
CrystalBLEU: Precisely and Efficiently Measuring
the Similarity of Code

Aryaz Eghbali
aryaz.eghbali@iste.uni-stuttgart.de

University of Stuttgart
Stuttgart, Germany

Michael Pradel
michael@binaervarianz.de
University of Stuttgart
Stuttgart, Germany

ABSTRACT
Recent years have brought a surge of work on predicting pieces
of source code, e.g., for code completion, code migration, program
repair, or translating natural language into code. All this work faces
the challenge of evaluating the quality of a prediction w.r.t. some
oracle, typically in the form of a reference solution. A common
evaluation metric is the BLEU score, an n-gram-based metric orig-
inally proposed for evaluating natural language translation, but
adopted in software engineering because it can be easily computed
on any programming language and enables automated evaluation at
scale. However, a key difference between natural and programming
languages is that in the latter, completely unrelated pieces of code
may have many common n-grams simply because of the syntactic
verbosity and coding conventions of programming languages. We
observe that these trivially shared n-grams hamper the ability of
the metric to distinguish between truly similar code examples and
code examples that are merely written in the same language. This
paper presents CrystalBLEU, an evaluation metric based on BLEU,
that allows for precisely and efficiently measuring the similarity of
code. Our metric preserves the desirable properties of BLEU, such
as being language-agnostic, able to handle incomplete or partially
incorrect code, and efficient, while reducing the noise caused by
trivially shared n-grams. We evaluate CrystalBLEU on two datasets
from prior work and on a new, labeled dataset of semantically equiv-
alent programs. Our results show that CrystalBLEU can distinguish
similar from dissimilar code examples 1.9–4.5 times more effec-
tively, when compared to the original BLEU score and a previously
proposed variant of BLEU for code.

CCS CONCEPTS
•General and reference→Metrics;Evaluation; • Software and
its engineering→ Software notations and tools; • Computing
methodologies→ Machine learning.

KEYWORDS
BLEU, Evaluation, Metric

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556903

ACM Reference Format:
Aryaz Eghbali and Michael Pradel. 2022. CrystalBLEU: Precisely and Ef-
ficiently Measuring the Similarity of Code. In 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’22), October
10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3551349.3556903

1 INTRODUCTION
The desire to automate repetitive software development tasks has
led to a surge in techniques for predicting pieces of code of vary-
ing sizes. Many of these techniques build on the huge amounts
of available source code to learn some kind of predictive model,
e.g., using deep neural networks [39]. Code prediction techniques
include code completion [4, 22, 23, 26, 46], code translation be-
tween programming languages [32, 33, 43], automated program
repair [11, 12, 16, 24, 49], predicting code from natural language de-
scriptions of the desired functionality [15, 21, 27, 44, 47], injecting
bugs and vulnerabilities into existing code [34, 37], and predicting
test oracles and test cases [6]. The amount of predicted code dif-
fers across techniques, ranging from a few tokens, over multi-line
statements, to entire code files.

A commonality of all these techniques is the need for a metric
to evaluate the quality of the predicted code. One of the most
popular ways to address this need is the BLEU score. BLEU, which
stands for “bilingual evaluation understudy”, has originally been
introduced in natural language processing as a way to automate
the evaluation of machine translation [36]. Because BLEU can be
easily adopted to any language that can be tokenized, including
any programming language, and because BLEU enables automated
evaluation at scale, it has become popular also for evaluating code
prediction techniques. While surveying recent papers in software
engineering, we find at least 21 papers published since 2015 that
use BLEU as a metric to evaluate code prediction.

The basic idea of BLEU is to compare a prediction against one
or more reference solutions by computing the overlap between
n-grams, i.e., contiguous sequences of code tokens. Figure 1 illus-
trates this idea for comparing two predicted hypotheses against
a reference solution. These pieces of code are slightly modified
examples taken from a dataset of programs submitted to an online
environment for competitive programming practice, where sub-
sets of programs are labeled as semantically equivalent. The figure
highlights some of the matching n-grams by showing them in the
same color. For example, the four tokens in “());” occur in both the
hypotheses and the reference code, and hence are a shared 4-gram.
BLEU summarizes the similarity between the code pieces based on
this and other shared n-grams, giving a higher score when more
n-grams are shared between a hypothesis and the reference.

https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

1 // Reference:

2 import java.util .*;

3 public class Main {

4 public static void main(String [] args) {

5 Scanner in = new Scanner(System.in);

6 int t = in.nextInt ();

7 in.nextLine ();

8 while (t-- > 0) {

9 System. out.println(new StringBuffer(in.nextLine ()).reverse

());

10 }

11 }

12 }

13 // Hypothesis 1: equivalent to the reference

14 import java.util.Scanner;

15 public class Main {

16 public static void main(String argv[]) {

17 int num_of_tests = 0;

18 Scanner in = new Scanner(System.in);

19 num_of_tests= Integer.parseInt(in.nextLine ());

20 for(int i=0; i<num_of_tests; i++) {

21 StringBuilder rev_str = new StringBuilder(in.nextLine ());

22 System. out.println(rev_str.reverse ());

23 }

24 }

25 }

26 // Hypothesis 2: not equivalent to the reference

27 import java.util.Scanner;

28 public class Main {

29 public static void main(String [] args) {

30 Scanner in = new Scanner(System.in);

31 while (in.hasNext ())

32 System. out.println(in.nextInt () + in.nextInt ());

33 }

34 }

35

Figure 1: Example of Java programs.

The example not only illustrates how BLEU works, but also high-
lights an important weakness of applying the metric to code. In
contrast to natural languages, programming languages are syntac-
tically verbose in the sense that the grammar prescribes various
n-grams to be shared across completely unrelated code examples.
For example, the 2-gram “) {”, which is shared between all three
examples in Fig. 1, is simply the result of the grammar, but does
not imply any semantic similarity. Beyond syntax verbosity, com-
mon coding conventions and widely used APIs create even more
n-grams shared across unrelated code, such as the shared 4-grams
“out.println(” in the example. We call this phenomenon trivially
shared n-grams, i.e., n-grams that occur across code written in the
same language without implying any deeper relationship or se-
mantic similarity. Because BLEU handles every n-gram the same,
trivially shared n-grams hamper the metric’s ability to distinguish
actually similar code examples from examples merely written in
the same language.

This paper presents CrystalBLEU, a metric to precisely and ef-
ficiently evaluate code similarity despite trivially shared n-grams.
The approach is an extension of BLEU that removes trivially shared
n-grams before computing the n-gram overlap between two pieces
of code. Trivially shared n-grams can vary between programming
languages and domains of programs. To identify trivially shared

n-grams, CrystalBLEU analyzes a corpus of code and identifies
n-grams that occur frequently across many examples. While con-
ceptually simple, we find this change to significantly improve the
ability of the metric to distinguish between semantically similar and
dissimilar code. Similar to BLEU, CrystalBLEU relies only on syn-
tactic similarities and uses them as a proxy for estimating semantic
similarity. As a way to quantify the improvement in differentiating
semantically similar and dissimilar code, we formulate in a novel
meta-metric called distinguishability. In a nutshell, distinguishabil-
ity measures how much more similar code examples known to be
semantically equivalent are compared to code examples that are
not equivalent to each other.

