysis, DynaPyt inserts instrumentation
hooks for keeping track if-statements, for-loops, and while-loops,
but none of the many other instrumentation hooks that the frame-
work supports.

Orthogonal to selectively instrumenting only those code frag-
ments that are relevant for the runtime events an analysis is in-
terested in, DynaPyt also supports instrumenting only parts of a
larger project. Users of DynaPyt can, e.g., instrument all files of
project, include or exclude the code of specific libraries, or instru-
ment only specific files of interest. Because the instrumentation
does not change the interfaces of modules, instrumented and non-
instrumented code are fully compatible.

2.3.4 Alternatives to Source-Level Instrumentation. As a potential
alternative to the source-level instrumentation performed by Dy-
naPyt, we also considered bytecode-level instrumentation, but ulti-
mately decided against it for two reasons. First, source-level analysis
allows for writing analyses on a higher level of abstraction. Each
of the API hooks offered by DynaPyt corresponds to a construct
in the Python programming language, whereas bytecode uses a
lower-level representation of values and operators that develop-
ers are less familiar with. Second, source-level instrumentation
makes DynaPyt independent of specific interpreters and compilers.
In contrast to other languages, e.g., Java bytecode or WebAssem-
bly, Python’s bytecode is not standardized. If we, e.g., built upon
CPython’s bytecode format, then DynaPyt would be incompatible
with other runtime environments, e.g., PyPy*, Jython®, or GraalPy®.

Shttps://libest.readthedocs.io/en/latest/
*https://www.pypy.org/
Shttps://www.jython.org/
®https://www.graalvm.org/python/

https://libcst.readthedocs.io/en/latest/
https://www.pypy.org/
https://www.jython.org/
https://www.graalvm.org/python/

DynaPyt: A Dynamic Analysis Framework for Python

2.4 Runtime Engine

DynaPyt’s runtime engine connects the instrumented source code
of the program with the actual analysis. Specifically, the engine has
three tasks. First, it performs those parts of the program behavior
that are replaced by calls to instrumentation hooks. For example,
binary operations are replaced by the _binary_op_ hook (see Rule 8
in Table 2), by passing the operands and operators to the runtime
engine, which then performs the binary operation at runtime.

Second, the runtime engine dispatches calls of instrumentation
hooks from the program to the analysis hooks implemented by
the analysis, and passes any values modified by the analysis back
to the program. DynaPyt analyses can implement any subset of
the analysis hooks in the hierarchy, even both an ancestor and
some descendants. This feature can be useful when implementing
a general behavior for a class of runtime events and adding an
exception for some of sub-events. In this case, the analysis can
implement the general behavior in the ancestor analysis hook, and
the exceptional behavior in the sub-event’s analysis hook. The
runtime engine first calls the analysis hooks closest to the root
of the hierarchy tree and then traverses towards the leaves. In
cases that the analysis modifies the execution, the modifications
by the lower-level hooks can overwrite the ones from the higher
levels in the hierarchy. For example, if an analysis wants to negate
all comparison operations, except for is and is not, then it can
implement the comparison hook to negate the result, and implement
the _is and is_not hooks to return the original result.

Third, the runtime engine serves as the main entry point of a
program analyzed with DynaPyt. When invoked, it initializes the
analysis and, if implemented, calls the begin_execution analysis
hook. It then executes the original entry point of the program
under analysis, and finally, if implemented, calls the end_execution
analysis hook.

In the following, we discuss some non-obvious aspects of the
runtime engine.

Logical operations. Logical and and or take two operands, but
the second operand might not be evaluated based on the value
of the first operand due to short-circuited evaluation. If the first
operand is true, the second operand of or is not evaluated. If the
first operand is false, the second operand of and is not evaluated. As
the evaluation of the operands is performed in the runtime engine,
it implements short-circuited evaluation as it would happen in the
original program.

Private name mangling. As any other evaluation of expressions,

accesses of object attributes are performed by the runtime engine.