We evaluate our work with three datasets. One dataset is the
Concode dataset [21], which consists of more than 100,000 pairs of
Java code and natural language descriptions. We use this dataset
to show a case for which BLEU is not a suitable metric when com-
paring models, while CrystalBLEU can provide useful comparison.
Another dataset is BigCloneBench [45, 51], which consists of more
than 1.7 million pairs of clone and non-clone programs in Java. We
also use a new dataset of Java and C++ programs with labels that in-
dicate sets of semantically equivalent programs from ShareCode.io,
which consists of more than 6,000 Java and more than 20,000 C++
programs. These two datasets allow us to evaluate similarity met-
rics on objective ground truths. We compare CrystalBLEU against
two baselines: the original BLEU score [36] and CodeBLEU [41], a
previously proposed variant of BLEU for code. Our results show
that CrystalBLEU provides higher distinguishability than both base-
lines, i.e., it is more effective at distinguishing semantically similar
code from code merely written in the same language. Despite these
benefits, the running time of CrystalBLEU and BLEU are similar,
making our metric attractive for large-scale and even online evalu-
ation of code similarity, e.g., as part of a loss function for training a
machine learning model.

In our example from Fig. 1, the BLEU score for Hypothesis 1 and
the Reference is 0.48, and for Hypothesis 2 and the Reference it is
0.55. However, we expect to get a higher similarity score for the
equivalent pair, which is not the case in this example. The example
shows how trivially shared n-grams can mislead the BLEU score to
report a higher similarity for dissimilar code pieces than for similar
ones. In contrast to BLEU, the CrystalBLEU score for Hypothesis 1
and the Reference is 0.24, and for Hypothesis 2 and the Reference it
is 0.0. That is, CrystalBLEUmore accurately represents the semantic
(dis)similarities than BLEU.

Prior work has also highlighted weaknesses of applying BLEU
to code and proposed two alternative metrics, RUBY [48] and Code-
BLEU [41]. They exploit the fact that code has a well-defined struc-
ture, in the form of an AST, and well-defined relationships between
code elements, in the form of data-flow and control-flow depen-
dencies. However, both approaches are only applicable when it is
possible to compute an abstract syntax tree and semantic dependen-
cies of the analyzed code pieces. Because code prediction techniques
often output isolated code fragments, e.g., catch blocks [54], and
because the predicted code may contain syntactic and semantic
mistakes, calculating ASTs and dependencies may not be possible.
Even when that is possible, relying on program analysis means
that a separate implementation is required for each programming

ShareCode.io

CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

language and that the metrics are less efficient than BLEU and Crys-
talBLEU. Finally, RUBY and CodeBLEU partially build upon BLEU,
and hence, also suffer from trivial n-gram matches. The CodeBLEU
score for Hypothesis 1 and the Reference from Fig. 1 is 0.51, and
for Hypothesis 2 and the Reference it is 0.57, which means the
equivalent pair receives a higher score than the non-equivalent
pair.

In summary, this paper contributes the following:
• The observation that the most common n-grams in program-
ming languages appear relatively more often than the most
common n-grams in natural languages, and that they ap-
pear in many different programs regardless of their semantic
similarity.
• A meta-metric, called distinguishability, to measure the ef-
fectiveness of code similarity metrics at distinguishing se-
mantically equivalent code from code merely written in the
same language.
• A new metric for evaluating code similarity, called Crystal-
BLEU, which ignores trivially shared n-grams when compar-
ing two pieces of code.
• Empirical evidence that, compared to BLEU, CrystalBLEU
achieves higher distinguishability, while being as efficient
as the original metric. We also show that CrystalBLEU helps
avoid drawing misleading conclusions about neural code
prediction models.

2 BACKGROUND
2.1 BLEU Score
The bilingual evaluation understudy, commonly referred to as BLEU,
was proposed by Papineni et al. [36] as an inexpensive metric to
evaluate the quality of translated natural language text. It is cal-
culated by first computing the modified precision of n-grams, for
𝑛 ∈ {1, 2, . . . ,𝑚𝑎𝑥𝑁 }. Then, the weighted geometric mean of these
modified precision values, times a brevity penalty, yields the BLEU
score, a number in [0, 1]. To be self-contained, we briefly explain
how BLEU is computed with the assistance of the example in Fig. 1,
and refer readers to Papineni et al. [36] and NLTK’s implementation
of BLEU1 for more details.

Given a corpus of hypotheses and their reference sentences
(one or more reference sentences per hypothesis sentence), the
modified precision of n-grams, for a fixed value of 𝑛, is computed as
follows. First, for each n-gram a clipped count is calculated, which
is the minimum of the number of occurrences of that n-gram in the
hypothesis sentence and the maximum number of occurrences in
the reference sentences. For the example in Fig. 1, “) {” appears
once in Hypothesis 1 and twice in the reference, so the clipped
count for this 2-gram is two. The 3-gram “for (int” appears
once in Hypothesis 1 and the 3-gram “hasNext()” appears once
in Hypothesis 2 but none of them appear in the reference, which
make their clipped counts zero. Second, for each 𝑛 ∈ {1, . . . ,𝑚𝑎𝑥𝑁 }
these clipped counts are summed for all n-grams in each hypothesis
sentence and summed over all hypothesis sentences in the corpus.
Then, this sum is divided by the sum of all n-gram counts of all the
hypothesis sentences, hence the name modified precision.

1https://www.nltk.org/_modules/nltk/translate/bleu_score.html

The modified n-gram precision values for all 𝑛 ∈ {1, . . . ,𝑚𝑎𝑥𝑁 }
are combined using the weighted geometric mean to mitigate the
exponential drop for larger 𝑛. To decrease the calculation errors
and avoid underflows, the weighted geometric mean is calculated
using the weighted arithmetic mean over the logs of the modified
precision values and exponentiated at the end, as shown in Eq. (1).
In [36] and all the papers mentioned in this study, the weighted
arithmeticmean is calculated using equal weights. To avoid favoring
hypotheses that are shorter than their reference sentences, which
gives a higher modified precision, a penalty is multiplied with this
result, called the brevity penalty. This penalty is calculated over
the whole corpus, to avoid punishing hypothesis sentences for not
being of equal length to their corresponding references. Therefore,
for each hypothesis sentence, the length of the reference sentence
that is closest to the length of the hypothesis is added to a sum, 𝑟 .
The total length of the hypothesis corpus is denoted as 𝑐 . If 𝑟 < 𝑐 ,
then the brevity penalty is 1, otherwise, it is 𝑒1−𝑟/𝑐 . In our example,
since the first hypothesis is longer than the reference, the brevity
penalty is one, i.e., no penalty, but because the second hypothesis
is shorter than the reference, the brevity penalty is 𝑒1−77/58.

To summarize, the BLEU score is calculated with the following
formula

𝐵𝐿𝐸𝑈 = 𝑒𝑥𝑝

(
𝑚𝑖𝑛(1 − 𝑟

𝑐
, 0) +

𝑚𝑎𝑥𝑁∑︁
𝑖=1

𝑤𝑖 log𝑝𝑖

)
, (1)

where,𝑤𝑖 is the weight and 𝑝𝑖 is the modified precision of 𝑖-grams.
Since the BLEU score is calculated using the geometric mean

of the modified precision values. If at least one of the modified
precision values is zero, the BLEU score is also zero. To mitigate
this rapid drop, some smoothing techniques have been proposed [9].

2.2 BLEU on Code
In recent years research in automated code generation has increased,
andwith that increase comes the need for evaluationmetrics. One of
the commonly used metrics for code similarity is BLEU, since it can
handle different programming languages ranging from VHDL [25],
custom languages [31], and UI tags [10], to more conventional
languages like Java [15, 27, 47, 52, 54], C++ [17, 43], and Python [29,
30, 44]. Another appeal of BLEU lies in its applicability to any piece
of code, regardless of syntactic correctness or completeness. It has
been used to assess a variety of code sizes such as code on the
right-hand side of assignments [25], single statements [52], single
lines of code [13, 35], sequences of API calls [15, 27, 47], blocks of
code [54], full methods [21, 32, 33], and full classes [44].