Python provides “private”” attributes of objects through specific
naming conventions of attributes. If an attribute name starts with
two underscores (__) and ends with fewer than two underscores,
then the attribute is stored by prepending the name of the class to
the attribute name. For example, if class X has a private attribute
__y, then the attribute will be stored under the name _X__y. Since
Python accesses object attributes using the name of the attribute as
a string, when requesting the attribute using getattr, the runtime
engine must prepend the class name to the attribute name. However,
because of inheritance, DynaPyt must search for the correct class

"The attributes are private by convention, but not truly protected from other accesses.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

1 def get_private_attribute(base, attr):
2 parents = [type(base)]

3 while len(parents) > 0:

4 cur_par = parents.pop()

5 try:

6 cur_name = cur_par.__name__

7 cur_name = cur_name.lstrip('_")

8 val = getattr(base, '_'+cur_name+attr)
9 except AttributeError:

10 parents.extend(list(cur_par.__bases__))
1 else:

12 return val

13 raise AttributeError()

Listing 5: Resolution of private name mangling.

name, as shown in Listing 5. The algorithm starts from the class of
the object being accessed and moves up the class hierarchy until it
reaches the class that owns the private attribute.

3 EVALUATION

Our evaluation applies DynaPyt, and several example analyses

implemented on top of it, to 9 real-world Python projects with

total of 1,268,545 lines of code. We address the following research

questions:

RQ1 How efficient is DynaPyt when instrumenting source code?

RQ2 Does an instrumented program remain faithful to the seman-
tics of the original program?

RQ3 How complex is the implementation of analyses built on top
of the framework?

RQ4 What runtime overhead does DynaPyt impose when per-
forming an analysis?

3.1 Experimental Setup

Benchmark programs. To answer the above questions we need a
set of Python programs to analyze. We gather this set from popular
open-source Python on GitHub. We search for projects implemented
in Python and sort them by the number of their stars. Then, from the
top of the list we choose projects that cover different applications
domains. During the selection process, we keep only repositories
with test suites that can be run with the pytest framework. This
criteria is only for simplifying the evaluation by avoiding to deal
with different test execution scripts. As a case study for RQ4, we also
use an open-source Python project intended to show vulnerabilities.
The list of selected projects is available in Table 3.

Experimental environment. All experiments are run on a laptop
with an Intel Core i7-8565 CPU (8 cores x1.8 GHz) and 16 GB of
RAM, running Ubuntu 20.04. We use Python 3.9.0, except for the
“anxolerd/dvpwa” project used in RQ4, which requires Python 3.6.

3.2 Efficiency of Instrumentation (RQ1)

The time it takes to instrument code can be a determining factor on
how often new code can be analyzed and how many analyses can be
performed in a given time budget. We evaluate the efficiency of the

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Eghbali and Pradel

Table 3: List of projects used for evaluation.

Repository Application domain Instrument time (mm:ss) Python files Lines of Code
1 ansible/ansible Automation framework 06:59 2,188 176,173
2 django/django Web framework 14:07 3,603 318,602
3 keras-team/keras Deep learning framework 05:41 678 155,407
4 pandas-dev/pandas Data analysis library 12:32 2,727 358,195
5 psf/requests HTTP library 00:16 54 6,370
6 Textualize/rich Text tool 00:57 178 24,362
7 scikit-learn/scikit-learn =~ Machine learning framework 06:52 1,419 180,185
8 scrapy/scrapy Web crawler 01:49 505 37,181
9 nvbn/thefuck Commandline tool 01:21 620 12,070

Table 4: Results from running the TraceAll analysis on the
test suites of projects in our dataset.

Passing tests

without instrumentation % after instrumentation
1 2,862 99.4%
2 191 98.4%
3 363 99.7%
4 136,898 99.8%
5 374 100.0%
6 545 99.6%
7 9,400 97.8%
8 1,841 99.6%
9 1,798 100.0%

instrumentation by measuring the time the instrumenter takes to
transform all Python files in a project for the TraceAll analysis. The
TraceAll analysis implements all possible hooks, hence forcing the
instrumenter to instrument all expressions and statements, which
makes it the most expensive instrumentation. Table 3 shows the
instrumentation time for each project, averaged over five runs. The
time taken ranges between a few seconds and several minutes,
depending on the size of the project. It is heavily correlated with
the number of files (Pearson correlation coefficient 0.96) and with
the number of lines of code (Pearson correlation coefficient 0.99).

In a regression analysis scenario, i.e., where a DynaPyt-based
analysis runs on updated versions of a program, the instrumenta-
tion time would be even less than reported in Table 3: Since Dy-
naPyt instruments files independently, source code modifications
do not need a full re-instrumentation, but only to re-instrument
the modified code.

3.3 Faithfulness to Original Execution (RQ2)

To test that our transformations and hook routines do not interfere
with the semantics of the original execution, we instrument and
run the TraceAll analysis on our set of open-source Python projects.
Table 4 shows how many tests we run per project, and how many
of them are still passing after the instrumentation.

Depending on the project, between 98% and 100% of all originally
passing test cases also pass after the instrumentation. Test failures

are mostly due to two reasons. One set of tests fail because they
use the execution stack and make assertions based on its content.
Because DynaPyt adds additional calls, such as switching to the
runtime engine and calling analysis hooks, the contents of the stack
are not as expected. The rest of test failures occur because of edge
cases not handled by DynaPyt. These issues are under investigation
to be fixed in future releases.

3.4 Analyses Written on Top of DynaPyt (RQ3)

As a general-purpose dynamic analysis framework, DynaPyt en-
ables the implementation of dynamic analyses for a wide range of
software engineering tasks. The following presents several analyses
we implement to illustrate the abilities of the framework, roughly
sorted by increasing complexity. Table 5 gives an overview of the
analyses.

BranchCoverage. This analysis, shown in full in Listing 1, counts
how many times each branch of a program is executed and how
often it leads to each of the two possible outcomes of the branch-
ing decision. Because the event hierarchy captures all branching
events under a single API hook, enter_control_flow, the analysis
only needs to implement this one hook. The results are stored in a
dictionary mapping a branch location and a condition value to the
number of times this event was observed.

CallGraph. This analysis creates a dynamic call graph. Nodes in
the graph are functions, and an edge indicates that one function
has been observed to call another function. The analysis can be
implemented with only the post_call analysis hook within a few
lines of code.

KeyInList. This analysis warns about a performance anti-pattern.
In Python, checking whether a key exists in a collection, e.g., a
list, dictionary, or set, is done using the in operator. Yet, the perfor-
mance of this operator depends on the structure of the collection.
Specifically, searching a key in a list is a linear operation, whereas
performing the same search in a set or a dictionary is sub-linear
and therefore more efficient.

Listing 6 shows an instance of this problem, which checks for
different query words whether these words are in a list d. Each
time the query in d expression gets evaluated, the entire list d gets
traversed. A more efficient variant of this example would compute
set(d) before entire the loop and then check if query is in this set.

DynaPyt: A Dynamic Analysis Framework for Python

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 5: Example analyses written on top of DynaPyt.

Name Description Analysis hooks LoC
BranchCoverage Measures how often each branch gets covered (Listing 1) 1 6
CallGraph Computes a dynamic call graph 1 19
KeyInList Warns about performance anti-pattern of linearly search through a list 2 10
MLMemory Warns about memory leak issues in deep learning code 4 29
SimpleTaint Taint analysis useful to, e.g., detect SQL injections 7 53
AllEvents Implements the runtime_event analysis hook to trace all events 1 4

1 # d is the list of words read from a large file
2 # queries is a list of words to check

3 for query in queries:

4 if query in d: # Slow

5 print(f'Found {query}')

Listing 6: A code piece showing the slow operation of looking
up a key in a list.