Applying BLEU to source code raises the question what a sen-
tence is. In natural language, one sentence from the hypothesis
corpus is associated with one sentence from each corresponding
reference, but for source code there exists no such obvious associa-
tion. Therefore, BLEU is commonly applied to code by considering
an entire source code snippet as one sentence.

3 APPROACH
This section presents the CrystalBLEU metric for measuring the
similarity of code in a precise and efficient way. We start by motivat-
ing our work through the observation that natural languages and
programming languages differ in that the latter has a higher number

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

Code
corpus

CrystalBLEU

Trivially
shared

n-grams

Predictive
model

Similarity score

Reference Hypothesis

Figure 2: Overview of the approach.

of trivially shared n-grams (Section 3.1). We then describe a novel
meta-metric, called distinguishability, for assessing to what extent
a code similarity metric distinguishes between semantically similar
code and code merely written in the same language (Section 3.2).
Finally, we present the CrystalBLEU metric, which addresses the
problem of trivially shared n-grams in a way that increases distin-
guishability compared to BLEU (Section 3.3).

Figure 2 shows an overview of the approach for computing
CrystalBLEU. The core idea is to identify trivially shared n-grams
in a representative corpus of code, e.g., the corpus used to train
the predictive model, and to then account for the n-grams while
comparing a reference code example to the hypothesis predicted
by the model.

3.1 Trivially Shared N-grams
Natural languages and programming languages share many com-
monalities [18], an observation exploited in various approaches that
adapt techniques from natural language processing to code [1, 39].
In particular, these similarities have motivated the use of BLEU on
code. However, we observe an important difference between the
two kinds of languages, which affects the adoption of BLEU to code:
Code examples written in the same programming language trivially
share various n-grams, irrespective of how semantically similar two
code examples are.We call such n-grams trivially shared n-grams.

Trivially shared n-grams are mainly due to two reasons. The
first reason is that the syntax of a programming language often
enforces multiple tokens to appear together. For example, in many
programming languages the structure of a “for” loop is fixed and
causes several n-grams to appear no matter what exactly the loop is
about, such as “for (” or “) {”. Grammar-induced, trivially shared n-
grams are particularly common in programming languages because
they have a well defined grammar and an often verbose syntax. This
is inherently different from natural languages, where the grammar
is more relaxed and enforces minimal syntactical notations.

The second reason for trivially shared n-grams are common
coding conventions and popular APIs, which cause similar code
fragments to appear across various programs. For example, all Java
programs with a “System.out.println(...);” statement share sev-
eral n-grams of different sizes, without having any strong semantic

Table 1: Top common 2-grams and 4-grams of Java and Eng-
lish languages.

2-grams % of 2-grams 4-grams % of 4-grams

) ; 5.49) ; } } 1.34
() 4.75 () { return 1.29
) { 3.83 () ; } 1.14
; } 3.81)) ; } 1.12

Java ; import 2.75) ; } public 1.00
)) 1.73 ()) ; 0.94

} public 1.27) { this . 0.68
{ return 1.24 ; } public void 0.61

} } 1.07 ; } @Override public 0.54
) . 0.99) { if (0.54

of the 2.31 ” , he said 0.56
, and 1.45 , he said , 0.32
in the 1.31 , of course , 0.31

” . 1.01 ” , I said 0.29
English , the 0.85 ” , she said 0.29

to the 0.85 , he said . 0.27
. “ 0.64 ” . “ I 0.22
” , 0.63 he said , “ 0.21

on the 0.57 ” ? asked . 0.19
, but 0.53 , I said . 0.19

relationship beyond the fact that they print something. Another
example would be the main function in languages like C++ and
Java, where the signature and the name are in most cases fixed.

To validate our hypothesis that trivially shared n-grams are a
programming language-specific phenomenon, we present three
experiments.

Most frequent n-grams. Table 1 illustrates the phenomenon with
examples from English and Java. The English language data is
extracted from the Brown dataset2, which is commonly used in the
area of natural language processing. As a Java corpus, we use the
Java-small dataset3, which consists of open-source projects. The
table shows the ten most frequent 2-grams and 4-grams in Java
code and English text. Next to the n-grams, the table also shows
the percentage of all occurrences that a specific n-gram contributes.
The percentages of the most frequent are clearly higher for Java
than for English, showing that common n-grams contribute a larger
share in Java. For example, the five most common 2-grams in Java
each contribute more than 2.5% of all 2-grams in Java, whereas even
the single-most common 2-gram in English contributes less than
2.5%.

Distribution of frequent n-grams. To further validate our hypoth-
esis that trivially shared n-grams are particularly prevalent in pro-
gramming languages, we extend our measurement of the frequen-
cies of common n-grams in both natural language and code corpora
beyond the top 10 examples shown in Table 1. Figure 3 shows the
frequencies of the top occurring n-grams in English and Java, using
the same datasets as above. The chart axes are in log scale to show
the fact that a few most occurring n-grams in programming lan-
guages are much more frequent than the most occurring n-grams
in natural languages, but for the less frequent n-grams (i.e. the tails

2Available in NLTK’s data at http://www.nltk.org/nltk_data/.
3Used in Alon et al. [3] and available at https://github.com/tech-srl/code2seq/#datasets.

http://www.nltk.org/nltk_data/
https://github.com/tech-srl/code2seq/#datasets

CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

100 101 102 103

Most occurring 1-grams

10 5

10 4

10 3

10 2

10 1

Fr
eq

ue
nc

y
(s

ha
re

 o
f

 sa
m

e-
le

ng
th

 n
-g

ra
m

s)

100 101 102 103

Most occurring 2-grams
100 101 102 103

Most occurring 3-grams
100 101 102 103

Most occurring 4-grams

English
Java

Figure 3: Frequency of the most common Java n-grams (blue, from Java-small dataset) and English n-grams (red, from Brown
dataset). Both plot axes use log scale to better visualize the differences.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of shared n-grams

0

100

200

300

400

500

600

Nu
m

be
r o

f p
ai

rs

English
French
Python
Java
C/C++

Figure 4: Ratio of shared n-grams in English, French, Python,
Java, and C/C++.

of the distribution) it is the opposite. We see that there are tens
of n-grams in Java that appear many times (much more than the
most common n-grams of the English language), while less com-
mon n-grams in the English language appear more than the less
common n-grams in Java. In other words, common n-grams occur
more frequently in Java than in English.

N-grams shared by randomly selected pairs. As a third experiment,
we randomly select code or text examples in the same language
and compute how many n-grams they share, as shown in Fig. 4.
In addition to the datasets used above, we also show results for
French using the Europarl French-English dataset4, Python using
the Python150k dataset5, and C/C++ using the POJ-104 dataset6.
We observe that, on average, two random programs share more
n-grams than two random pieces of natural language text. This
means that given two pieces of code, regardless of their semantic
similarity, they are expected to have more n-grams in common than
two pieces of text in a natural language like English. Note that the
4Available at https://www.statmt.org/europarl/
5Available at https://www.sri.inf.ethz.ch/py150
6Available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-
detection-POJ-104

curves for English and French languages are on top of each other
(the red and blue curve with the highest peak), but have a small
difference in their distribution (the mean for English is 0.08 and the
mean for French in 0.10).

How do n-grams that are common across a corpus influence the
BLEU score? Because the metric does not differentiate between n-
grams based on their frequency, each n-gram contributes equally to
the computed similarity. That is, the more n-grams trivially match
even for completely unrelated code examples, the less precisely
can BLEU represent whether two code examples are semantically
similar or dissimilar. The idea behind CrystalBLEU is to mitigate
this effect by focusing on more informative n-gram matches.