1 total_loss = 0
> for i in range(10000):

3 optimizer.zero_grad()

4 output = model(input)

5 loss = criterion(output)

6 loss.backward()

7 optimizer.step()

8 total_loss += loss # Operation history is kept

Listing 7: A code piece showing a memory blow up problem
in PyTorch.

The KeyInList analysis warns about the inefficiency of searching
a long list for a key. Listing 2 shows the implementation of the
analysis, which implements two of DynaPyt’s analysis hooks. It is
worth noting that the in in Line 3 of Listing 6 does not trigger a
warning because the _in hook only tracks the comparison operator
in, but not for-in loops. Future work could implement checks for
a comprehensive suite of dynamically detectable programming
anti-patterns, in the spirit of existing techniques for other dynamic
languages [13, 14], with the KeyInList analysis as a starting point.

MLMemory. This analysis warns about a memory leakage in deep
learning implementations. In Pytorch, a popular machine learning
framework, computations on variables that require gradients keep a
history of the operations for gradient calculations. Therefore, such
operations should be avoided in loops, e.g., the training loop of a
neural model, to not fill up the memory with histories. Listing 7
shows an example that illustrates the problem, which we adapt
from the FAQ of the PyTorch documentation. The example adds
the loss to total_loss in 10,000 iterations. If the code keeps the
loss, e.g., to compute some statistics about the learning process,
the code will also keep the history of all operations that lead to it,
because the loss variable requires gradients by default. To avoid

this unnecessary memory blow-up, the code should access the loss
value without keeping its gradients, e.g., by writing total_loss +=
float(loss).

The MLMemory analysis, shown in Listing 8 tracks such oper-
ations and warns if they are used in a loop. More specifically, the
analysis tracks the propagation of requires_grad by implementing
the binary_operation and write hooks. The analysis checks if such
a propagation happens inside a loop more than a specific number of
times, using the enter_control_flow and exit_control_flow hooks.
If the threshold is exceeded, a warning gets reported. Implement-
ing this analysis in DynaPyt requires only 29 lines of code, which
implement four analysis hooks.

SimpleTaint. This analysis showcases the potential of DynaPyt
to detect vulnerabilities and check other security properties. We
implement a simple train analysis that tracks if data flows from a
specific source, e.g., a parameter given to a function, to a specific
sink, e.g., the argument of another function. The analysis uses seven
analysis hooks and is about 50 lines of code long.

To validate the taint analysis, we apply it to the “Damn Vulner-
able Python WebApp”®, a project that implements a Python web
application with multiple security vulnerabilities. One of these vul-
nerabilities is an SQL injection, which we try to detect using the
SimpleTaint analysis by configuring the source and sink appropri-
ately. The analysis detects the SQL injection as an invalid taint flow
and reports a warning.

TraceAll. This analysis, which is used in RQ1, RQ2, and RQ3,
implements all analysis hooks. It illustrates the extreme example
of an analysis that keeps track of all runtime events that happen
during an execution. Even though not directly useful for a specific
task, the TraceAll analysis provides an upper bound on the amount
of instrumentation code the framework may add and the runtime
overhead that gets imposed as a result.

As a proxy measure for the complexity of implementing the above
analyses, Table 5 shows the number of analysis hooks and the
number of lines of non-comment, non-empty lines of code per
analysis. All of them require at most a few dozens of lines of code,
illustrating that DynaPyt enables the development of a range of
dynamic analyses with little effort.