3.2 Distinguishability
Before describing how CrystalBLEU addresses the challenge of
trivially shared n-grams, the following presents a way to measure
how precisely any code similarity metric represents semantic sim-
ilarities. To this end, we exploit the fact that code, in contrast to
natural language, provides an unambiguous oracle for semantic
equivalence through its execution semantics. Intuitively, a metric
should report a higher similarity for code examples that have the
same execution behavior, while reporting a lower similarity for
code examples with different behavior.

We formulate this intuition into the notion of the distinguishabil-
ity of a similarity metric as follows. Suppose a similarity metric𝑚
and set𝐶 of source code examples. The metric is given a set of pairs,
where each pair consists of a set of reference code examples and
a hypothesis to evaluate against the references. For example, the
references in such a pair may be one or more known to be correct
code snippets and the hypothesis is a code snippet predicted by
some model. Formally,𝑚 : P(P(𝐶)×𝐶)) → R≥0, where P denotes
the power set, and R≥0 is the set of non-negative real-valued scores
the metric may compute.

Further suppose the set𝐶 of source code examples is composed of
a disjoint set of equivalence classes𝐶1,𝐶2, . . . ,𝐶𝑛 that represent se-
mantically equivalent code examples. That is,𝐶1∪𝐶2∪· · ·∪𝐶𝑛 = 𝐶 ,
and for each 𝑖 ∈ {1, . . . , 𝑛}, all programs in 𝐶𝑖 are equivalent to
each other but not equivalent to any program in𝐶 𝑗 for 𝑗 ≠ 𝑖 . Given

https://www.statmt.org/europarl/
https://www.sri.inf.ethz.ch/py150
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-POJ-104

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

these sets, a metric has high distinguishability if it yields high simi-
larity scores for code examples within an equivalence class, called
intra-class similarity, but low similarity scores for code examples
from different equivalence classes, called inter-class similarity:

Definition 3.1 (Distinguishability). Let Pairsintra and Pairsinter be
inputs to a metric𝑚 where

Pairsintra = {(𝐶𝑖 \ {𝑐𝑎}, 𝑐𝑎) | 𝑐𝑎 ∈ 𝐶𝑖 }
Pairsinter = {(𝐶 𝑗 , 𝑐𝑎) | 𝑐𝑎 ∈ 𝐶𝑖 , 𝑖 ≠ 𝑗}

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. The distinguishability 𝑑 of𝑚 is:

𝑑 =
𝑚(Pairsintra)
𝑚(Pairsinter)

Based on this definition, distinguishability is higher when the
intra-class similarity is higher, and lower when the inter-class sim-
ilarity is higher. Distinguishability is always a positive number.
A metric that returns random similarity scores would have an ex-
pected distinguishability of one. Distinguishability above onemeans
the metric can distinguish similar from dissimilar code examples,
where higher distinguishability means the metric is more precise
at this task.

Since the number of intra-class pairs is quadratic in the number
of programs in each class and the number of inter-class pairs is
quadratic in the number of total programs, computing the similarity
metrics for all intra- and inter-class pairs may become impractical
for large code corpora. Instead, we use a sampling-based approxima-
tion of distinguishability that randomly samples 𝑁 intra-class pairs
and 𝑁 inter-class pairs, and then computes distinguishability for
them. We use this approximation of distinguishability for datasets
that have a large number of program pairs, with 𝑁 = 1, 000 as a
default.

3.3 CrystalBLEU
We now present the CrystalBLEUmetric, which in contrast to BLEU,
increases distinguishability by accounting for trivially shared n-
grams. The basic idea behind the metric is surprisingly simple: At
first, we identify trivially shared n-grams. Then, we compute a
revised BLEU score that accounts for the trivially shared n-grams.
The following explain the full algorithm in more detail. To be self
contained, we also describe those parts that are the same as in the
original BLEU calculation.

3.3.1 Identifying Trivially Shared N-grams. It has been observed in
many domains that the more frequent an n-gram, word, or phrase is,
the less information it conveys when appearing in a document. For
example, this observation is the basis for term frequency–inverse
document frequency (TFIDF), which is commonly used as a weight-
ing factor in information retrieval methods. To identify trivially
shared n-grams in a corpus of code examples, we also exploit the
frequency of an n-gram occurring in the corpus.

Concretely, before applying CrystalBLEU to a code corpus, we
compute all n-grams, along with their frequencies, in this corpus.
Then, we gather the 𝑘 most common n-grams in set 𝑆 , where 𝑘 is a
parameter of the algorithm. CrystalBLEU heuristically considers
this set 𝑆 as trivially shared n-grams. For example, when using
CrystalBLEU to compute how accurately Concode [21] predicts
functions, we compute 𝑆 based on the corpus of functions that

Concode is trained on. Throughout this paper we use 𝑘 = 500 for
our experiments and explain this decision in detail in Section 4.6.

Input: 𝑆 : counts of k most occurring n-grams, hyps: list
of tokenized hypotheses, refs: list of tokenized
references, options: other BLEU options like
weights, smoothing methods, etc.

Output: CrystalBLEU score
1 numerator, denominator ← [0...0]
2 for (ref, hyp) in (refs, hyps) do
3 for 𝑖 ∈ [1..maxN] do
4 numeratori, denominatori ←

numeratori, denominatori +
modified_precision(ref , hyp, 𝑖, 𝑆)

5 end
6 end
7 bp← brevity_penalty(refs, hyps)
8 for 𝑖 ∈ [1..maxN] do
9 𝑝𝑖 ← numeratori/denominatori

10 end
11 if smoothing then
12 apply smoothing
13 end
14 for 𝑖 ∈ [1..maxN] do
15 𝑠𝑖 ← weighti ∗ 𝑝𝑖
16 end
17 score← bp ∗ exp(∑𝑖 𝑠𝑖)
18 return score
19 Function modified_precision(ref , hyp, 𝑖 , 𝑆) is
20 refCounts← n-grams of length 𝑖 from each ref and

their number of occurrences
21 hypCount ← n-grams of length 𝑖 from hyp and their

number of occurrences
22 remove any n-grams from refCounts and hypCount

that is in 𝑆 , or divide refCounts and hypCount by the
logarithm of counts in 𝑆

23 for ngram ∈ hypCount do
24 clipped_countngram ←

min(hypCountngram,max (refCountsngram))
25 end
26 numerator ← ∑

𝑖 clipped_counti
27 denominator ← max (1,∑ hypCount)
28 return numerator, denominator
29 end

Algorithm 1: CrystalBLEU. Differences to BLEU are high-
lighted.

3.3.2 CrystalBLEU Algorithm. Once the set 𝑆 of the most common
n-grams are computed, the next step is to decrease their impact on
the computation of the BLEU score. To calculate the BLEU score,
as mentioned in Section 2, the first step is to calculate the modified
precision of n-grams for the hypotheses. We implement and evalu-
ate two approaches for considering trivially shared n-grams in this

CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

step. One approach is to completely remove all n-grams in 𝑆 from
the modified precision calculations. Another, more complex process
is to apply weights proportional to the inverse frequency of the
most common n-grams. We empirically observe both approaches to
provide similar effects on the computed similarity metrics and on
distinguishability, and hence, focus on the first, simpler approach
in the remainder of the paper.

Algorithm 1 shows the pseudo-code of CrystalBLEU and how
it differs with BLEU. The complete code is available as part of our
artifact. The important difference to BLEU is in line 22, where the
algorithm removes n-grams in 𝑆 (or decreases their weight) from
those considered when computing the modified precision. After the
modified precisions of n-grams are computed, they are summed up
and then the brevity penalty, weights, and smoothing method are
applied to obtain the final score, as in the original BLEU score.