3.5 Runtime Overhead (RQ4)

We measure the runtime overhead of DynaPyt with three analyses.
The first analysis, TraceAll, is the most expensive one, because it

8https://github.com/anxolerd/dvpwa

https://github.com/anxolerd/dvpwa

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

1 from collections import defaultdict
2 from .BaseAnalysis import BaseAnalysis

4+ class MLMemoryAnalysis(BaseAnalysis):

5 def __init__(self) -> None:

6 super().__init__Q)

7 self.in_ctrl_flow = []

5 self.threshold = 3

9 self.memory_leak = defaultdict(lambda: 0)
10 self.last_opr = None

11

12 def enter_control_flow(self, dyn_ast, iid,
13 cond):

14 self.last_opr = None

15 if ((len(self.in_ctrl_flow) > 0) and

16 (self.in_ctrl_flow[-1] != iid)):
17 self.in_ctrl_flow.append(iid)

18

19 def exit_control_flow(self, dyn_ast, iid):
20 self.last_opr = None

21 self.in_ctrl_flow.pop()

22

2 def binary_operation(self, dyn_ast, iid, opr,
2 left, right, res):

2 if ((len(self.in_ctrl_flow) > 0) and

2 right.requires_grad):

27 self.last_opr = iid

2 else:

29 self.last_opr = None

30

31 def write(self, dyn_ast, iid, left, right):
32 if ((len(self.in_ctrl_flow) > 0) and

3 right.requires_grad and

34 (self.last_opr is not None)):

35 cur = (iid, self.in_ctrl_flow[-1])
36 self.memory_leak[cur] += 1

37 if (self.memory_leak[cur] >

38 self.threshold):

39 print('Memory issue detected')
40 exit(1)

4 self.last_opr = None

Listing 8: Analysis to detect a memory issue in PyTorch.

incurs the overhead of an instrument hook and at least one analysis
hook for each kind of runtime events supported by DynaPyt. The
second analysis is the BranchCoverage analysis that traces the
control flow entrances. This analysis only instruments the entry
points of control flow statements. The third analysis traces all
additions performed by a program, i.e., it instruments all binary +
operations. We include it as an example of a low-overhead analysis.
For each project and setting we report the average running time
over five runs.

Figure 4 shows the results, where each bar is the overhead fac-
tor relative to an uninstrumented execution. As expected for a

Eghbali and Pradel

general-purpose framework aimed at heavyweight dynamic anal-
ysis, the overhead imposed by the TraceAll analysis is relatively
high, namely between 1.2x and 16X. In contrast, the two more
lightweight analysis, BranchCoverage and OnlyAdd, impose only a
moderate overhead, namely between 1.0x and 2.0X. In practice, the
overhead of an analysis, of course, depends not only on DynaPyt,
but also on what computations an analysis performs when reacting
to a particular runtime event.

Comparison with sys.settrace and other frameworks. To put
the overhead results in context, we directly compare with the
sys.settrace function offered by Python. To this end, we imple-
ment a simple analysis based on it that traces all executed op-
codes and maintains a list for executed code segments. As shown
in Figure 4, the analyses built with DynaPyt that track a subset
of all runtime events are much faster than sys.settrace: between
5.6%-88.6% faster, depending on the analysis hooks of interest and
project under analysis. For the TraceAll analysis, DynaPyt outper-
forms sys. settrace for some projects, and vice versa for some other
projects.

Even though a direct comparison with frameworks for other
languages is impossible, we mention some examples for an indi-
rect comparison. For an analysis equivalent to TraceAll, the Jalangi
framework for JavaScript imposes 26x overhead during record plus
30x overhead during replay [29]. Similarly, the RoadRunner frame-
work for Java byte code imposes an average overhead of 52x without
any analysis [10].

4 RELATED WORK

Dynamic Analysis Frameworks. Several dynamic analysis frame-
works exist for languages other than Python. Jalangi [29] for Java-
Script and Wasabi [17] for WebAssembly have inspired some of our
design decisions, e.g., to perform source-to-source instrumentation
and to selectively instrument only those code locations relevant for
a specific analysis. Other related frameworks are DynamoRIO [4],
Pin [19], and Valgrind [21], which all target x86 binaries. In contrast
to them, DynaPyt instruments the source statically instead of at
runtime, which avoids the overhead of runtime instrumentation.
Two frameworks for Java are DiSL [20], which uses aspect-oriented
programming to weave analysis behavior into a program, and Road-
Runner [10], which specifically targets concurrency-related dy-
namic analyses. As also summarized in Table 1, DynaPyt stands out
by offering a much larger number of analysis hooks, which we orga-
nize into an event hierarchy, and by being the first general-purpose
dynamic analysis for Python.

Built-in System Tracing APIL The closest existing approach for
Python is the sys.settrace function provided by the CPython im-
plementation of the language. The function allows for registering
a hook that gets called at one of three granularity levels: at every
executed Python opcode, at every executed line of code, or at every
function call and return. A dynamic analysis framework for Python
could, in principle, be built upon sys.settrace. However, that ap-
proach would lack the ability to track a finely selected subset of all
runtime events, whereas DynaPyt offers selective instrumentation
based on a fine-grained event hierarchy. Another option would be
to implement a dynamic analysis directly on top of sys.settrace,

DynaPyt: A Dynamic Analysis Framework for Python

B TraceAll M BranchCoverage

20

Overhead factor

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

OnlyAdd M settrace

5 6 7 8 9

Project #

Figure 4: Overhead of analyses as a factor of the original running time.

as done, e.g., by Xu et al. [36]. We argue that writing an analysis
on top of DynaPyt is easier, as its analysis hooks match the level of
abstraction of the programming language, whereas opcode-level
and line-level hooks do not. It can also be faster to run an analy-
sis implemented with DynaPyt than with sys.settrace, if only a
subset of runtime event are of interest. Our experiments show that
DynaPyt analyses can be 5.6%-88.6% faster than sys.settrace ones.

Program Analyses for Python. Given the dynamic nature of Python,
there currently are surprisingly few dynamic analyses for the lan-
guage. Noteworthy analyses include work to detect bugs [36], to
enforce differential privacy [1], or to slice programs [6]. Beyond
dynamic analysis, there is range of static analyses for Python, e.g.,
a lightweight analysis to find programming issues in test cases [34],
a type inference analysis [37], a constraint-based inconsistency
checker [5], a call graph analysis [27], an abstract interpretation-
based analysis to find runtime errors [11]. We attribute the relative
scarcity of dynamic analyses for Python, at least partially, to the so
far limited support for implementing them, which is the problem
addressed by DynaPyt.

Dynamic Analyses for Other Languages. Also beyond Python,
dynamic analysis is an effective means to address various prob-
lems related to software correctness, security, and performance,
especially for dynamically typed languages, where static analysis
tends to be more limited. Some analyses detect type-related prob-
lems [2, 25], concurrency bugs [9, 22, 28], and other common bug
patterns [14]. Others infer API usage protocols [24, 38] and input
grammars [15], or find optimization opportunities [32, 35]. Security-
oriented analyses include taint analysis [7], dynamic detectors of
similar functions [8], and binary-level security analyses [31]. Since
DynaPyt is a general-purpose dynamic analysis framework, we
envision it to enable a wide range of novel analyses to understand
and improve Python programs.

Studies of Python Software. Several studies of code written in
Python pinpoint problems that could be addressed through dynamic
analysis. A study of bugs in deep learning code [39] reports a need
for techniques to find and debug such bugs, e.g., by tracking how
incorrect values propagate through a learning pipeline. A study of
Jupyter notebooks, which are written in Python, shows that such

notebooks often contain code of poor quality [33], and pinpoint
a need for analysis tools targeting Jupyter notebooks. Another
study reports that security issues are common in small Python code
snippets shared between developers [26]. Our work provides a solid
basis for addressing these and other issues through appropriate
analyses.

5 CONCLUSION

This paper presents DynaPyt, the first general-purpose framework
for dynamically analyzing Python programs. This framework al-
lows developers to implement dynamic analyses with little effort
and at their desired abstraction level. Moreover, it enhances the ex-
ecution time of the analyses compared to built-in tracing methods.