Our implementation of CrystalBLEU extends the NLTK imple-
mentation of BLEU. Specifically, we use the corpus BLEU evaluation
(corpus_bleu method).

4 EVALUATION
In this section we answer the following research questions with
empirical evidence.
RQ1: How well does CrystalBLEU distinguish between similar and

dissimilar code?
RQ2: CanCrystalBLEU avoidmisleading results provided by BLEU?
RQ3: How efficient is computing CrystalBLEU?
RQ4: How sensitive is CrystalBLEU to the number 𝑘 of trivially

shared n-grams?

4.1 Baselines
For RQ1 to RQ3, we compare our CrystalBLEU metric to the exist-
ing BLEU metric [36], as it is widely used on code, and to Code-
BLEU [41], because it is a recently proposed alternative to BLEU
specifically designed for code. As an implementation of BLEU, we
use the vanilla implementation provided by NLTK. The CodeBLEU
implementation is extracted from the CodeXGLUE repository7.

4.2 Datasets
ShareCode: Semantically equivalent, human-written code. The

first dataset is a collection of solutions to programming challenges.
We include this dataset because it provides us with sets of diverse
yet semantically equivalent code snippets. The dataset is from Share-
Code8, an online coding competition website that offers program-
ming problems and an online judge. The online judge runs the code
submitted by programmers on comprehensive test suites and ac-
cepts only those solutions that pass all tests. Because the accepted
code pieces in a problem set pass all tests, we consider them to
be semantically equivalent. The semantically equivalent pairs can
be any of the four clone types, but the labeling criteria is only
functionality. We use the Java and C++ submissions of ShareCode,
and remove problems with fewer than five accepted solutions. In
total, there are 6,958 code pieces in this dataset, which cover 278
programming problems. N-grams “= 0;”, “.out.println”, and “i++”

7https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-
trans/evaluator/CodeBLEU
8https://sharecode.io/

Table 2: Distinguishability of different code similarity met-
rics (higher is better).

Language BLEU CodeBLEU CrystalBLEU

ShareCode Java 2.47 1.44 6.50
ShareCode C++ 2.82 N/A 8.29
BigCloneBench 1.44 1.18 2.77

are some of the most common n-grams in the Java language part
of this dataset.

BigCloneBench: Clone and non-clone pairs. This dataset contains
more than 1.7 million inter-project pairs of Java programs, each
labeled with “clone” or “not clone”. Because of the labeling process,
it contains clone types one to four. The data is split into train
(∼901k), validation (∼415k), and test (∼415k) sets. It is available on
the CodeXGLUE repository.9

Concode: Code generation task. This dataset, which originates
from Iyer et al. [21], is extracted from the CodeXGLUE repository.
It contains pairs of Java code and natural language descriptions of
the code. The task for which this dataset is curated for is predicting
a function, given a natural language description that also contains
some context information. The dataset contains 100,000 training
data points, and we have the predictions of a neural model and
ground truth for 100 test data points. Because of reproducibility
issues we were not able to obtain the predictions for the full test
set.

4.3 RQ1: Distinguishing Similar and Dissimilar
Code

We measure the ability of CrystalBLEU and the baseline metrics to
distinguish semantically equivalent from semantically non-equivalent
code examples in two ways. Section 4.3.1 uses our novel distin-
guishability metric. Section 4.3.2 applies CrystalBLEU and other
metrics in a simple, threshold-based classifier that predicts whether
two examples are equivalent.

We perform these experiments on the two datasets that pro-
vide equivalent and non-equivalent code pairs, i.e., ShareCode and
BigCloneBench. For ShareCode, we use the equivalency classes
inherent to the dataset, i.e. two programs are considered equivalent,
and hence, considered to be intra-class (Definition 3.1), if they solve
the same task. For BigCloneBench, we assume pairs of clone pro-
grams as edges representing intra-class relations and non-clones
as edges showing inter-class relations.

4.3.1 Distinguishability Metric. Table 2 shows the distinguisha-
bility of CrystalBLEU, BLEU, and CodeBLEU for the two datasets.
We find CrystalBLEU to achieve a clearly higher distinguishability
than the two baseline metrics. For example, on the ShareCode Java
and C++ programs, CrystalBLEU outperforms BLEU by a factor of
2.6x and 2.9x, respectively. Compared to CodeBLEU, CrystalBLEU
achieves a more than 4x higher distinguishability on the ShareCode

9https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-
BigCloneBench

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator/CodeBLEU
https://sharecode.io/
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Clone-detection-BigCloneBench

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

Not clone Clone Not clone Clone
0.00

0.05

0.10

0.15

0.20

0.25

Si
m

ila
rit

y
sc

or
e

BLEU
CrystalBLEU

Figure 5: Average and 95% confidence interval of BLEU and
CrystalBLEU scores for each class in the BigCloneBench test
set.

Table 3: Code clone detection task results for BLEU- and
CrystalBLEU-based models.

ShareCode BigCloneBench

BLEU CrystalBLEU BLEU CrystalBLEU

TP 2,789 2,131 29,305 26,064
FP 2,253 531 113,668 44,397
TN 21,147 22,869 244,928 314,199
FN 811 1,469 27,515 30,756

Accuracy 0.88 0.92 0.66 0.82
Precision 0.55 0.80 0.20 0.37
Recall 0.77 0.59 0.52 0.46
F1 score 0.64 0.68 0.20 0.37

Java dataset. As there is no C++ support in CodeBLEU, the distin-
guishability of the C++ part is not available for CodeBLEU. Overall,
these experiments show that CrystalBLEU is much more effective
at distinguishing equivalent from non-equivalent code examples.

4.3.2 Threshold-based Classification. As another way to answer
RQ1, we assess the ability of CrystalBLEU and other metrics to
decide whether two code examples are equivalent. To illustrate the
idea, Figure 5 shows the mean and the 0.95 confidence interval of
BLEU and CrystalBLEU scores for pairs of non-clones and clones
in the BigCloneBench dataset. The figure shows that, while both
metrics return lower similarity scores for non-clones than for clones,
the differences are more accentuated with CrystalBLEU. First, the
relative difference between non-clones and clones is higher for
CrystalBLEU than for BLEU. Second, the confidence intervals of
CrystalBLEU are less overlapping, which is a result of its higher
distinguishability.

Motivated by these observations, we design a simple, threshold-
based classifier that predicts whether two code pieces are equiv-
alent based on their similarity score. If the similarity score of a
pair is above some threshold, the classifier predicts the pair to be
equivalent, and to be non-equivalent otherwise. To determine the

threshold, we calculate the average similarity score 𝑠equiv of all
equivalent and the similarity score 𝑠nonEquiv of all non-equivalent
pairs in a training set, and then use the means of these two val-
ues as the threshold. Table 3 shows the results of such a classifier
on ShareCode and BigCloneBench. Comparing BLEU and Crys-
talBLEU shows that CrystalBLEU’s ability to better distinguish
non-equivalent from equivalent pairs translates into a classifier
with higher accuracy and higher F1 score. For example, the accu-
racy at identifying clones and non-clones increases from 0.66 with
BLEU to 0.82 with CrystalBLEU. Higher recall for BLEU comes from
the fact that BLEU tends to overestimate the similarity of pairs, be-
cause of the trivially shared n-grams. This overestimation of BLEU
results in more positive predictions and fewer negative predictions
compared to CrystalBLEU, which in turn results in higher recall
and lower precision. Note that these results are not intended to
compete with state of the art clone detection techniques, which
achieve even higher accuracy, but instead serve to illustrate the
benefits of CrystalBLEU over BLEU.