Artifact Availability. DynaPyt is publicly available on GitHub at
https://github.com/sola-st/DynaPyt and as a Python package on
PyPi’. All evaluation scripts are available on the GitHub reposi-
tory. The projects used as code to analyze are open-source projects
available on GitHub.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC,
grant agreement 851895), and by the German Research Foundation
within the ConcSys and DeMoCo projects.

REFERENCES

[1] Chike Abuah, Alex Silence, David Darais, and Joseph P. Near. 2021. DDUO:
General-Purpose Dynamic Analysis for Differential Privacy. In 34th IEEE Com-
puter Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021. IEEE, 1-15. https://doi.org/10.1109/CSF51468.2021.00043

[2] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. 2011.
Dynamic inference of static types for Ruby.. In POPL. 459-472.

[3] Esben Andreasen, Liang Gong, Anders Mgller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. Comput. Surveys (2017).

[4] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infras-
tructure for adaptive dynamic optimization. In International Symposium on Code
Generation and Optimization, 2003. CGO 2003. IEEE, 265-275.

[5] Lin Chen, Baowen Xu, Tianlin Zhou, and Xiaoyu Zhou. 2009. A Constraint Based

Bug Checking Approach for Python. In Computer Software and Applications

Conference (COMPSAC). IEEE, 306-311.

Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William C. Chu, and Baowen

Xu. 2014. Dynamic Slicing of Python Programs. In IEEE 38th Annual Computer

[6

*https://pypi.org/project/dynapyt/

https://github.com/sola-st/DynaPyt
https://doi.org/10.1109/CSF51468.2021.00043
https://pypi.org/project/dynapyt/

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

(71

8

=

[9

=

[10

[11]

[12

[13]

[14]

[15

[16

(18]

[19]

[20]

[21

[22

[23]

Software and Applications Conference, COMPSAC 2014, Vasteras, Sweden, July
21-25, 2014. IEEE Computer Society, 219-228. https://doi.org/10.1109/COMPSAC.
2014.30

James A. Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic
dynamic taint analysis framework. In International Symposium on Software Testing
and Analysis (ISSTA). ACM, 196-206.

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014. 303-317.

Cormac Flanagan and Stephen N. Freund. 2004. Atomizer: a dynamic atomicity
checker for multithreaded programs. In Symposium on Principles of Programming
Languages (POPL). ACM, 256-267.

Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner dynamic
analysis framework for concurrent programs. In Workshop on Program Analysis
for Software Tools and Engineering (PASTE). ACM, 1-8.

Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. 2018. Static value
analysis of Python programs by abstract interpretation. In NASA Formal Methods
Symposium. Springer, 185-202.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed au-
tomated random testing. In Conference on Programming Language Design and
Implementation (PLDI). ACM, 213-223.

Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
unfriendly JavaScript Code. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 357-368.
Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In International Sym-
posium on Software Testing and Analysis (ISSTA). 94-105.

Matthias Hoschele and Andreas Zeller. 2016. Mining input grammars from
dynamic taints. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016.
720-725.

Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-Force: Forced Execution on JavaScript.
In Proceedings of the 26th International Conference on World Wide Web, WWW 2017,
Perth, Australia, April 3-7, 2017, Rick Barrett, Rick Cummings, Eugene Agichtein,
and Evgeniy Gabrilovich (Eds.). ACM, 897-906. https://doi.org/10.1145/3038912.
3052674

Daniel Lehmann and Michael Pradel. 2019. Wasabi: A Framework for Dynamically
Analyzing WebAssembly. In ASPLOS.

Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-
offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. 2005.
Pin: building customized program analysis tools with dynamic instrumentation.
In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005. 190-200.
Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190-200.