Finding 1: CrystalBLEU is clearly more effective at distin-
guishing equivalent from non-equivalent code pairs compared
to the existing BLEU and CodeBLEU metrics, providing a more
precise code similarity metric.

4.4 RQ2: Avoiding Misleading Results
The noise caused by trivially shared n-grams might affect BLEU
and cause misleading conclusions when comparing different tech-
niques that predict code. The following shows an example of such
a misleading result and that CrystalBLEU avoids it. To this end,
we use Concode [21], which generates code from a natural lan-
guage text using a neural model. As a hypothetical competitor to
Concode, we create an artificial dummy model designed to appear
to be as good as Concode, while actually producing clearly worse
code than Concode. We assume that this dummy model knows
how many tokens are in the expected code, some of the correct
tokens, and the trivially shared n-grams in this domain. The model
generates its output as follows: Until the length of the prediction
is shorter than the correct solution, with 82% probability add a
trivially shared n-gram to the beginning of the prediction. With
probability 1 − 0.82, append a token from the correct solution to
the end of the prediction. The probability of 82% is chosen to yield
a dummy model that achieves exactly the same BLEU score as the
Concode model. This means that the dummy model is generating
code that in most cases starts with large section of nonsensical but
common tokens, followed by a small piece of correct code. Because
most of the code predicted by the dummy model simply consists of
trivially shared n-grams, its predictions clearly do not succeed in
the task of predicting code for a given natural language description.

Fig. 6 shows the results of evaluating Concode’s neural model
and the dummy with BLEU and CrystalBLEU. By design, the BLEU
score of both models are very similar, i.e., BLEU may lead to the
wrong conclusion that the two models are equally successful. In
contrast, CrystalBLEU shows that the neural model is 1.2x better
than the dummy model. Following the algorithm suggested by
Riezler and Maxwell III [42] we perform a statistical test to verify

CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

BLEU CrystalBLEU
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Si
m

ila
rit

y
sc

or
e

Neural Model
Dummy Model

Figure 6: Similarity scores of the neural and dummy models.

the significance of the differences for both BLEU and CrystalBLEU.
Setting the null hypothesis as “the dummy model is as good as the
neural model”, we obtain p-values of 0.22 for BLEU and 0.01 for
CrystalBLEU. This rejects the null hypothesis for CrystalBLEU, but
not for BLEU, showing that CrystalBLEU helps distinguish the two
models, whereas BLEU shows them to be the same.

Finding 2: CrystalBLEU can avoid misleading results, e.g.,
caused by a model that predicts trivially shared n-grams in-
stead of solving the actual task.

4.5 RQ3: Scalability
One of the most important selling points of BLEU is its running
speed. It is so fast that it is even used as an online metric [8].
We conduct a set of experiments to evaluate the running time of
CrystalBLEU and compare it to BLEU and CodeBLEU. For these
experiments we use a regular laptop running a 64 bit Ubuntu 20.04,
with an Intel Core i7 CPU (8 x 1.8 GHz) and 16 GB of RAM. We
use Python 3.9’s “time.process_time” method for all time measure-
ments.

The running time for the CrystalBLEU score calculations depend
on the size of set 𝑆 . Table 4 shows the running times of BLEU,
CodeBLEU, and CrystalBLEU for different datasets with |𝑆 | = 𝑘 =

500. In the two variants of CrystalBLEU we present in this paper,
the one that ignore the trivial n-grams gets faster when the size of
𝑆 increases, but the one that divides the n-grams counts by their
frequency in the sample corpus gets slower with an increase in the
size of 𝑆 .

We also measure the preprocessing time required to obtain the n-
gram counts on a sample corpus from each dataset. For ShareCode,
we use a sample of all programs in the dataset. It takes less than 5
seconds to process a sample corpus of 580K tokens, and less than
30 seconds for a corpus of 2.6M tokens.

Table 5 shows the preprocessing time required for CrystalBLEU
to gather the most common n-grams from a code corpus. It is worth
emphasizing that the preprocessing phase is only needed to be done
once for a task-language pair.

Table 4: Running times (in milliseconds per 100 pairs of code
pieces) of BLEU, CodeBLEU, and CrystalBLEU.

BLEU CodeBLEU CrystalBLEU

ShareCode Java Intra-class 1036.9 5382.3 953.6
ShareCode Java Inter-class 868.9 3848.3 743.6
BigCloneBench Intra-class 83.5 1445.1 85.7
BigCloneBench Inter-class 81.5 1269.4 81.7
Concode Java 14.2 133.8 13.6

Table 5: Preprocessing time (in seconds) of CrystalBLEU on
different datasets.

Dataset Number of tokens Preprocessing time (s)

ShareCode Java 580K 4.8
ShareCode C++ 1.8M 19.9
BigCloneBench 2.6M 22.3
Concode (tokenized) 2.6M 4.1

Our results show that CrystalBLEU can be used at scale without
degradation in running time performance. The preprocessing time
of under one minute is also acceptable for almost all use cases, as it
is a one-time calculation.

In terms of memory usage, CrystalBLEU first extracts a list of
all n-grams and then stores a dictionary of n-grams and their fre-
quencies. The length of the list of all n-grams is at most𝑚𝑎𝑥𝑁 2

times the number of tokens, which is in the same order as the input
corpus. Moreover, the dictionary storing the frequencies has fewer
entries than the list of all n-grams. Overall, for our largest sample
corpus, the whole Python process uses at most 920MB of memory.
Hence, CrystalBLEU can be used for all use cases in code that BLEU
has been used for previously.

Finding 3: CrystalBLEU is as efficient as BLEU, allowing for
large-scale evaluations of code similarity in little time.

4.6 RQ4: Parameter Choice
Choosing a suitable parameter 𝑘 for CrystalBLEU is important as
it affects the core competence of this new metric. This parameter
also affects the running time of CrystalBLEU. However, there is a
sizable range of suitable𝑘s for each task and language pair by design,
that yields benefits over BLEU. CrystalBLEU score decreases by
increasing𝑘 down to the point where it reaches 0, where all n-grams
matched are in set 𝑆 . Therefore, increasing 𝑘 causes an increase in
distinguishability, as shown in Fig. 8. Our analysis shows the best
performance of CrystalBLEU on complete Java and C++ programs
with 100 ≤ 𝑘 ≤ 1000. The empirical results match the intuitive
choice of 𝑘 from frequencies of n-grams, which is that n-grams
that appear more frequently convey less information regarding
similarity. In Fig. 7, from 100 to 1000 most common n-grams the
curve becomes more flat than for more common n-grams, while the
main decrease in the inter-class scores are also in the same range
in Fig. 8. So choosing the right 𝑘 for each task-language pair can be

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

100 101 102 103

Most occurring n-grams

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y
(s

ha
re

 o
f a

ll
n-

gr
am

s)

Figure 7: Frequency plot of most common n-grams in the
Java language.

101

102

Di
st

in
gu

ish
ab

ilit
y

CrystalBLEU
BLEU

0.0

0.2

0.4

Cr
ys

ta
lB

LE
U

sc
or

e

intra-class
inter-class

 2
 3
 4
 6

 10

Di
st

in
gu

ish
ab

ilit
y

CrystalBLEU
BLEU

100 101 102 103 104 105

k

0.0

0.1

0.2

Cr
ys

ta
lB

LE
U

sc
or

e

intra-class
inter-class

Figure 8: Distinguishability of CrystalBLEUvs BLEUbased on
the value of𝑘 for Java programs in the ShareCode dataset (top
2 charts) and the BigCloneBench dataset (bottom 2 charts).

done using the frequency plot of a sample corpus to find the range
where the frequencies drop to low values.

Finding 4: The choice of the number 𝑘 of trivially shared
n-grams to consider influences the results of CrystalBLEU, but
there is a relatively large range of reasonable values.

Table 6: Comparison of BLEU and alternative metrics.

Property BLEU CodeBLEU RUBY CrystalBLEU

Language-agnostic ✓ x x ✓
Handle incomplete and
partially incorrect code

✓ x x ✓

Efficient ✓ x x ✓
High distinguishability x x N/A ✓

5 THREATS TO VALIDITY
Our analysis is limited to three datasets, and all experiments are
on the Java and C++ languages. We select the languages due their
popularity in the relevant literature, and the availability of data.
Our datasets cover a wide range of programs in terms of domain
and size. Nevertheless, our findings may not generalize to other
datasets, and other programming languages may be more or less
affected by the effects shown in our experiments.

6 RELATEDWORK
Studies of BLEU in NLP. Since its invention in 2002 [36], BLEU has

become extremely popular in natural language processing (NLP),
but also received some criticism. Callison-Burch et al. [7] question
how well BLEU matches the actual translation quality of machine
translation systems and recommend to use it only for systems that
use similar translation strategies. Reiter [40] provide a systematic
review of papers that use BLEU in NLP and criticize using BLEU
as the only metric, as well as using BLEU in domains other than
machine translation. Post [38] discusses potential problems that
may arise from different variants of BLEU, and the lack of details in
many papers about which variant is used. Babych and Hartley [5]
study the effects of applying weights to words based on the TF-IDF
of each word when calculating BLEU. Although their approach is
similar to ours, their goal is to increase the correlation of translation
adequacy with human judgment. On the other hand, our approach
applies to all n-grams (not just 1-grams), and the goal is to increase
distinguishability. Lin and Hovy [28] studies some shortcomings
of BLEU in natural language summarization and proposes an al-
ternative. They show that the uni-gram co-occurrence correlates
well with human judgement, but the BLEU score performs poorly
in some cases. Graham [14] presents a detailed analysis of different
variants of ROUGE and BLEU with regards to their correlation with
the human judgement. One of the settings used is removing stop
words, which is a special case of removing common n-grams.

Alternative Metrics for Code. Recent work also criticizes the use
of BLEU for code-related tasks. One line of work [48] studies how
BLEU relates to a human judgment of code similarity in the context
of code translation between programming languages. The work
by Tran et al. [48], and also a more recent paper by Ren et al. [41],
propose alternative metrics to assess code similarity. Tran et al.
[48] also study BLEU on code, focusing on a specific application
domain, code migration, and on comparing BLEU against a human-
created oracle of semantic similarity. Both metrics rely on parsing
the code, which only works if the code to evaluate is syntactically
well-formed.

CrystalBLEU: Precisely and Efficiently Measuring the Similarity of Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

To summarize the differences in features that are important for
similarity metrics in this domain, Table 6 shows to what extent the
existing metrics, i.e. BLEU [36], RUBY [48], and CodeBLEU [41],
and our approach provide the following five desirable properties.
First, an ideal metric should be language-agnostic, a property BLEU
and CrystalBLEU provide by relying only on tokenization, but not
on any form of deeper program analysis. Second, a metric should
be able to handle incomplete and partially incorrect code, as such
code may be predicted by the evaluated techniques. RUBY and
CodeBLEU fail to provide this property as they must parse code into
an AST. Third, the metric should be efficient enough to be applied
to large code corpora or as an online metric as used in Chakraborty
et al. [8], a property that is more difficult to maintain when relying
on more semantic program analysis. Fourth, the metric should
evaluate well with human judgment. Finally, the metric should
provide high distinguishability, which CrystalBLEU does, as shown
in our evaluation. Note that the implementation of RUBY was not
publicly available, so wewere not able to assess its distinguishability.
However, the existence of other features were deduced from the
paper.

There is a related approach in the previouswork by Ren et al. [41],
called “weighted n-gram matching”, which is assigning weights to
n-grams to affect the importance of some n-grams. However, in
weighted n-gram matching they assign higher weights, i.e. higher
focus, on keywords, and only 1-gram keywords, which are prede-
fined for each language. These weights are higher than the normal
weights for other n-grams. This type of weight assignment is the
opposite of our approach, and shows worse distinguishability com-
pared to our approach.

Other Uses of BLEU Score. Beyond the use on code discussed
in this paper, BLEU has been used to evaluate natural language
prediction technique in software engineering, such as code sum-
marization [2, 53], log message generation [19], and comment gen-
eration [20]. Wan et al. [50] propose an actor and critic-style deep
reinforcement learning technique to predict a comment from code,
which uses BLEU as a feedback metric during learning. Our study
focuses on evaluating code prediction, not on natural language.

7 CONCLUSION
This paper presents CrystalBLEU, a BLEU-based metric to evalu-
ate source code similarity at scale, regardless of the programming
language. Our metric is as fast and easy-to-use as BLEU, while con-
sidering an inherent difference between source code and natural
language, namely the presence of trivially shared n-grams.We show
through experiments on different languages and datasets that Crys-
talBLEU outperforms existing metrics in its ability to distinguish
semantically equivalent from non-equivalent pairs of code. We en-
vision CrystalBLEU to provide a more precise metric for future
evaluations of techniques that predict source code. Moreover, our
novel meta-metric, distinguishability, will support the development
of even better code similarity metrics.

DATA AVAILABILITY
The implementation of CrystalBLEU and scripts used for exper-
iments presented in this paper are publicly available at https://
github.com/sola-st/crystalbleu.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC,
grant agreement 851895), and by the German Research Foundation
within the ConcSys and DeMoCo projects. We thank Amir Saboury
for providing us with the ShareCode dataset.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 81.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. https://openreview.net/forum?id=H1gKYo09tX

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A General
Path-Based Representation for Predicting Program Properties. In PLDI.

[4] Gareth Ari Aye and Gail E. Kaiser. 2020. Sequence Model Design for Code
Completion in the Modern IDE. CoRR abs/2004.05249 (2020). arXiv:2004.05249
https://arxiv.org/abs/2004.05249

[5] Bogdan Babych and Tony Hartley. 2004. Extending the BLEU MT evaluation
method with frequency weightings. In Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics (ACL-04). 621–628.

[6] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code
Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code. CoRR abs/2206.01335 (2022). https://doi.org/10.48550/arXiv.
2206.01335 arXiv:2206.01335

[7] Chris Callison-Burch, Miles Osborne, and Philipp Koehn. 2006. Re-evaluation the
Role of Bleu inMachine Translation Research. In EACL 2006, 11st Conference of the
European Chapter of the Association for Computational Linguistics, Proceedings of
the Conference, April 3-7, 2006, Trento, Italy, Diana McCarthy and Shuly Wintner
(Eds.). The Association for Computer Linguistics. https://www.aclweb.org/
anthology/E06-1032/

[8] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. 2018. Tree2Tree Neu-
ral Translation Model for Learning Source Code Changes. CoRR abs/1810.00314
(2018). arXiv:1810.00314 http://arxiv.org/abs/1810.00314

[9] Boxing Chen and Colin Cherry. 2014. A systematic comparison of smoothing
techniques for sentence-level bleu. In Proceedings of the Ninth Workshop on
Statistical Machine Translation. 362–367.

[10] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From ui design image to gui skeleton: a neural machine translator to bootstrap
mobile gui implementation. In Proceedings of the 40th International Conference on
Software Engineering. 665–676.

[11] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE TSE (2019).

[12] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in
Programs. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=SJeqs6EFvB

[13] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellen-
doorn. 2020. Patching as Translation: the Data and the Metaphor. arXiv preprint
arXiv:2008.10707 (2020).