Lukas Marek, Alex Villazon, Yudi Zheng, Danilo Ansaloni, Walter Binder, and
Zhengwei Qi. 2012. DiSL: a domain-specific language for bytecode instrumen-
tation. In Proceedings of the 11th International Conference on Aspect-oriented
Software Development, AOSD 2012, Potsdam, Germany, March 25-30, 2012, Robert
Hirschfeld, Eric Tanter, Kevin J. Sullivan, and Richard P. Gabriel (Eds.). ACM,
239-250. https://doi.org/10.1145/2162049.2162077

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Conference on Programming Language
Design and Implementation (PLDI). ACM, 89-100.

Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid dynamic data race detection.
In Symposium on Principles and Practice of Parallel Programming (PPOPP). ACM,
167-178.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-Force: Force-Executing Binary Programs for Security Applications..
In USENIX Security. 829-844.

[24

[25

[26]

&
=

[28

[29

[30

[32

[33

[34

@
i

[36

(37

(38]

[39

Eghbali and Pradel

Michael Pradel and Thomas R. Gross. 2009. Automatic Generation of Object
Usage Specifications from Large Method Traces. In International Conference on
Automated Software Engineering (ASE). 371-382.

Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic Type
Inconsistency Analysis for JavaScript. In International Conference on Software
Engineering (ICSE).

Md. Rayhanur Rahman, Akond Rahman, and Laurie A. Williams. 2019. Share, But
be Aware: Security Smells in Python Gists. In 2019 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA, September
29 - October 4, 2019. IEEE, 536-540. https://doi.org/10.1109/ICSME.2019.00087
Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and
Dimitris Mitropoulos. 2021. Pycg: Practical call graph generation in python.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 1646-1657.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E.
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Transactions on Computer Systems 15, 4 (1997), 391-411.
Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 488-498.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In European Software Engineering Conference and International
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, 263-272.
Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A new approach to computer security via binary analysis. In
International conference on information systems security. Springer, 1-25.

Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2015. Performance
Problems You Can Fix: A Dynamic Analysis of Memoization Opportunities. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 607-622.

Jiawei Wang, Li Li, and Andreas Zeller. 2020. Better code, better sharing: on
the need of analyzing jupyter notebooks. In ICSE-NIER 2020: 42nd International
Conference on Software Engineering, New Ideas and Emerging Results, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
53-56. https://doi.org/10.1145/3377816.3381724

Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and
Iftekhar Ahmed. 2021. PyNose: A Test Smell Detector For Python. In ASE.
Guoging (Harry) Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary
Sevitsky. 2009. Go with the flow: profiling copies to find runtime bloat. In
Conference on Programming Language Design and Implementation (PLDI). ACM,
419-430.

Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu. 2016. Python predictive
analysis for bug detection. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong
Su (Eds.). ACM, 121-132. https://doi.org/10.1145/2950290.2950357

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016.
Python probabilistic type inference with natural language support. In Proceed-
ings of the 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 607-618.
https://doi.org/10.1145/2950290.2950343

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. 2006. Perracotta: Mining temporal API rules from imperfect traces. In
International Conference on Software Engineering (ICSE). ACM, 282-291.

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.).
ACM, 129-140. https://doi.org/10.1145/3213846.3213866

https://doi.org/10.1109/COMPSAC.2014.30
https://doi.org/10.1109/COMPSAC.2014.30
https://doi.org/10.1145/3038912.3052674
https://doi.org/10.1145/3038912.3052674
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.1109/ICSME.2019.00087
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/2950290.2950357
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/3213846.3213866

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Hierarchy of Runtime Events
	2.3 Source-to-Source Instrumentation
	2.4 Runtime Engine

	3 Evaluation
	3.1 Experimental Setup
	3.2 Efficiency of Instrumentation (RQ1)
	3.3 Faithfulness to Original Execution (RQ2)
	3.4 Analyses Written on Top of DynaPyt (RQ3)
	3.5 Runtime Overhead (RQ4)

	4 Related Work
	5 Conclusion
	References