[14] Yvette Graham. 2015. Re-evaluating automatic summarization with BLEU and
192 shades of ROUGE. In Proceedings of the 2015 conference on empirical methods
in natural language processing. 128–137.

[15] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In FSE. 631–642. https://doi.org/10.1145/2950290.2950334

[16] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, Satinder P. Singh and Shaul Markovitch (Eds.). AAAI Press,
1345–1351. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603

[17] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L.
Russell, Louis Y. Kim, and Sang Peter Chin. 2018. Learning to Repair Soft-
ware Vulnerabilities with Generative Adversarial Networks. In Advances in
Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Mon-
tréal, Canada. 7944–7954. http://papers.nips.cc/paper/8018-learning-to-repair-
software-vulnerabilities-with-generative-adversarial-networks

[18] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 837–847.

[19] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In ICSE.

https://github.com/sola-st/crystalbleu
https://github.com/sola-st/crystalbleu
https://openreview.net/forum?id=H1gKYo09tX
https://arxiv.org/abs/2004.05249
https://arxiv.org/abs/2004.05249
https://doi.org/10.48550/arXiv.2206.01335
https://doi.org/10.48550/arXiv.2206.01335
https://www.aclweb.org/anthology/E06-1032/
https://www.aclweb.org/anthology/E06-1032/
https://arxiv.org/abs/1810.00314
http://arxiv.org/abs/1810.00314
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1145/2950290.2950334
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
http://papers.nips.cc/paper/8018-learning-to-repair-software-vulnerabilities-with-generative-adversarial-networks
http://papers.nips.cc/paper/8018-learning-to-repair-software-vulnerabilities-with-generative-adversarial-networks

ASE ’22, October 10–14, 2022, Rochester, MI, USA Aryaz Eghbali and Michael Pradel

[20] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension, ICPC
2018, Gothenburg, Sweden, May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and
Janet Siegmund (Eds.). ACM, 200–210. https://doi.org/10.1145/3196321.3196334

[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018.
Mapping Language to Code in Programmatic Context. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018. 1643–1652. https://www.aclweb.org/
anthology/D18-1192/

[22] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big code != big vocabulary: open-vocabulary models for
source code. In ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae
(Eds.). ACM, 1073–1085. https://doi.org/10.1145/3377811.3380342

[23] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Predic-
tion by Feeding Trees to Transformers. In IEEE/ACM International Conference on
Software Engineering (ICSE).

[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65. https://doi.org/10.1145/
3318162

[25] Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2020. On the
Naturalness of Hardware Descriptions. In Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
530–542.

[26] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with
Neural Attention and Pointer Networks. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (Stockholm, Sweden) (IJCAI’18). AAAI
Press, 4159–25.

[27] Xiaochen Li, He Jiang, Yasutaka Kamei, and Xin Chen. 2018. Bridging semantic
gaps between natural languages and APIs with word embedding. IEEE Transac-
tions on Software Engineering (2018).

[28] Chin-Yew Lin and Eduard Hovy. 2003. Automatic evaluation of summaries
using n-gram co-occurrence statistics. In Proceedings of the 2003 human lan-
guage technology conference of the North American chapter of the association for
computational linguistics. 150–157.

[29] Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li, and Lu Zhang. 2020. Deep
Learning Based Program Generation from Requirements Text: Are We There
Yet? IEEE Transactions on Software Engineering (2020).

[30] Xinyue Liu, Xiangnan Kong, Lei Liu, and Kuorong Chiang. 2018. TreeGAN:
Syntax-Aware Sequence Generation with Generative Adversarial Networks.
ArXiv e-prints (2018). arXiv:1808.07582

[31] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: learning to repair compilation errors. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 925–936.

[32] Anh Tuan Nguyen, Trong Duc Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2018. A Deep Neural Network Language Model with Contexts for Source Code.
In SANER.

[33] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2015. Divide-and-
conquer approach for multi-phase statistical migration for source code (t). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 585–596.

[34] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Gener-
ating Realistic Vulnerabilities via Neural Code Editing: An Empirical Study. In
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE).

[35] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015. 574–584.

[36] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Annual Meeting on
Association for Computational Linguistics (ACL). 311–318.

[37] Jibesh Patra and Michael Pradel. 2021. Semantic bug seeding: a learning-based
approach for creating realistic bugs. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios
Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM, 906–918.
https://doi.org/10.1145/3468264.3468623

[38] Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings of
the Third Conference on Machine Translation: Research Papers. 186–191.

[39] Michael Pradel and Satish Chandra. 2022. Neural software analysis. Commun.
ACM 65, 1 (2022), 86–96. https://doi.org/10.1145/3460348

[40] Ehud Reiter. 2018. A Structured Review of the Validity of BLEU. Computational
Linguistics 44, 3 (2018), 393–401.

[41] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method for Automatic

Evaluation of Code Synthesis. arXiv preprint arXiv:2009.10297 (2020).
[42] Stefan Riezler and John T Maxwell III. 2005. On some pitfalls in automatic

evaluation and significance testing for MT. In Proceedings of the ACL workshop
on intrinsic and extrinsic evaluation measures for machine translation and/or
summarization. 57–64.

[43] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lam-
ple. 2020. Unsupervised Translation of Programming Languages. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html

[44] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A
Grammar-Based Structural CNN Decoder for Code Generation. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. 7055–7062. https://doi.
org/10.1609/aaai.v33i01.33017055

[45] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 476–480.

[46] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode compose: code generation using transformer. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1433–
1443. https://doi.org/10.1145/3368089.3417058

[47] Yanfei Tian, XuWang, Hailong Sun, Yi Zhao, Chunbo Guo, and Xudong Liu. 2018.
Automatically Generating API Usage Patterns from Natural Language Queries.
In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 59–68.

[48] Ngoc M. Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen.
2019. Does BLEU score work for code migration?. In Proceedings of the 27th
International Conference on Program Comprehension, ICPC 2019, Montreal, QC,
Canada, May 25-31, 2019, Yann-Gaël Guéhéneuc, Foutse Khomh, and Federica
Sarro (Eds.). IEEE / ACM, 165–176. https://doi.org/10.1109/ICPC.2019.00034

[49] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 25–36. https:
//dl.acm.org/citation.cfm?id=3339509

[50] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving automatic source code summarization via deep
reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM,
397–407. https://doi.org/10.1145/3238147.3238206

[51] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. In 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 261–271.

[52] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On Learning Meaningful Assert Statements for Unit Test Cases. In
ICSE.

[53] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based Neural Source Code Summarization. In ICSE.

[54] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong Liu.
2020. Learning to Handle Exceptions. In IEEE/ACM International Conference on
Automated Software Engineering (ASE).

https://doi.org/10.1145/3196321.3196334
https://www.aclweb.org/anthology/D18-1192/
https://www.aclweb.org/anthology/D18-1192/
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://arxiv.org/abs/1808.07582
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.1145/3460348
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1609/aaai.v33i01.33017055
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1109/ICPC.2019.00034
https://dl.acm.org/citation.cfm?id=3339509
https://dl.acm.org/citation.cfm?id=3339509
https://doi.org/10.1145/3238147.3238206

	Abstract
	1 Introduction
	2 Background
	2.1 BLEU Score
	2.2 BLEU on Code

	3 Approach
	3.1 Trivially Shared N-grams
	3.2 Distinguishability
	3.3 CrystalBLEU

	4 Evaluation
	4.1 Baselines
	4.2 Datasets
	4.3 RQ1: Distinguishing Similar and Dissimilar Code
	4.4 RQ2: Avoiding Misleading Results
	4.5 RQ3: Scalability
	4.6 RQ4: Parameter Choice

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

